Abstract

We report on quantum-limited noise performance of a mode-locked ytterbium all-fiber laser. The laser operates at a high normal net dispersion without dispersion compensation. We show that the naïve application of analytical models to such lasers leads to strongly underestimated timing jitter, whereas a numerical simulation is in reasonable agreement with measurements. The measured timing phase noise is found to be essentially limited by quantum noise influences and not by technical noise. Furthermore we show that the phase noise of different comb lines has a quasi-fix point at the center of the optical spectrum and that the jitter is translated into high carrier–envelope offset phase noise with a linewidth of around 3 MHz.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Namiki, C. X. Yu, and H. A. Haus, “Observation of nearly quantum-limited timing jitter an all fiber ring laser,” J. Opt. Soc. Am. B 13(12), 2817–2823 (1996).
    [CrossRef]
  2. R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
    [CrossRef]
  3. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. QE-29(3), 983–996 (1993).
    [CrossRef]
  4. R. Paschotta, “Noise of mode-locked lasers (Part I): numerical model,” Appl. Phys. B 79(2), 153–162 (2004).
    [CrossRef]
  5. M. Schultz, H. Karow, O. Prochnow, D. Wandt, U. Morgner, and D. Kracht, “All-fiber ytterbium femtosecond laser without dispersion compensation,” Opt. Express 16(24), 19562–19567 (2008).
    [CrossRef] [PubMed]
  6. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
    [CrossRef]
  7. I. G. Fuss, “An interpretation of the spectral measurement of optical pulse train noise,” IEEE J. Quantum Electron. QE-30(11), 2707–2710 (1994).
    [CrossRef]
  8. H. Tsuchida, “Correlation between amplitude and phase noise in a mode-locked Cr:LiSAF laser,” Opt. Lett. 23(21), 1686–1688 (1998).
    [CrossRef]
  9. J. Son, J. V. Rudd, and J. F. Whitaker, “Noise characterization of a self-mode-locked Ti:sapphire laser,” Opt. Lett. 17(10), 733–735 (1992).
    [CrossRef] [PubMed]
  10. A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26(6), 1115–1123 (1990).
    [CrossRef]
  11. R. Paschotta, B. Rudin, A. Schlatter, G. J. Spühler, L. Krainer, S. C. Zeller, N. Haverkamp, H. R. Telle, and U. Keller, “Relative timing jitter measurements with an indirect phase comparison method,” Appl. Phys. B 80, 185–192 (2005).
    [CrossRef]
  12. M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, “Subpicosecond laser timing stabilization,” IEEE J. Quantum Electron. QE-25(4), 817–827 (1989).
    [CrossRef]
  13. T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28(11), 947–949 (2003).
    [CrossRef] [PubMed]
  14. H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
    [CrossRef]
  15. R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier–-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
    [CrossRef]

2008

2006

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier–-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[CrossRef]

2005

R. Paschotta, B. Rudin, A. Schlatter, G. J. Spühler, L. Krainer, S. C. Zeller, N. Haverkamp, H. R. Telle, and U. Keller, “Relative timing jitter measurements with an indirect phase comparison method,” Appl. Phys. B 80, 185–192 (2005).
[CrossRef]

2004

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[CrossRef]

R. Paschotta, “Noise of mode-locked lasers (Part I): numerical model,” Appl. Phys. B 79(2), 153–162 (2004).
[CrossRef]

2003

2002

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
[CrossRef]

1998

1996

1994

I. G. Fuss, “An interpretation of the spectral measurement of optical pulse train noise,” IEEE J. Quantum Electron. QE-30(11), 2707–2710 (1994).
[CrossRef]

1993

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. QE-29(3), 983–996 (1993).
[CrossRef]

1992

1990

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26(6), 1115–1123 (1990).
[CrossRef]

1989

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, “Subpicosecond laser timing stabilization,” IEEE J. Quantum Electron. QE-25(4), 817–827 (1989).
[CrossRef]

1986

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

Bloom, D. M.

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, “Subpicosecond laser timing stabilization,” IEEE J. Quantum Electron. QE-25(4), 817–827 (1989).
[CrossRef]

Finch, A.

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26(6), 1115–1123 (1990).
[CrossRef]

Fujimoto, J. G.

Fuss, I. G.

I. G. Fuss, “An interpretation of the spectral measurement of optical pulse train noise,” IEEE J. Quantum Electron. QE-30(11), 2707–2710 (1994).
[CrossRef]

Gopinath, J. T.

Haus, H. A.

Haverkamp, N.

R. Paschotta, B. Rudin, A. Schlatter, G. J. Spühler, L. Krainer, S. C. Zeller, N. Haverkamp, H. R. Telle, and U. Keller, “Relative timing jitter measurements with an indirect phase comparison method,” Appl. Phys. B 80, 185–192 (2005).
[CrossRef]

Ippen, E. P.

Kaertner, F. X.

Karow, H.

Kean, P. N.

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26(6), 1115–1123 (1990).
[CrossRef]

Keller, U.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier–-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[CrossRef]

R. Paschotta, B. Rudin, A. Schlatter, G. J. Spühler, L. Krainer, S. C. Zeller, N. Haverkamp, H. R. Telle, and U. Keller, “Relative timing jitter measurements with an indirect phase comparison method,” Appl. Phys. B 80, 185–192 (2005).
[CrossRef]

Kim, J.

Kolodziejski, L. A.

Kracht, D.

Krainer, L.

R. Paschotta, B. Rudin, A. Schlatter, G. J. Spühler, L. Krainer, S. C. Zeller, N. Haverkamp, H. R. Telle, and U. Keller, “Relative timing jitter measurements with an indirect phase comparison method,” Appl. Phys. B 80, 185–192 (2005).
[CrossRef]

Kuzucu, O.

Lipphardt, B.

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
[CrossRef]

Mecozzi, A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. QE-29(3), 983–996 (1993).
[CrossRef]

Morgner, U.

Namiki, S.

Paschotta, R.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier–-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[CrossRef]

R. Paschotta, B. Rudin, A. Schlatter, G. J. Spühler, L. Krainer, S. C. Zeller, N. Haverkamp, H. R. Telle, and U. Keller, “Relative timing jitter measurements with an indirect phase comparison method,” Appl. Phys. B 80, 185–192 (2005).
[CrossRef]

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[CrossRef]

R. Paschotta, “Noise of mode-locked lasers (Part I): numerical model,” Appl. Phys. B 79(2), 153–162 (2004).
[CrossRef]

Petrich, G. S.

Prochnow, O.

Rodwell, M. J. W.

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, “Subpicosecond laser timing stabilization,” IEEE J. Quantum Electron. QE-25(4), 817–827 (1989).
[CrossRef]

Rudd, J. V.

Rudin, B.

R. Paschotta, B. Rudin, A. Schlatter, G. J. Spühler, L. Krainer, S. C. Zeller, N. Haverkamp, H. R. Telle, and U. Keller, “Relative timing jitter measurements with an indirect phase comparison method,” Appl. Phys. B 80, 185–192 (2005).
[CrossRef]

Schibli, T. R.

Schlatter, A.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier–-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[CrossRef]

R. Paschotta, B. Rudin, A. Schlatter, G. J. Spühler, L. Krainer, S. C. Zeller, N. Haverkamp, H. R. Telle, and U. Keller, “Relative timing jitter measurements with an indirect phase comparison method,” Appl. Phys. B 80, 185–192 (2005).
[CrossRef]

Schultz, M.

Sibbett, W.

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26(6), 1115–1123 (1990).
[CrossRef]

Son, J.

Spühler, G. J.

R. Paschotta, B. Rudin, A. Schlatter, G. J. Spühler, L. Krainer, S. C. Zeller, N. Haverkamp, H. R. Telle, and U. Keller, “Relative timing jitter measurements with an indirect phase comparison method,” Appl. Phys. B 80, 185–192 (2005).
[CrossRef]

Stenger, J.

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
[CrossRef]

Tandon, S. N.

Telle, H. R.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier–-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[CrossRef]

R. Paschotta, B. Rudin, A. Schlatter, G. J. Spühler, L. Krainer, S. C. Zeller, N. Haverkamp, H. R. Telle, and U. Keller, “Relative timing jitter measurements with an indirect phase comparison method,” Appl. Phys. B 80, 185–192 (2005).
[CrossRef]

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
[CrossRef]

Tsuchida, H.

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

Wandt, D.

Weingarten, K. J.

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, “Subpicosecond laser timing stabilization,” IEEE J. Quantum Electron. QE-25(4), 817–827 (1989).
[CrossRef]

Whitaker, J. F.

Yu, C. X.

Zeller, S. C.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier–-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[CrossRef]

R. Paschotta, B. Rudin, A. Schlatter, G. J. Spühler, L. Krainer, S. C. Zeller, N. Haverkamp, H. R. Telle, and U. Keller, “Relative timing jitter measurements with an indirect phase comparison method,” Appl. Phys. B 80, 185–192 (2005).
[CrossRef]

Zhu, X.

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26(6), 1115–1123 (1990).
[CrossRef]

Appl. Phys. B

R. Paschotta, “Noise of mode-locked lasers (Part I): numerical model,” Appl. Phys. B 79(2), 153–162 (2004).
[CrossRef]

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[CrossRef]

R. Paschotta, B. Rudin, A. Schlatter, G. J. Spühler, L. Krainer, S. C. Zeller, N. Haverkamp, H. R. Telle, and U. Keller, “Relative timing jitter measurements with an indirect phase comparison method,” Appl. Phys. B 80, 185–192 (2005).
[CrossRef]

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
[CrossRef]

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier–-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265–273 (2006).
[CrossRef]

IEEE J. Quantum Electron.

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, “Subpicosecond laser timing stabilization,” IEEE J. Quantum Electron. QE-25(4), 817–827 (1989).
[CrossRef]

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. QE-29(3), 983–996 (1993).
[CrossRef]

I. G. Fuss, “An interpretation of the spectral measurement of optical pulse train noise,” IEEE J. Quantum Electron. QE-30(11), 2707–2710 (1994).
[CrossRef]

A. Finch, X. Zhu, P. N. Kean, and W. Sibbett, “Noise characterization of mode-locked color-center laser sources,” IEEE J. Quantum Electron. 26(6), 1115–1123 (1990).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 3
Fig. 3

Power spectral density of the timing phase noise obtained with the von der Linde method (solid black curve). The peaks at low offset frequencies result from parasitic electronic influences by the power supply. Above ≈10 kHz, the measurement is limited by the noise floor of the spectrum analyzer as indicated (red dash-dotted curve). Also shown are the numerical results (straight gray line, above 80 kHz) and the corresponding extrapolation to lower noise frequencies, assuming white frequency noise (dotted gray line). Finally, the analytical estimate is shown as the black dashed curve.

Fig. 1
Fig. 1

Setup of the all-fiber laser. PC: polarization controller; SMF: single-mode fiber; WDM: wavelength division multiplexer.

Fig. 2
Fig. 2

Setup for phase noise measurements (a) setting for the von der Linde method [6]; (b) setting for the indirect phase comparison method [11]. PD: photodiode; BP: bandpass filter; Amp: amplifier; LP: low-pass filter.

Fig. 4
Fig. 4

Power spectral density of the timing phase noise calculated by Fourier analysis of the measured data obtained with the indirect phase comparison method. Black solid curve: first laser; gray solid curve: second laser; black dashed curve: difference of the phase values. The peak at about 70 kHz is an aliased parasitic signal.

Fig. 5
Fig. 5

Setup for measuring (a) the beat note between the fiber laser and the NPRO and (b) the CEO frequency. WDM: wave length division multiplexer; SMF: single mode fiber; BS: beam splitter; PH: pin hole; PD: photodiode.

Fig. 6
Fig. 6

Phase noise spectrum of the beat note (solid black curve), compared with the theoretical spectrum for a simple random-walk process with 10 kHz linewidth (dashed gray curve).

Fig. 7
Fig. 7

Measured CEO beat signal. The peak at 32.8 MHz corresponds to the repetition rate of the laser.

Metrics