Abstract

We have fabricated a highly nonlinear complex microstructure tellurite fiber with a 1.8 micron core surrounded by four rings of holes. The cane for the fiber was prepared by combining the methods of cast rod in tube and stacking. In the process of fiber-drawing a positive pressure was pumped into the holes of cane to overcome the collapse of holes and reshape the microstructure. The correlations among pump pressure, hole size, surface tension and temperature gradient were investigated. The temperature gradient at the bottom of the preform’s neck region was evaluated quantitatively by an indirect method. The chromatic dispersion of this fiber was compared with that of a step-index air-clad fiber. It was found that this fiber has a much more flattened chromatic dispersion. To the best of our knowledge this is the first report about a soft glass microstructure fiber which has such a small core together with four rings of holes for the dispersion engineering. The SC generation from this fiber was investigated under the pump of a 1557 nm femtosecond fiber laser. Infrared supercontinuum generation, free of fine structure, together with visible third harmonic generation was obtained under the pump of a femtosecond fiber laser with a pulse energy of several hundred pJ.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. S. Kivshar, “Nonlinear optics: the next decade,” Opt. Express 16(26), 22126–22128 (2008).
    [PubMed]
  2. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).
  3. A. F. Fercher and E. Roth, “Ophthalmic laser interferometry,” Proc. SPIE 658, 48–51 (1986).
  4. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
  5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [PubMed]
  6. H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V. V. R. K. Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, “Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm,” Opt. Express 11(24), 3196–3201 (2003).
    [PubMed]
  7. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14(11), 4928–4934 (2006).
    [PubMed]
  8. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12(21), 5082–5087 (2004).
    [PubMed]
  9. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
    [PubMed]
  10. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16(18), 13651–13656 (2008).
    [PubMed]
  11. G. Qin, M. Liao, C. Chaudhari, Y. Arai, T. Suzuki, and Y. Ohishi, “Spectrum controlled supercontinuum generation in microstructure tellurite fibers,” J. Cera. Soc. Jap. 117(1365), 706–708 (2009).
  12. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009).
    [PubMed]
  13. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30(15), 1980–1982 (2005).
    [PubMed]
  14. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber,” Opt. Lett. 34(13), 2015–2017 (2009).
    [PubMed]
  15. J. J. Miret, E. Silvestre, and P. Andrés, “Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers,” Opt. Express 17(11), 9197–9203 (2009).
    [PubMed]
  16. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse,” J. Opt. Soc. Am. B 21, 1969–1980 (2004).
  17. X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23(6), 2046–2054 (2005).
  18. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007).
    [PubMed]
  19. P. G. de Gennes, F. Brochard-Wyart, and D. Quere, “Capillary and Wetting Phenomena-Drops, Bubbles, Pearls, Waves,” Springer. (2002).
  20. W. Gregory H, “Statistical Physics,” New York: Dover Publications. (1987).
  21. A. N. Kensington, “The Physics and Chemistry of Surfaces, 3rd ed.” Oxford University Press. (1941).
  22. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express 14(25), 11997–12007 (2006).
    [PubMed]
  23. T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13(23), 9556–9569 (2005).
    [PubMed]
  24. M. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13(16), 6181–6192 (2005).
    [PubMed]
  25. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12(1), 124–135 (2004).
    [PubMed]
  26. F. G. Omenetto, A. J. Taylor, M. D. Moores, J. Arriaga, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber,” Opt. Lett. 26(15), 1158–1160 (2001).
  27. A. Efimov, A. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express 11(20), 2567–2576 (2003).
    [PubMed]
  28. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17(8), 6134–6147 (2009).
    [PubMed]

2009

2008

2007

2006

2005

2004

2003

2001

2000

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[PubMed]

1996

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).

1986

A. F. Fercher and E. Roth, “Ophthalmic laser interferometry,” Proc. SPIE 658, 48–51 (1986).

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).

Andersen, T.

Andrés, P.

Arai, Y.

G. Qin, M. Liao, C. Chaudhari, Y. Arai, T. Suzuki, and Y. Ohishi, “Spectrum controlled supercontinuum generation in microstructure tellurite fibers,” J. Cera. Soc. Jap. 117(1365), 706–708 (2009).

Arriaga, J.

Asimakis, S.

Austin, D. R.

Bang, O.

Birks, T. A.

Brown, T. G.

Camerlingo, A.

Chaudhari, C.

Cordeiro, C. M. B.

Cristiani, I.

Cronin-Golomb, M.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[PubMed]

Dasgupta, S.

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).

de Sterke, C. M.

Degiorgio, V.

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[PubMed]

Domachuk, P.

Ebendorff-Heidepriem, H.

Efimov, A.

Eggleton, B. J.

Falk, P.

Fallnich, C.

Feng, X.

Fercher, A. F.

A. F. Fercher and E. Roth, “Ophthalmic laser interferometry,” Proc. SPIE 658, 48–51 (1986).

Finazzi, V.

Flanagan, J. C.

Frampton, K.

Frampton, K. E.

Frosz, M.

George, A. K.

Goto, T.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[PubMed]

Hewak, D. W.

Horak, P.

Hori, T.

Hundertmark, H.

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).

Joly, N. Y.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[PubMed]

Kito, C.

Kivshar, Y. S.

Knight, J.

Knight, J. C.

Koizumi, F.

Kracht, D.

Kumar, V. V. R. K.

Liao, M.

Limpert, J.

Loh, W. H.

Mairaj, A. K.

Miret, J. J.

Monro, T. M.

Moore, R. C.

Moores, M. D.

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).

Nishizawa, N.

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).

Ohishi, Y.

Omenetto, F.

Omenetto, F. G.

Petropoulos, P.

Poletti, F.

Price, J. H. V.

Qin, G.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[PubMed]

Richardson, D. J.

Ross, M.

Roth, E.

A. F. Fercher and E. Roth, “Ophthalmic laser interferometry,” Proc. SPIE 658, 48–51 (1986).

Russell, P.

Russell, P. S. J.

Russell, P. St. J.

Rutt, H. N.

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).

Sato, K. I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).

Schimpf, D.

Schreiber, T.

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).

Silvestre, E.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[PubMed]

Suzuki, T.

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).

Takara, H.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).

Tartara, L.

Taylor, A.

Taylor, A. J.

Tediosi, R.

Tünnermann, A.

Wadsworth, W.

Wadsworth, W. J.

Wandt, D.

Wang, A.

Wehner, M. R.

White, N. M.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[PubMed]

Wolchover, N. A.

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).

Yan, X.

Yoshida, M.

Appl. Phys. Lett.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).

Electron. Lett.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 36(25), 2089–2090 (2000).

J. Cera. Soc. Jap.

G. Qin, M. Liao, C. Chaudhari, Y. Arai, T. Suzuki, and Y. Ohishi, “Spectrum controlled supercontinuum generation in microstructure tellurite fibers,” J. Cera. Soc. Jap. 117(1365), 706–708 (2009).

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express 14(25), 11997–12007 (2006).
[PubMed]

T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13(23), 9556–9569 (2005).
[PubMed]

M. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13(16), 6181–6192 (2005).
[PubMed]

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12(1), 124–135 (2004).
[PubMed]

Y. S. Kivshar, “Nonlinear optics: the next decade,” Opt. Express 16(26), 22126–22128 (2008).
[PubMed]

J. J. Miret, E. Silvestre, and P. Andrés, “Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers,” Opt. Express 17(11), 9197–9203 (2009).
[PubMed]

A. Efimov, A. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express 11(20), 2567–2576 (2003).
[PubMed]

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17(8), 6134–6147 (2009).
[PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007).
[PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009).
[PubMed]

H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V. V. R. K. Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, “Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm,” Opt. Express 11(24), 3196–3201 (2003).
[PubMed]

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14(11), 4928–4934 (2006).
[PubMed]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12(21), 5082–5087 (2004).
[PubMed]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[PubMed]

X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16(18), 13651–13656 (2008).
[PubMed]

Opt. Lett.

Proc. SPIE

A. F. Fercher and E. Roth, “Ophthalmic laser interferometry,” Proc. SPIE 658, 48–51 (1986).

Science

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[PubMed]

Other

P. G. de Gennes, F. Brochard-Wyart, and D. Quere, “Capillary and Wetting Phenomena-Drops, Bubbles, Pearls, Waves,” Springer. (2002).

W. Gregory H, “Statistical Physics,” New York: Dover Publications. (1987).

A. N. Kensington, “The Physics and Chemistry of Surfaces, 3rd ed.” Oxford University Press. (1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The cross-sections of the fibers drawn under different pump pressures and the finial cane: a. 2.8 kPa; b. 3.6 kPa; c. 8.5 kPa; d. finial cane; e. 8.5 kPa. Inset a-d were taken by an optical microscope. Inset e was taken by a scanning electron microscope.

Fig. 2
Fig. 2

Chromatic dispersion of the fundamental mode in the complex microstructure fiber. The chromatic dispersion of the fundamental mode in a step-index air-clad fiber is shown for a comparison.

Fig. 3
Fig. 3

Optical loss spectrum of the complex microstructure fiber measured by cut back method.

Fig. 4
Fig. 4

Pulse energy dependent supercontinuum spectra of the complex microstructure fiber pumped by a femtosecond fiber laser. The curve is displaced by 20 dB.

Fig. 5
Fig. 5

Wavelength of dispersive waves λDW vs. the soliton center wavelength λS.

Fig. 6
Fig. 6

Experimental peak power of the third harmonic signal as a function of the power of fundamental wavelength compared with a cubic fit shown by the straight line.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

N2=γP0T02|β2|
ΔP=σ(1rx+1ry)
ΔP=σ1r
r0=SpSfR
ΔP=σ1RSfSp
σ=k(TcT)V23
ΔT=(ΔPiRiΔPjRj)SpSfV23k
γ=2πλn2(x,y)|F(x,y)|4dxdy(|F(x,y)|2dxdy)2
n2βn(ωs)n!(ωDWωs)n=γPs2

Metrics