Abstract

We have observed multi-wave mixing (MWM) processes in reversed-Y (RY) type system in 87 Rb atoms with electromagnetically induced transparency (EIT) windows at different laser polarization configurations. Interesting rules of changing the MWM processes and EIT profiles are obtained. We have found that the degenerate Zeeman sublevels and their dressed-state effects are responsible for these observed phenomena. Polarizable dark states are used to describe the multi-level dressed states. The experimental data are in good agreement with the results from the theoretical calculation that takes into account all the 16 Zeeman sublevels in the RY system.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, "Electromagnetically Induced Transparency," Phys. Today. 50, 36-42 (1997).
    [CrossRef]
  2. J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, "Electromagnetically Induced Transparency in ladder-type inhomogeneously broadened media: Theory and experiment," Phys. Rev. A. 51, 576- 584 (1995).
    [CrossRef] [PubMed]
  3. A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, "Transporting and time reversing light via atomic coherence," Phys. Rev. Lett. 88, 103601 (2002).
    [CrossRef]
  4. P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, "Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium," Opt. Lett. 20, 982-984 (1995).
    [CrossRef] [PubMed]
  5. B. Lu, W. H. Burkett, and M. Xiao, "Nondegenerate Four-Wave Mixing in a double-? system under the influence of coherent population trapping," Opt. Lett. 23, 804-806 (1998).
    [CrossRef]
  6. K. J Jiang, L. Deng, and M. G. Payne, "Observation of quantum destructive interference in inelastic Two-wave Mixing," Phys. Rev. Lett. 98, 083604 (2007).
    [CrossRef]
  7. H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, "Phase-contrlled light switching at low light levels," Phys. Rev. A. 73, 011802 (2006).
    [CrossRef]
  8. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, "Entangled images from Four-Wave Mixing," Science. 321, 544-547 (2008).
    [CrossRef] [PubMed]
  9. S. W. Du, J. M. Wen, M. H. Rubin, and G. Y. Yin, "Four-wave Mixing and biphoton generation in a two-level system," Phys. Rev. Lett. 98, 0536014 (2007).
    [CrossRef]
  10. V. B. Danielle, A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, "Generation of paired photons with controllable waveforms," Phys. Rev. Lett. 94, 183601 (2005).
  11. C. Cohen-Tannoudji and S. Reynaud, "Dreesed-atom description of resonance fluorescence and absorption spectra of a multi-level atom in an intense laser beam," J. Phys. B. 10, 345-363 (1977).
    [CrossRef]
  12. H. Zheng, Y. Zhang, Z. Nie, C. Li, H. Chong, J. Song, and M. Xiao, "Interplay among multi-dressed Four-wave Mixing processes," Appl. Phys. Lett. 93, 241101 (2008).
    [CrossRef]
  13. Y. Zhang, B. Anderson, A. W. Brown, and M. Xiao, "Competition between two Four-wave Mixing channels via atomic coherence," Appl. Phys. Lett. 91, 061113 (2007).
    [CrossRef]
  14. Y. Zhang and M. Xiao, "Generalized dressed and doubly-dressed multi-wave mixing," Opt. Express. 15. 7182-7189 (2007).
    [CrossRef] [PubMed]
  15. C. J. Zhu, A. A. Senin, Z. H. Lu, J. Gao, Y. Xiao, and J. G. Eden, "Polarization of signal wave radiation generated by parametric four-wave mixing in rubidium vapor: Ultrafast (~150-fs) and nanosecond time scale excitation," Phys. Rev. A. 72, 023811 (2005).
    [CrossRef]
  16. H. Y. Ling, Y. Q Li, and M. Xiao, "Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms," Phys. Rev. A,  53, 1014-1026 (1996).
    [CrossRef] [PubMed]
  17. S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, "Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms," Phys. Rev. A. 74, 033821 (2006).
    [CrossRef]
  18. For detail in transition probabilities of D1 and D2 line in Rb, see http:// steck. Us/ alkalidata.
  19. Y. Chen, C. Lin, and I. A. Yu, "Role of degenerate Zeeman levels in electromagnetically induced transparency," Phys. Rev. A. 61, 053805 (2000).
    [CrossRef]

2008 (2)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, "Entangled images from Four-Wave Mixing," Science. 321, 544-547 (2008).
[CrossRef] [PubMed]

H. Zheng, Y. Zhang, Z. Nie, C. Li, H. Chong, J. Song, and M. Xiao, "Interplay among multi-dressed Four-wave Mixing processes," Appl. Phys. Lett. 93, 241101 (2008).
[CrossRef]

2007 (4)

Y. Zhang, B. Anderson, A. W. Brown, and M. Xiao, "Competition between two Four-wave Mixing channels via atomic coherence," Appl. Phys. Lett. 91, 061113 (2007).
[CrossRef]

Y. Zhang and M. Xiao, "Generalized dressed and doubly-dressed multi-wave mixing," Opt. Express. 15. 7182-7189 (2007).
[CrossRef] [PubMed]

S. W. Du, J. M. Wen, M. H. Rubin, and G. Y. Yin, "Four-wave Mixing and biphoton generation in a two-level system," Phys. Rev. Lett. 98, 0536014 (2007).
[CrossRef]

K. J Jiang, L. Deng, and M. G. Payne, "Observation of quantum destructive interference in inelastic Two-wave Mixing," Phys. Rev. Lett. 98, 083604 (2007).
[CrossRef]

2006 (2)

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, "Phase-contrlled light switching at low light levels," Phys. Rev. A. 73, 011802 (2006).
[CrossRef]

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, "Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms," Phys. Rev. A. 74, 033821 (2006).
[CrossRef]

2005 (2)

V. B. Danielle, A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, "Generation of paired photons with controllable waveforms," Phys. Rev. Lett. 94, 183601 (2005).

C. J. Zhu, A. A. Senin, Z. H. Lu, J. Gao, Y. Xiao, and J. G. Eden, "Polarization of signal wave radiation generated by parametric four-wave mixing in rubidium vapor: Ultrafast (~150-fs) and nanosecond time scale excitation," Phys. Rev. A. 72, 023811 (2005).
[CrossRef]

2002 (1)

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, "Transporting and time reversing light via atomic coherence," Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef]

2000 (1)

Y. Chen, C. Lin, and I. A. Yu, "Role of degenerate Zeeman levels in electromagnetically induced transparency," Phys. Rev. A. 61, 053805 (2000).
[CrossRef]

1998 (1)

1997 (1)

S. E. Harris, "Electromagnetically Induced Transparency," Phys. Today. 50, 36-42 (1997).
[CrossRef]

1996 (1)

H. Y. Ling, Y. Q Li, and M. Xiao, "Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms," Phys. Rev. A,  53, 1014-1026 (1996).
[CrossRef] [PubMed]

1995 (2)

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, "Electromagnetically Induced Transparency in ladder-type inhomogeneously broadened media: Theory and experiment," Phys. Rev. A. 51, 576- 584 (1995).
[CrossRef] [PubMed]

P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, "Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium," Opt. Lett. 20, 982-984 (1995).
[CrossRef] [PubMed]

1977 (1)

C. Cohen-Tannoudji and S. Reynaud, "Dreesed-atom description of resonance fluorescence and absorption spectra of a multi-level atom in an intense laser beam," J. Phys. B. 10, 345-363 (1977).
[CrossRef]

Anderson, B.

Y. Zhang, B. Anderson, A. W. Brown, and M. Xiao, "Competition between two Four-wave Mixing channels via atomic coherence," Appl. Phys. Lett. 91, 061113 (2007).
[CrossRef]

Boyer, V.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, "Entangled images from Four-Wave Mixing," Science. 321, 544-547 (2008).
[CrossRef] [PubMed]

Braje, A.

V. B. Danielle, A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, "Generation of paired photons with controllable waveforms," Phys. Rev. Lett. 94, 183601 (2005).

Brown, A. W.

Y. Zhang, B. Anderson, A. W. Brown, and M. Xiao, "Competition between two Four-wave Mixing channels via atomic coherence," Appl. Phys. Lett. 91, 061113 (2007).
[CrossRef]

Burkett, W. H.

Chen, Y.

Y. Chen, C. Lin, and I. A. Yu, "Role of degenerate Zeeman levels in electromagnetically induced transparency," Phys. Rev. A. 61, 053805 (2000).
[CrossRef]

Chong, H.

H. Zheng, Y. Zhang, Z. Nie, C. Li, H. Chong, J. Song, and M. Xiao, "Interplay among multi-dressed Four-wave Mixing processes," Appl. Phys. Lett. 93, 241101 (2008).
[CrossRef]

Cohen-Tannoudji, C.

C. Cohen-Tannoudji and S. Reynaud, "Dreesed-atom description of resonance fluorescence and absorption spectra of a multi-level atom in an intense laser beam," J. Phys. B. 10, 345-363 (1977).
[CrossRef]

Cronin-Golomb, M.

Danielle, V. B.

V. B. Danielle, A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, "Generation of paired photons with controllable waveforms," Phys. Rev. Lett. 94, 183601 (2005).

Deng, L.

K. J Jiang, L. Deng, and M. G. Payne, "Observation of quantum destructive interference in inelastic Two-wave Mixing," Phys. Rev. Lett. 98, 083604 (2007).
[CrossRef]

Donoghue, J.

Du, S. W.

S. W. Du, J. M. Wen, M. H. Rubin, and G. Y. Yin, "Four-wave Mixing and biphoton generation in a two-level system," Phys. Rev. Lett. 98, 0536014 (2007).
[CrossRef]

Eden, J. G.

C. J. Zhu, A. A. Senin, Z. H. Lu, J. Gao, Y. Xiao, and J. G. Eden, "Polarization of signal wave radiation generated by parametric four-wave mixing in rubidium vapor: Ultrafast (~150-fs) and nanosecond time scale excitation," Phys. Rev. A. 72, 023811 (2005).
[CrossRef]

Gao, J.

C. J. Zhu, A. A. Senin, Z. H. Lu, J. Gao, Y. Xiao, and J. G. Eden, "Polarization of signal wave radiation generated by parametric four-wave mixing in rubidium vapor: Ultrafast (~150-fs) and nanosecond time scale excitation," Phys. Rev. A. 72, 023811 (2005).
[CrossRef]

Gea-Banacloche, J.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, "Electromagnetically Induced Transparency in ladder-type inhomogeneously broadened media: Theory and experiment," Phys. Rev. A. 51, 576- 584 (1995).
[CrossRef] [PubMed]

Han, Y.

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, "Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms," Phys. Rev. A. 74, 033821 (2006).
[CrossRef]

Harris, S. E.

V. B. Danielle, A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, "Generation of paired photons with controllable waveforms," Phys. Rev. Lett. 94, 183601 (2005).

S. E. Harris, "Electromagnetically Induced Transparency," Phys. Today. 50, 36-42 (1997).
[CrossRef]

Hemmer, P. R.

Hernandez, G.

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, "Phase-contrlled light switching at low light levels," Phys. Rev. A. 73, 011802 (2006).
[CrossRef]

Jiang, K. J

K. J Jiang, L. Deng, and M. G. Payne, "Observation of quantum destructive interference in inelastic Two-wave Mixing," Phys. Rev. Lett. 98, 083604 (2007).
[CrossRef]

Jin, S.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, "Electromagnetically Induced Transparency in ladder-type inhomogeneously broadened media: Theory and experiment," Phys. Rev. A. 51, 576- 584 (1995).
[CrossRef] [PubMed]

Kang, H.

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, "Phase-contrlled light switching at low light levels," Phys. Rev. A. 73, 011802 (2006).
[CrossRef]

Katz, D. P.

Kocharovskaya, O.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, "Transporting and time reversing light via atomic coherence," Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef]

Kolchin, P.

V. B. Danielle, A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, "Generation of paired photons with controllable waveforms," Phys. Rev. Lett. 94, 183601 (2005).

Kumar, P.

Lett, P. D.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, "Entangled images from Four-Wave Mixing," Science. 321, 544-547 (2008).
[CrossRef] [PubMed]

Li, C.

H. Zheng, Y. Zhang, Z. Nie, C. Li, H. Chong, J. Song, and M. Xiao, "Interplay among multi-dressed Four-wave Mixing processes," Appl. Phys. Lett. 93, 241101 (2008).
[CrossRef]

Li, S.

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, "Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms," Phys. Rev. A. 74, 033821 (2006).
[CrossRef]

Li, Y.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, "Electromagnetically Induced Transparency in ladder-type inhomogeneously broadened media: Theory and experiment," Phys. Rev. A. 51, 576- 584 (1995).
[CrossRef] [PubMed]

Li, Y. Q

H. Y. Ling, Y. Q Li, and M. Xiao, "Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms," Phys. Rev. A,  53, 1014-1026 (1996).
[CrossRef] [PubMed]

Lin, C.

Y. Chen, C. Lin, and I. A. Yu, "Role of degenerate Zeeman levels in electromagnetically induced transparency," Phys. Rev. A. 61, 053805 (2000).
[CrossRef]

Ling, H. Y.

H. Y. Ling, Y. Q Li, and M. Xiao, "Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms," Phys. Rev. A,  53, 1014-1026 (1996).
[CrossRef] [PubMed]

Lu, B.

Lu, Z. H.

C. J. Zhu, A. A. Senin, Z. H. Lu, J. Gao, Y. Xiao, and J. G. Eden, "Polarization of signal wave radiation generated by parametric four-wave mixing in rubidium vapor: Ultrafast (~150-fs) and nanosecond time scale excitation," Phys. Rev. A. 72, 023811 (2005).
[CrossRef]

Marino, A. M.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, "Entangled images from Four-Wave Mixing," Science. 321, 544-547 (2008).
[CrossRef] [PubMed]

Matsko, A. B.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, "Transporting and time reversing light via atomic coherence," Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef]

Nie, Z.

H. Zheng, Y. Zhang, Z. Nie, C. Li, H. Chong, J. Song, and M. Xiao, "Interplay among multi-dressed Four-wave Mixing processes," Appl. Phys. Lett. 93, 241101 (2008).
[CrossRef]

Payne, M. G.

K. J Jiang, L. Deng, and M. G. Payne, "Observation of quantum destructive interference in inelastic Two-wave Mixing," Phys. Rev. Lett. 98, 083604 (2007).
[CrossRef]

Peng, K. C.

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, "Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms," Phys. Rev. A. 74, 033821 (2006).
[CrossRef]

Pooser, R. C.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, "Entangled images from Four-Wave Mixing," Science. 321, 544-547 (2008).
[CrossRef] [PubMed]

Reynaud, S.

C. Cohen-Tannoudji and S. Reynaud, "Dreesed-atom description of resonance fluorescence and absorption spectra of a multi-level atom in an intense laser beam," J. Phys. B. 10, 345-363 (1977).
[CrossRef]

Rostovtsev, Y. V.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, "Transporting and time reversing light via atomic coherence," Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef]

Rubin, M. H.

S. W. Du, J. M. Wen, M. H. Rubin, and G. Y. Yin, "Four-wave Mixing and biphoton generation in a two-level system," Phys. Rev. Lett. 98, 0536014 (2007).
[CrossRef]

Scully, M. O.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, "Transporting and time reversing light via atomic coherence," Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef]

Senin, A. A.

C. J. Zhu, A. A. Senin, Z. H. Lu, J. Gao, Y. Xiao, and J. G. Eden, "Polarization of signal wave radiation generated by parametric four-wave mixing in rubidium vapor: Ultrafast (~150-fs) and nanosecond time scale excitation," Phys. Rev. A. 72, 023811 (2005).
[CrossRef]

Shahriar, M. S.

Song, J.

H. Zheng, Y. Zhang, Z. Nie, C. Li, H. Chong, J. Song, and M. Xiao, "Interplay among multi-dressed Four-wave Mixing processes," Appl. Phys. Lett. 93, 241101 (2008).
[CrossRef]

Wang, B.

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, "Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms," Phys. Rev. A. 74, 033821 (2006).
[CrossRef]

Wang, H.

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, "Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms," Phys. Rev. A. 74, 033821 (2006).
[CrossRef]

Welch, G. R.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, "Transporting and time reversing light via atomic coherence," Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef]

Wen, J. M.

S. W. Du, J. M. Wen, M. H. Rubin, and G. Y. Yin, "Four-wave Mixing and biphoton generation in a two-level system," Phys. Rev. Lett. 98, 0536014 (2007).
[CrossRef]

Xiao, M.

H. Zheng, Y. Zhang, Z. Nie, C. Li, H. Chong, J. Song, and M. Xiao, "Interplay among multi-dressed Four-wave Mixing processes," Appl. Phys. Lett. 93, 241101 (2008).
[CrossRef]

Y. Zhang, B. Anderson, A. W. Brown, and M. Xiao, "Competition between two Four-wave Mixing channels via atomic coherence," Appl. Phys. Lett. 91, 061113 (2007).
[CrossRef]

Y. Zhang and M. Xiao, "Generalized dressed and doubly-dressed multi-wave mixing," Opt. Express. 15. 7182-7189 (2007).
[CrossRef] [PubMed]

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, "Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms," Phys. Rev. A. 74, 033821 (2006).
[CrossRef]

B. Lu, W. H. Burkett, and M. Xiao, "Nondegenerate Four-Wave Mixing in a double-? system under the influence of coherent population trapping," Opt. Lett. 23, 804-806 (1998).
[CrossRef]

H. Y. Ling, Y. Q Li, and M. Xiao, "Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms," Phys. Rev. A,  53, 1014-1026 (1996).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, "Electromagnetically Induced Transparency in ladder-type inhomogeneously broadened media: Theory and experiment," Phys. Rev. A. 51, 576- 584 (1995).
[CrossRef] [PubMed]

Xiao, Y.

C. J. Zhu, A. A. Senin, Z. H. Lu, J. Gao, Y. Xiao, and J. G. Eden, "Polarization of signal wave radiation generated by parametric four-wave mixing in rubidium vapor: Ultrafast (~150-fs) and nanosecond time scale excitation," Phys. Rev. A. 72, 023811 (2005).
[CrossRef]

Yang, X.

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, "Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms," Phys. Rev. A. 74, 033821 (2006).
[CrossRef]

Yin, G. Y.

S. W. Du, J. M. Wen, M. H. Rubin, and G. Y. Yin, "Four-wave Mixing and biphoton generation in a two-level system," Phys. Rev. Lett. 98, 0536014 (2007).
[CrossRef]

V. B. Danielle, A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, "Generation of paired photons with controllable waveforms," Phys. Rev. Lett. 94, 183601 (2005).

Yu, I. A.

Y. Chen, C. Lin, and I. A. Yu, "Role of degenerate Zeeman levels in electromagnetically induced transparency," Phys. Rev. A. 61, 053805 (2000).
[CrossRef]

Zhang, J.

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, "Phase-contrlled light switching at low light levels," Phys. Rev. A. 73, 011802 (2006).
[CrossRef]

Zhang, Y.

H. Zheng, Y. Zhang, Z. Nie, C. Li, H. Chong, J. Song, and M. Xiao, "Interplay among multi-dressed Four-wave Mixing processes," Appl. Phys. Lett. 93, 241101 (2008).
[CrossRef]

Y. Zhang, B. Anderson, A. W. Brown, and M. Xiao, "Competition between two Four-wave Mixing channels via atomic coherence," Appl. Phys. Lett. 91, 061113 (2007).
[CrossRef]

Y. Zhang and M. Xiao, "Generalized dressed and doubly-dressed multi-wave mixing," Opt. Express. 15. 7182-7189 (2007).
[CrossRef] [PubMed]

Zheng, H.

H. Zheng, Y. Zhang, Z. Nie, C. Li, H. Chong, J. Song, and M. Xiao, "Interplay among multi-dressed Four-wave Mixing processes," Appl. Phys. Lett. 93, 241101 (2008).
[CrossRef]

Zhu, C. J.

C. J. Zhu, A. A. Senin, Z. H. Lu, J. Gao, Y. Xiao, and J. G. Eden, "Polarization of signal wave radiation generated by parametric four-wave mixing in rubidium vapor: Ultrafast (~150-fs) and nanosecond time scale excitation," Phys. Rev. A. 72, 023811 (2005).
[CrossRef]

Zhu, Y.

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, "Phase-contrlled light switching at low light levels," Phys. Rev. A. 73, 011802 (2006).
[CrossRef]

Zibrov, A. S.

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, "Transporting and time reversing light via atomic coherence," Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

H. Zheng, Y. Zhang, Z. Nie, C. Li, H. Chong, J. Song, and M. Xiao, "Interplay among multi-dressed Four-wave Mixing processes," Appl. Phys. Lett. 93, 241101 (2008).
[CrossRef]

Y. Zhang, B. Anderson, A. W. Brown, and M. Xiao, "Competition between two Four-wave Mixing channels via atomic coherence," Appl. Phys. Lett. 91, 061113 (2007).
[CrossRef]

J. Phys. B. (1)

C. Cohen-Tannoudji and S. Reynaud, "Dreesed-atom description of resonance fluorescence and absorption spectra of a multi-level atom in an intense laser beam," J. Phys. B. 10, 345-363 (1977).
[CrossRef]

Opt. Express. (1)

Y. Zhang and M. Xiao, "Generalized dressed and doubly-dressed multi-wave mixing," Opt. Express. 15. 7182-7189 (2007).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

H. Y. Ling, Y. Q Li, and M. Xiao, "Coherent population trapping and electromagnetically induced transparency in multi-Zeeman-sublevel atoms," Phys. Rev. A,  53, 1014-1026 (1996).
[CrossRef] [PubMed]

Phys. Rev. A. (5)

S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, and K. C. Peng, "Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms," Phys. Rev. A. 74, 033821 (2006).
[CrossRef]

Y. Chen, C. Lin, and I. A. Yu, "Role of degenerate Zeeman levels in electromagnetically induced transparency," Phys. Rev. A. 61, 053805 (2000).
[CrossRef]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, "Electromagnetically Induced Transparency in ladder-type inhomogeneously broadened media: Theory and experiment," Phys. Rev. A. 51, 576- 584 (1995).
[CrossRef] [PubMed]

C. J. Zhu, A. A. Senin, Z. H. Lu, J. Gao, Y. Xiao, and J. G. Eden, "Polarization of signal wave radiation generated by parametric four-wave mixing in rubidium vapor: Ultrafast (~150-fs) and nanosecond time scale excitation," Phys. Rev. A. 72, 023811 (2005).
[CrossRef]

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, "Phase-contrlled light switching at low light levels," Phys. Rev. A. 73, 011802 (2006).
[CrossRef]

Phys. Rev. Lett. (4)

S. W. Du, J. M. Wen, M. H. Rubin, and G. Y. Yin, "Four-wave Mixing and biphoton generation in a two-level system," Phys. Rev. Lett. 98, 0536014 (2007).
[CrossRef]

V. B. Danielle, A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, "Generation of paired photons with controllable waveforms," Phys. Rev. Lett. 94, 183601 (2005).

A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully, "Transporting and time reversing light via atomic coherence," Phys. Rev. Lett. 88, 103601 (2002).
[CrossRef]

K. J Jiang, L. Deng, and M. G. Payne, "Observation of quantum destructive interference in inelastic Two-wave Mixing," Phys. Rev. Lett. 98, 083604 (2007).
[CrossRef]

Phys. Today. (1)

S. E. Harris, "Electromagnetically Induced Transparency," Phys. Today. 50, 36-42 (1997).
[CrossRef]

Science. (1)

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, "Entangled images from Four-Wave Mixing," Science. 321, 544-547 (2008).
[CrossRef] [PubMed]

Other (1)

For detail in transition probabilities of D1 and D2 line in Rb, see http:// steck. Us/ alkalidata.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Energy level diagram of relevant 87Rb energy levels. (b) The schematic diagram of the experiment. D denotes the photodiode and APD denotes the avalanche diode detector; PBS denotes the polarized beam splitter and WP denotes the wave plate. Inset: the spatial alignment of the laser beams.

Fig. 2.
Fig. 2.

(color online) Polarization dependence of the transmitted probe and SWM signal beams versus the rotating angle of the half-wave plate. (a1–a6) EIT (lower curves) and SWM (upper curves) spectra versus the rotating angle. The experimental parameters are G 1=2π×5MHz, G 2=G2=2π×80MHz, G 3=G3=2π×35MHz, and Δ23=0.

Fig. 3.
Fig. 3.

(color online) The excitations of the coupling and probe fields among the Zeeman levels in the RY system. (a), (b) and (c) correspond to the case with a half-wave plate in the probe beam; (d) (e) and (f) correspond to a quarter-wave plate.For the level configuration shown in Fig. 3(c), the probe Hamiltonian is changed to

Fig 4.
Fig 4.

(a) Measured (dots) and calculated (solid curves) areas and heights of the two transmitted EIT peaks. (b) Measured (dots) and calculated (solid curves) areas and heights of the SWM signal peaks.

Fig 5.
Fig 5.

(a) Peak depths for the two EIT transmission peaks. (b) Differences between the theoretical results and experimental data.

Fig. 6.
Fig. 6.

(color online) Polarization dependence of the transmitted probe and FWM signal beams versus the rotation angle of the quarter-wave plate. (a1–a7) The EIT (lower curves) and FWM (upper curves) spectra versus the rotation angle. The experimental parameters are G 1=2π×5MHz, G 2=G′2=2π×80MHz, and Δ2=0.

Fig. 7.
Fig. 7.

(a) Measured (dots) and calculated (solid curves) heights of the transmitted EIT peaks. (b) Measured (dots) and calculated (solid curves) heights of the FWM signal peaks.

Fig. 8.
Fig. 8.

(a) Peak depths for the EIT transmission peaks. (b) Differences between the theoretical results and experimental data.

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

Pi(3)(ω1)=ε0 jklχijkl(3)E1j(ω1) E2k* (ω2) E2l (ω2) ,
Px(3)(ω1)=ε0χx E22 E1 ,
Py(3)(ω1)=ε0 χy E22 E1,
χx(3)=χxyyxcos2θ,
χy(3)=χyyyy sin 2 θ .
χx(3)=χxxxx sin4ϕ+cos4ϕ ,
χy(3)=χyxxy2sinϕcosϕ2.
Pi(5)(ω1)=ε0jklmnχijklmn(5)E1j(ω1) E2k* (ω2) E2l (ω2) E3m* (ω3) E3n (ω3),
χxxxxxx=χyyxxxx+χyxyxxx χyxxyxxx+χyxxxyx +χyxxxxy
+χxyyxxx +χxyyyxx+χxyxxyx+χxyxxxy+χxxyyxx
+χxxyyxx+χxxyxyx+χxxyxxy +χxxxyxy +χxxxxyy .
Px(5)(ω1)=ε0χxE22E32E1,
Py(5)(ω1)=ε0χyE22E32E1.
χx=χxyyyyx cos 2 θ ,
χy=χyyyyyysin2θ.
χx=χxyyyyxsin4ϕ+cos4ϕ,
χy=χyyyyyy 2sinϕcosϕ2.
ρ˙=(1i)[Hatom+Hcoupling+Hprobe,ρ]+{dρdt},
Hatom=ω10i=610i><i+ω21i=1113i><i,
Hcoupling=exp[iωct][(Ωc12) (7><11+9><13)
+(Ωc22)8><12]+c.c.,
Hprobe=exp[iωpt][(Ωp12)(1><7+5><9)
+(Ωp22)(2><8+4><8)
+ ( Ωp3 2 ) (3><9+3><7
+(Ωp42)(2><6+4><10)]+c.c.,
{dt}=Γ1i=1113ρiii><iΓ2 i=610ρii i><i
+i=110(j=1113Γjiρjj) i><i+i=15(j=610Γjiρjj)i><i
12[Γ1i=1113j=110ρiji><j+Γ2i=610j=15ρiji><j+c.c.]
[Γi=1113j=610ρiji><j+Γi=610j=15ρiji><j+Γi=1113j=15ρiji><+c.c.],
ρ1,7+=iΩp1+iΔp1+Γ1,7+Ωc12i(Δpl+Δcl)+Γ11,1ρ1,7(0),
ρ2,8+=iΩp2+iΔp2+Γ2,8+Ωc22i(Δp2+Δc2)+Γ12,2ρ2,8,(0)
ρ3,9+=iΩp3+iΔp3+Γ3,9+Ωcl2i(Δp3+Δcl)+Γ13,3ρ3,9,(0)
ρ4,10+=iΩp4+iΔp4+Γ4,10ρ4,10(0).
ρ2,6=iΩp4iΔp4+Γ2,6ρ2,6(0),
ρ3,7=iΩp3iΔp3+Γ3,7+Ωcl2i(Δp3+Δcl)+Γ11,3ρ3,7(0),
ρ4,8=iΩp2iΔp2+Γ4,8+Ωc22i(Δp2+Δc2)+Γ12,4ρ4,8(0),
ρ5,9=iΩp1iΔp1+Γ5,9+Ωc12i(Δp1+Δc1)+Γ13,5ρ5,9(0),
Hprobe=exp[iωpt][(Ωp12)(1><6+5><10)
+(Ωp22)(2><7+4><9)+c.c.,
ρ1,60=iΩp1iΔp1+Γ1,6ρ1,6(0),
ρ5,100=iΩp1iΔp1+Γ5,10ρ5,10(0),
ρ2,70=iΩp2iΔp2+Γ2,7+Ωcl2i(Δp2+Δcl)+Γ11,2ρ2,7(0),
ρ4,90 = ρ2iΔp2+Γ4,9+Ωc12i(Δp2+Δc1)+Γ13,4 ρ4,9(0) .

Metrics