Abstract

Two serial Dy3+-doped and Dy3+, Tm3+-codoped (100-x)(0.8GeS2·0.2Ga2S3)·xCdI2 (0≤x≤20) chalcohalide glasses were prepared and characterized. By analyzing the absorption and emission measurements of the two serial chalcohalide glasses with the Judd-Ofelt analysis, we were able to calculate its Judd-Ofelt strength parameters Ωt (t = 2, 4, 6), transition probabilities, exited state lifetimes, branching ratios, and emission cross-sections. In the Dy3+-doped glasses, increase of CdI2 had positive effect up to 1330nm fluorescence and the emission cross section (σemi) was estimated to be 4.19 × 10−20cm2 for the 0.2wt% Dy3+-doped 64GeS2·16Ga2S3·20CdI2 glass. In the Dy3+, Tm3+-codoped glasses, increase of CdI2 diminished the amount of ethane-like units [S3(Ga)Ge-Ge(Ga)S3], improved the Tm3+: 3F4→ Dy3+: 6H11/2 energy transfer efficiency and intensified the mid-infrared emissions. The emission cross sections (σemi) of the 2900 and 4300nm fluorescences were estimated to be 1.68 × 10−20 and 1.20 × 10−20cm2 respectively for the 0.2wt% Dy3+ and 0.5wt% Tm3+ codoped 64GeS2·16Ga2S3·20CdI2 glass. These novel chalcohalide glasses are promising candidate materials for fiber-amplifiers and mid-infrared laser devices.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Lezal, J. Zavadil, L. Horak, M. Prochazka, and M. Poulain, “Chalcogenide glasses and fibres for applications in medicine,” Proc. SPIE 4158, 124–132 (2001).
  2. J. S. Sanghera, L. E. Busse, I. D. Aggarwal, and F. Chenard, “Infrared fibers for defense against MANPAD Systems,” Proc. SPIE 5781, 7–14 (2005).
  3. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based Mid-IR sources and applications,” IEEE J. Sel. Top. Quant. 15(1), 114–119 (2009).
  4. S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-μm praseodymium-based solid-state laser,” IEEE J. Quantum Electron. 32(4), 646–649 (1996).
  5. H. Többen, “Room temperature cw fibre laser at 3.5µm in Er3+-doped ZBLAN glass,” Electron. Lett. 28(14), 1361–1362 (1992).
  6. J. Schneider, C. Carbonnier, and U. B. Unrau, “Characterization of a Ho3+-doped fluoride fiber laser with a 3.9-μm emission wavelength,” Appl. Opt. 36(33), 8595–8600 (1997).
  7. L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-Wave IR and Long-Wave IR Laser Potential of Rare-Earth Doped Chalcogenide Glass Fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
  8. J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
  9. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-µm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
    [PubMed]
  10. H. T. Guo, Y. B. Zhai, H. Z. Tao, G. P. Dong, and X. J. Zhao, “Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Sci. Eng. B 138(3), 235–240 (2007).
  11. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136(4A), A954–957 (1964).
  12. Y. B. Shin, J. Heo, and H. S. Kim, “Enhancement of the 1.31µm emission properties of Ho3+-doped Ge-Ga-S glasses with the addition of alkali halides,” J. Mater. Res. 16(5), 1318–1324 (2001).
  13. Z. Yang, L. Luo, and W. Chen, “Fluorescence shifts of rare-earth ions in non-oxide glasses,” J. Appl. Phys. 100(7), 073101 (2006).
  14. J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(2-3), 151–156 (1997).
  15. Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208(1-2), 29–35 (1996).
  16. J. Heo, J. M. Yoon, and S. Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2-Ga2S3 glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).

2009 (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based Mid-IR sources and applications,” IEEE J. Sel. Top. Quant. 15(1), 114–119 (2009).

2007 (1)

H. T. Guo, Y. B. Zhai, H. Z. Tao, G. P. Dong, and X. J. Zhao, “Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Sci. Eng. B 138(3), 235–240 (2007).

2006 (1)

Z. Yang, L. Luo, and W. Chen, “Fluorescence shifts of rare-earth ions in non-oxide glasses,” J. Appl. Phys. 100(7), 073101 (2006).

2005 (1)

J. S. Sanghera, L. E. Busse, I. D. Aggarwal, and F. Chenard, “Infrared fibers for defense against MANPAD Systems,” Proc. SPIE 5781, 7–14 (2005).

2001 (3)

D. Lezal, J. Zavadil, L. Horak, M. Prochazka, and M. Poulain, “Chalcogenide glasses and fibres for applications in medicine,” Proc. SPIE 4158, 124–132 (2001).

Y. B. Shin, J. Heo, and H. S. Kim, “Enhancement of the 1.31µm emission properties of Ho3+-doped Ge-Ga-S glasses with the addition of alkali halides,” J. Mater. Res. 16(5), 1318–1324 (2001).

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-Wave IR and Long-Wave IR Laser Potential of Rare-Earth Doped Chalcogenide Glass Fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).

1998 (1)

J. Heo, J. M. Yoon, and S. Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2-Ga2S3 glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).

1997 (2)

J. Schneider, C. Carbonnier, and U. B. Unrau, “Characterization of a Ho3+-doped fluoride fiber laser with a 3.9-μm emission wavelength,” Appl. Opt. 36(33), 8595–8600 (1997).

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(2-3), 151–156 (1997).

1996 (4)

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208(1-2), 29–35 (1996).

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-μm praseodymium-based solid-state laser,” IEEE J. Quantum Electron. 32(4), 646–649 (1996).

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-µm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
[PubMed]

1992 (1)

H. Többen, “Room temperature cw fibre laser at 3.5µm in Er3+-doped ZBLAN glass,” Electron. Lett. 28(14), 1361–1362 (1992).

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136(4A), A954–957 (1964).

Aggarwal, I. D.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based Mid-IR sources and applications,” IEEE J. Sel. Top. Quant. 15(1), 114–119 (2009).

J. S. Sanghera, L. E. Busse, I. D. Aggarwal, and F. Chenard, “Infrared fibers for defense against MANPAD Systems,” Proc. SPIE 5781, 7–14 (2005).

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-Wave IR and Long-Wave IR Laser Potential of Rare-Earth Doped Chalcogenide Glass Fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).

Bowman, S. R.

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-μm praseodymium-based solid-state laser,” IEEE J. Quantum Electron. 32(4), 646–649 (1996).

Busse, L. E.

J. S. Sanghera, L. E. Busse, I. D. Aggarwal, and F. Chenard, “Infrared fibers for defense against MANPAD Systems,” Proc. SPIE 5781, 7–14 (2005).

Carbonnier, C.

Chen, W.

Z. Yang, L. Luo, and W. Chen, “Fluorescence shifts of rare-earth ions in non-oxide glasses,” J. Appl. Phys. 100(7), 073101 (2006).

Chenard, F.

J. S. Sanghera, L. E. Busse, I. D. Aggarwal, and F. Chenard, “Infrared fibers for defense against MANPAD Systems,” Proc. SPIE 5781, 7–14 (2005).

Cho, W. Y.

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(2-3), 151–156 (1997).

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208(1-2), 29–35 (1996).

Chung, W. J.

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(2-3), 151–156 (1997).

Cole, B.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-Wave IR and Long-Wave IR Laser Potential of Rare-Earth Doped Chalcogenide Glass Fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).

Dong, G. P.

H. T. Guo, Y. B. Zhai, H. Z. Tao, G. P. Dong, and X. J. Zhao, “Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Sci. Eng. B 138(3), 235–240 (2007).

Feldman, B. J.

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-μm praseodymium-based solid-state laser,” IEEE J. Quantum Electron. 32(4), 646–649 (1996).

Ganem, J.

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-μm praseodymium-based solid-state laser,” IEEE J. Quantum Electron. 32(4), 646–649 (1996).

Guo, H. T.

H. T. Guo, Y. B. Zhai, H. Z. Tao, G. P. Dong, and X. J. Zhao, “Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Sci. Eng. B 138(3), 235–240 (2007).

Heo, J.

Y. B. Shin, J. Heo, and H. S. Kim, “Enhancement of the 1.31µm emission properties of Ho3+-doped Ge-Ga-S glasses with the addition of alkali halides,” J. Mater. Res. 16(5), 1318–1324 (2001).

J. Heo, J. M. Yoon, and S. Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2-Ga2S3 glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(2-3), 151–156 (1997).

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208(1-2), 29–35 (1996).

Hewak, D. W.

Horak, L.

D. Lezal, J. Zavadil, L. Horak, M. Prochazka, and M. Poulain, “Chalcogenide glasses and fibres for applications in medicine,” Proc. SPIE 4158, 124–132 (2001).

Kim, H. S.

Y. B. Shin, J. Heo, and H. S. Kim, “Enhancement of the 1.31µm emission properties of Ho3+-doped Ge-Ga-S glasses with the addition of alkali halides,” J. Mater. Res. 16(5), 1318–1324 (2001).

Lezal, D.

D. Lezal, J. Zavadil, L. Horak, M. Prochazka, and M. Poulain, “Chalcogenide glasses and fibres for applications in medicine,” Proc. SPIE 4158, 124–132 (2001).

Luo, L.

Z. Yang, L. Luo, and W. Chen, “Fluorescence shifts of rare-earth ions in non-oxide glasses,” J. Appl. Phys. 100(7), 073101 (2006).

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136(4A), A954–957 (1964).

Payne, D. N.

Poulain, M.

D. Lezal, J. Zavadil, L. Horak, M. Prochazka, and M. Poulain, “Chalcogenide glasses and fibres for applications in medicine,” Proc. SPIE 4158, 124–132 (2001).

Prochazka, M.

D. Lezal, J. Zavadil, L. Horak, M. Prochazka, and M. Poulain, “Chalcogenide glasses and fibres for applications in medicine,” Proc. SPIE 4158, 124–132 (2001).

Ryou, S. Y.

J. Heo, J. M. Yoon, and S. Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2-Ga2S3 glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).

Samson, B. N.

Sanghera, J. S.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based Mid-IR sources and applications,” IEEE J. Sel. Top. Quant. 15(1), 114–119 (2009).

J. S. Sanghera, L. E. Busse, I. D. Aggarwal, and F. Chenard, “Infrared fibers for defense against MANPAD Systems,” Proc. SPIE 5781, 7–14 (2005).

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-Wave IR and Long-Wave IR Laser Potential of Rare-Earth Doped Chalcogenide Glass Fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).

Schneider, J.

Schweizer, T.

Shaw, L. B.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based Mid-IR sources and applications,” IEEE J. Sel. Top. Quant. 15(1), 114–119 (2009).

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-Wave IR and Long-Wave IR Laser Potential of Rare-Earth Doped Chalcogenide Glass Fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-μm praseodymium-based solid-state laser,” IEEE J. Quantum Electron. 32(4), 646–649 (1996).

Shin, Y. B.

Y. B. Shin, J. Heo, and H. S. Kim, “Enhancement of the 1.31µm emission properties of Ho3+-doped Ge-Ga-S glasses with the addition of alkali halides,” J. Mater. Res. 16(5), 1318–1324 (2001).

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208(1-2), 29–35 (1996).

Tao, H. Z.

H. T. Guo, Y. B. Zhai, H. Z. Tao, G. P. Dong, and X. J. Zhao, “Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Sci. Eng. B 138(3), 235–240 (2007).

Thielen, P. A.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-Wave IR and Long-Wave IR Laser Potential of Rare-Earth Doped Chalcogenide Glass Fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).

Többen, H.

H. Többen, “Room temperature cw fibre laser at 3.5µm in Er3+-doped ZBLAN glass,” Electron. Lett. 28(14), 1361–1362 (1992).

Unrau, U. B.

Yang, Z.

Z. Yang, L. Luo, and W. Chen, “Fluorescence shifts of rare-earth ions in non-oxide glasses,” J. Appl. Phys. 100(7), 073101 (2006).

Yoon, J. M.

J. Heo, J. M. Yoon, and S. Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2-Ga2S3 glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).

Zavadil, J.

D. Lezal, J. Zavadil, L. Horak, M. Prochazka, and M. Poulain, “Chalcogenide glasses and fibres for applications in medicine,” Proc. SPIE 4158, 124–132 (2001).

Zhai, Y. B.

H. T. Guo, Y. B. Zhai, H. Z. Tao, G. P. Dong, and X. J. Zhao, “Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Sci. Eng. B 138(3), 235–240 (2007).

Zhao, X. J.

H. T. Guo, Y. B. Zhai, H. Z. Tao, G. P. Dong, and X. J. Zhao, “Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Sci. Eng. B 138(3), 235–240 (2007).

Appl. Opt. (1)

Electron. Lett. (1)

H. Többen, “Room temperature cw fibre laser at 3.5µm in Er3+-doped ZBLAN glass,” Electron. Lett. 28(14), 1361–1362 (1992).

IEEE J. Quantum Electron. (2)

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-Wave IR and Long-Wave IR Laser Potential of Rare-Earth Doped Chalcogenide Glass Fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).

S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-μm praseodymium-based solid-state laser,” IEEE J. Quantum Electron. 32(4), 646–649 (1996).

IEEE J. Sel. Top. Quant. (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based Mid-IR sources and applications,” IEEE J. Sel. Top. Quant. 15(1), 114–119 (2009).

J. Appl. Phys. (1)

Z. Yang, L. Luo, and W. Chen, “Fluorescence shifts of rare-earth ions in non-oxide glasses,” J. Appl. Phys. 100(7), 073101 (2006).

J. Mater. Res. (1)

Y. B. Shin, J. Heo, and H. S. Kim, “Enhancement of the 1.31µm emission properties of Ho3+-doped Ge-Ga-S glasses with the addition of alkali halides,” J. Mater. Res. 16(5), 1318–1324 (2001).

J. Non-Cryst. Solids (4)

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).

J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212(2-3), 151–156 (1997).

Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208(1-2), 29–35 (1996).

J. Heo, J. M. Yoon, and S. Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2-Ga2S3 glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).

Mater. Sci. Eng. B (1)

H. T. Guo, Y. B. Zhai, H. Z. Tao, G. P. Dong, and X. J. Zhao, “Structure and properties of GeS2-Ga2S3-CdI2 chalcohalide glasses,” Mater. Sci. Eng. B 138(3), 235–240 (2007).

Opt. Lett. (1)

Phys. Rev. A (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136(4A), A954–957 (1964).

Proc. SPIE (2)

D. Lezal, J. Zavadil, L. Horak, M. Prochazka, and M. Poulain, “Chalcogenide glasses and fibres for applications in medicine,” Proc. SPIE 4158, 124–132 (2001).

J. S. Sanghera, L. E. Busse, I. D. Aggarwal, and F. Chenard, “Infrared fibers for defense against MANPAD Systems,” Proc. SPIE 5781, 7–14 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Absorption spectrum of GGC5 glass doped with 0.2wt% Dy3+ (thickness 4mm).The insert is the energy level diagram of Dy3+ ion.

Fig. 2
Fig. 2

Fluorescence spectra of Dy3+-doped GGC serial glasses (a) Detected with InGaAs detector in the range of 1000~1500nm (b) Detected with liquid nitrogen cooled InSb detector in the range of 1650~1900nm.

Fig. 3
Fig. 3

Absorption spectra of GGC20 glasses codoped with 0.2wt% Dy3+ and 0.3~0.7wt% Tm3+ (thickness 4mm).

Fig. 4
Fig. 4

The evolutions of fluorescence spectra with the increase of Tm3+ concentration in Dy3+, Tm3+-codoped GGC20 glasses (a) Detected with InGaAs detector in the range of 1000~1600nm (b) Detected with liquid nitrogen cooled InSb detector in the range of 1650~4700nm.

Fig. 5
Fig. 5

(a) Fluorescence spectra of Dy3+,Tm3+-codoped GGC glasses detected with InGaAs detector in the range of 1000~1600nm (b) Detected with liquid nitrogen cooled InSb detector in the range of 1650~4700nm (c) Dependence of I1450/I1800 intensity ratio on CdI2 content.

Fig. 6
Fig. 6

Energy transition processes in Dy3+, Tm3+-codoped glasses

Tables (2)

Tables Icon

Table 1 Measured oscillator strengths and Judd-Ofelt intensity parameters of Dy3+-doped GGC serial glasses in comparison to other hosts [8].

Tables Icon

Table 2 Radiative properties of Dy3+-doped GGC serial glasses.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σemi=λp48πcn2ΔλeffArad

Metrics