Abstract

A new platform is presented that is capable of manipulating a single DNA molecule based on optically-induced dielectrophoretic forces. The ends of a single DNA molecule are bound with a micro-bead, which is then manipulated by interactions with optical images projected from a commercially available projector. Thus a single DNA molecule is indirectly manipulated by a projected animation pre-programmed using simple computer software. Real-time observation of the manipulation process is made possible by using a fluorescent dye and an oxygen scavenging buffer. Two types of DNA manipulation modes, specifically DNA elongation and rotation, are successfully demonstrated and are characterized. The maximum stretching force can be as high as 61.3 pN for a 10.1 μm bead. Experimental data show that the force-extension curve measured using this platform fits reasonably with the worm-like chain model. The developed platform can be a promising and flexible tool for further applications requiring single molecule manipulation.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yuqiu, C.-B. Juang, D. Keller, C. Bustamante, D. Beach, T. Houseal, and E. Builes, “Mechanical, electrical, and chemical manipulation of single DNA molecules,” Nanotechnology 3(1), 16–20 (1992).
  2. J. Zlatanova and S. H. Leuba, “Stretching and imaging single DNA molecules and chromatin,” J. Muscle Res. Cell Motil. 23(5-6), 377–395 (2002).
  3. M. C. Williams, K. Pant, I. Rouzina, and R. L. Karpel, “Single molecule force spectroscopy studies of DNA denaturation by T4 gene 32 protein,” Spectroscopy 18, 203–211 (2004).
  4. S. B. Smith, L. Finzi, and C. Bustamante, “Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads,” Science 258(5085), 1122–1126 (1992).
    [PubMed]
  5. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, “Direct measurement of electrical transport through DNA molecules,” Nature 403(6770), 635–638 (2000).
    [PubMed]
  6. J. Zlatanova and S. H. Leuba, “Magnetic tweezers: a sensitive tool to study DNA and chromatin at the single-molecule level,” Biochem. Cell Biol. 81(3), 151–159 (2003).
    [PubMed]
  7. C. H. Chiou and G. B. Lee, “A micromachined DNA manipulation platform for the stretching and rotation of a single DNA molecule,” J. Micromech. Microeng. 15(1), 109–117 (2005).
  8. C. H. Chiou, Y. Y. Huang, M. H. Chiang, H. H. Lee, and G. B. Lee, “New magnetic tweezers for investigation of the mechanical properties of single DNA molecules,” Nanotechnology 17(5), 1217–1224 (2006).
  9. A. Noy, D. V. Vezenov, J. F. Kayyem, T. J. Meade, and C. M. Lieber, “Stretching and breaking duplex DNA by chemical force microscopy,” Chem. Biol. 4(7), 519–527 (1997).
    [PubMed]
  10. T. Morii, R. Mizuno, H. Haruta, and T. Okada, “An AFM study of the elasticity of DNA molecules,” Thin Solid Films 464–465, 456–458 (2004).
  11. P. K. Wong, Y. K. Lee, and C. M. Ho, “Deformation of DNA molecules by hydrodynamic focusing,” J. Fluid Mech. 497, 55–65 (2003).
  12. L. Guo, X. Cheng, and C. F. Chou, “Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching,” Nano Lett. 4(1), 69–73 (2004).
  13. J. Gu, R. Gupta, C. F. Chou, Q. Wei, and F. Zenhausern, “A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature,” Lab Chip 7(9), 1198–1201 (2007).
    [PubMed]
  14. G. C. Randall, K. M. Schultz, and P. S. Doyle, “Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices,” Lab Chip 6(4), 516–525 (2006).
    [PubMed]
  15. J. M. Kim and P. S. Doyle, “Design and numerical simulation of a DNA electrophoretic stretching device,” Lab Chip 7(2), 213–225 (2007).
    [PubMed]
  16. L. C. Campbell, M. J. Wilkinson, A. Manz, P. Camilleri, and C. J. Humphreys, “Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries,” Lab Chip 4(3), 225–229 (2004).
    [PubMed]
  17. H. Y. Lin, L. C. Tsai, P. Y. Chi, and C. D. Chen, “Positioning of extended individual DNA molecules on electrodes by non-uniform AC electric fields,” Nanotechnology 16(11), 2738–2742 (2005).
  18. G. Maubach, A. Csaki, D. Born, and W. Fritzsche, “Controlled positioning of a DNA molecule in an electrode setup based on self-assembly and microstructuring,” Nanotechnology 14(5), 546–550 (2003).
  19. S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
    [PubMed]
  20. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
    [PubMed]
  21. M. Salomo, K. Kegler, C. Gutsche, M. Struhalla, J. Reinmuth, W. Skokow, H. Hahn, and F. Kremer, “The elastic properties of single double-stranded DNA chains of different lengths as measured with optical tweezers,” Colloid Polym. Sci. 284(11), 1325–1331 (2006).
  22. M. L. Bennink, O. D. Schärer, R. Kanaar, K. Sakata-Sogawa, J. M. Schins, J. S. Kanger, B. G. de Grooth, and J. Greve, “Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1,” Cytometry 36(3), 200–208 (1999).
    [PubMed]
  23. C. Rusu, R. van’t Oever, M. J. de Boer, H. V. Jansen, J. W. Berenschot, M. L. Bennink, J. S. Kanger, B. G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, and A. van den Berg, “Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers,” J. Microelectromech. Syst. 10(2), 238–246 (2001).
  24. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [PubMed]
  25. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
    [PubMed]
  26. X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).
  27. Y. H. Lin and G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosens. Bioelectron. 24(4), 572–578 (2008).
    [PubMed]
  28. Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox, and N. P. Ong, “Insulating behavior of λ-DNA on the micron scale,” Phys. Rev. Lett. 89(19), 198102 (2002).
    [PubMed]
  29. S. C. Huang, M. D. Stump, R. Weiss, and K. D. Caldwell, “Binding of biotinylated DNA to streptavidin-coated polystyrene latex: effects of chain length and particle size,” Anal. Biochem. 237(1), 115–122 (1996).
    [PubMed]
  30. J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28(26), 8759–8770 (1995).

2008

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[PubMed]

Y. H. Lin and G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosens. Bioelectron. 24(4), 572–578 (2008).
[PubMed]

2007

J. Gu, R. Gupta, C. F. Chou, Q. Wei, and F. Zenhausern, “A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature,” Lab Chip 7(9), 1198–1201 (2007).
[PubMed]

J. M. Kim and P. S. Doyle, “Design and numerical simulation of a DNA electrophoretic stretching device,” Lab Chip 7(2), 213–225 (2007).
[PubMed]

2006

G. C. Randall, K. M. Schultz, and P. S. Doyle, “Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices,” Lab Chip 6(4), 516–525 (2006).
[PubMed]

C. H. Chiou, Y. Y. Huang, M. H. Chiang, H. H. Lee, and G. B. Lee, “New magnetic tweezers for investigation of the mechanical properties of single DNA molecules,” Nanotechnology 17(5), 1217–1224 (2006).

M. Salomo, K. Kegler, C. Gutsche, M. Struhalla, J. Reinmuth, W. Skokow, H. Hahn, and F. Kremer, “The elastic properties of single double-stranded DNA chains of different lengths as measured with optical tweezers,” Colloid Polym. Sci. 284(11), 1325–1331 (2006).

2005

H. Y. Lin, L. C. Tsai, P. Y. Chi, and C. D. Chen, “Positioning of extended individual DNA molecules on electrodes by non-uniform AC electric fields,” Nanotechnology 16(11), 2738–2742 (2005).

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[PubMed]

C. H. Chiou and G. B. Lee, “A micromachined DNA manipulation platform for the stretching and rotation of a single DNA molecule,” J. Micromech. Microeng. 15(1), 109–117 (2005).

2004

L. Guo, X. Cheng, and C. F. Chou, “Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching,” Nano Lett. 4(1), 69–73 (2004).

T. Morii, R. Mizuno, H. Haruta, and T. Okada, “An AFM study of the elasticity of DNA molecules,” Thin Solid Films 464–465, 456–458 (2004).

L. C. Campbell, M. J. Wilkinson, A. Manz, P. Camilleri, and C. J. Humphreys, “Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries,” Lab Chip 4(3), 225–229 (2004).
[PubMed]

M. C. Williams, K. Pant, I. Rouzina, and R. L. Karpel, “Single molecule force spectroscopy studies of DNA denaturation by T4 gene 32 protein,” Spectroscopy 18, 203–211 (2004).

2003

J. Zlatanova and S. H. Leuba, “Magnetic tweezers: a sensitive tool to study DNA and chromatin at the single-molecule level,” Biochem. Cell Biol. 81(3), 151–159 (2003).
[PubMed]

P. K. Wong, Y. K. Lee, and C. M. Ho, “Deformation of DNA molecules by hydrodynamic focusing,” J. Fluid Mech. 497, 55–65 (2003).

G. Maubach, A. Csaki, D. Born, and W. Fritzsche, “Controlled positioning of a DNA molecule in an electrode setup based on self-assembly and microstructuring,” Nanotechnology 14(5), 546–550 (2003).

2002

Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox, and N. P. Ong, “Insulating behavior of λ-DNA on the micron scale,” Phys. Rev. Lett. 89(19), 198102 (2002).
[PubMed]

J. Zlatanova and S. H. Leuba, “Stretching and imaging single DNA molecules and chromatin,” J. Muscle Res. Cell Motil. 23(5-6), 377–395 (2002).

2001

C. Rusu, R. van’t Oever, M. J. de Boer, H. V. Jansen, J. W. Berenschot, M. L. Bennink, J. S. Kanger, B. G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, and A. van den Berg, “Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers,” J. Microelectromech. Syst. 10(2), 238–246 (2001).

2000

D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, “Direct measurement of electrical transport through DNA molecules,” Nature 403(6770), 635–638 (2000).
[PubMed]

1999

M. L. Bennink, O. D. Schärer, R. Kanaar, K. Sakata-Sogawa, J. M. Schins, J. S. Kanger, B. G. de Grooth, and J. Greve, “Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1,” Cytometry 36(3), 200–208 (1999).
[PubMed]

1997

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[PubMed]

A. Noy, D. V. Vezenov, J. F. Kayyem, T. J. Meade, and C. M. Lieber, “Stretching and breaking duplex DNA by chemical force microscopy,” Chem. Biol. 4(7), 519–527 (1997).
[PubMed]

1996

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
[PubMed]

S. C. Huang, M. D. Stump, R. Weiss, and K. D. Caldwell, “Binding of biotinylated DNA to streptavidin-coated polystyrene latex: effects of chain length and particle size,” Anal. Biochem. 237(1), 115–122 (1996).
[PubMed]

1995

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28(26), 8759–8770 (1995).

1994

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).

1992

J. Yuqiu, C.-B. Juang, D. Keller, C. Bustamante, D. Beach, T. Houseal, and E. Builes, “Mechanical, electrical, and chemical manipulation of single DNA molecules,” Nanotechnology 3(1), 16–20 (1992).

S. B. Smith, L. Finzi, and C. Bustamante, “Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads,” Science 258(5085), 1122–1126 (1992).
[PubMed]

Austin, R. H.

Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox, and N. P. Ong, “Insulating behavior of λ-DNA on the micron scale,” Phys. Rev. Lett. 89(19), 198102 (2002).
[PubMed]

Beach, D.

J. Yuqiu, C.-B. Juang, D. Keller, C. Bustamante, D. Beach, T. Houseal, and E. Builes, “Mechanical, electrical, and chemical manipulation of single DNA molecules,” Nanotechnology 3(1), 16–20 (1992).

Becker, F. F.

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).

Bennink, M. L.

C. Rusu, R. van’t Oever, M. J. de Boer, H. V. Jansen, J. W. Berenschot, M. L. Bennink, J. S. Kanger, B. G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, and A. van den Berg, “Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers,” J. Microelectromech. Syst. 10(2), 238–246 (2001).

M. L. Bennink, O. D. Schärer, R. Kanaar, K. Sakata-Sogawa, J. M. Schins, J. S. Kanger, B. G. de Grooth, and J. Greve, “Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1,” Cytometry 36(3), 200–208 (1999).
[PubMed]

Berenschot, J. W.

C. Rusu, R. van’t Oever, M. J. de Boer, H. V. Jansen, J. W. Berenschot, M. L. Bennink, J. S. Kanger, B. G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, and A. van den Berg, “Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers,” J. Microelectromech. Syst. 10(2), 238–246 (2001).

Bezryadin, A.

D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, “Direct measurement of electrical transport through DNA molecules,” Nature 403(6770), 635–638 (2000).
[PubMed]

Block, S. M.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[PubMed]

Born, D.

G. Maubach, A. Csaki, D. Born, and W. Fritzsche, “Controlled positioning of a DNA molecule in an electrode setup based on self-assembly and microstructuring,” Nanotechnology 14(5), 546–550 (2003).

Brugger, J.

C. Rusu, R. van’t Oever, M. J. de Boer, H. V. Jansen, J. W. Berenschot, M. L. Bennink, J. S. Kanger, B. G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, and A. van den Berg, “Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers,” J. Microelectromech. Syst. 10(2), 238–246 (2001).

Builes, E.

J. Yuqiu, C.-B. Juang, D. Keller, C. Bustamante, D. Beach, T. Houseal, and E. Builes, “Mechanical, electrical, and chemical manipulation of single DNA molecules,” Nanotechnology 3(1), 16–20 (1992).

Bustamante, C.

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
[PubMed]

S. B. Smith, L. Finzi, and C. Bustamante, “Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads,” Science 258(5085), 1122–1126 (1992).
[PubMed]

J. Yuqiu, C.-B. Juang, D. Keller, C. Bustamante, D. Beach, T. Houseal, and E. Builes, “Mechanical, electrical, and chemical manipulation of single DNA molecules,” Nanotechnology 3(1), 16–20 (1992).

Caldwell, K. D.

S. C. Huang, M. D. Stump, R. Weiss, and K. D. Caldwell, “Binding of biotinylated DNA to streptavidin-coated polystyrene latex: effects of chain length and particle size,” Anal. Biochem. 237(1), 115–122 (1996).
[PubMed]

Camilleri, P.

L. C. Campbell, M. J. Wilkinson, A. Manz, P. Camilleri, and C. J. Humphreys, “Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries,” Lab Chip 4(3), 225–229 (2004).
[PubMed]

Campbell, L. C.

L. C. Campbell, M. J. Wilkinson, A. Manz, P. Camilleri, and C. J. Humphreys, “Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries,” Lab Chip 4(3), 225–229 (2004).
[PubMed]

Chen, C. D.

H. Y. Lin, L. C. Tsai, P. Y. Chi, and C. D. Chen, “Positioning of extended individual DNA molecules on electrodes by non-uniform AC electric fields,” Nanotechnology 16(11), 2738–2742 (2005).

Cheng, X.

L. Guo, X. Cheng, and C. F. Chou, “Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching,” Nano Lett. 4(1), 69–73 (2004).

Chi, P. Y.

H. Y. Lin, L. C. Tsai, P. Y. Chi, and C. D. Chen, “Positioning of extended individual DNA molecules on electrodes by non-uniform AC electric fields,” Nanotechnology 16(11), 2738–2742 (2005).

Chiang, M. H.

C. H. Chiou, Y. Y. Huang, M. H. Chiang, H. H. Lee, and G. B. Lee, “New magnetic tweezers for investigation of the mechanical properties of single DNA molecules,” Nanotechnology 17(5), 1217–1224 (2006).

Chiou, C. H.

C. H. Chiou, Y. Y. Huang, M. H. Chiang, H. H. Lee, and G. B. Lee, “New magnetic tweezers for investigation of the mechanical properties of single DNA molecules,” Nanotechnology 17(5), 1217–1224 (2006).

C. H. Chiou and G. B. Lee, “A micromachined DNA manipulation platform for the stretching and rotation of a single DNA molecule,” J. Micromech. Microeng. 15(1), 109–117 (2005).

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[PubMed]

Chiou, P.-Y.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[PubMed]

Chou, C. F.

J. Gu, R. Gupta, C. F. Chou, Q. Wei, and F. Zenhausern, “A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature,” Lab Chip 7(9), 1198–1201 (2007).
[PubMed]

L. Guo, X. Cheng, and C. F. Chou, “Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching,” Nano Lett. 4(1), 69–73 (2004).

Chou, J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[PubMed]

Cox, E. C.

Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox, and N. P. Ong, “Insulating behavior of λ-DNA on the micron scale,” Phys. Rev. Lett. 89(19), 198102 (2002).
[PubMed]

Csaki, A.

G. Maubach, A. Csaki, D. Born, and W. Fritzsche, “Controlled positioning of a DNA molecule in an electrode setup based on self-assembly and microstructuring,” Nanotechnology 14(5), 546–550 (2003).

Cui, Y.

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
[PubMed]

de Boer, M. J.

C. Rusu, R. van’t Oever, M. J. de Boer, H. V. Jansen, J. W. Berenschot, M. L. Bennink, J. S. Kanger, B. G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, and A. van den Berg, “Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers,” J. Microelectromech. Syst. 10(2), 238–246 (2001).

de Grooth, B. G.

C. Rusu, R. van’t Oever, M. J. de Boer, H. V. Jansen, J. W. Berenschot, M. L. Bennink, J. S. Kanger, B. G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, and A. van den Berg, “Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers,” J. Microelectromech. Syst. 10(2), 238–246 (2001).

M. L. Bennink, O. D. Schärer, R. Kanaar, K. Sakata-Sogawa, J. M. Schins, J. S. Kanger, B. G. de Grooth, and J. Greve, “Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1,” Cytometry 36(3), 200–208 (1999).
[PubMed]

de Vries, S.

D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, “Direct measurement of electrical transport through DNA molecules,” Nature 403(6770), 635–638 (2000).
[PubMed]

Dekker, C.

D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, “Direct measurement of electrical transport through DNA molecules,” Nature 403(6770), 635–638 (2000).
[PubMed]

Doyle, P. S.

J. M. Kim and P. S. Doyle, “Design and numerical simulation of a DNA electrophoretic stretching device,” Lab Chip 7(2), 213–225 (2007).
[PubMed]

G. C. Randall, K. M. Schultz, and P. S. Doyle, “Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices,” Lab Chip 6(4), 516–525 (2006).
[PubMed]

Elwenspoek, M.

C. Rusu, R. van’t Oever, M. J. de Boer, H. V. Jansen, J. W. Berenschot, M. L. Bennink, J. S. Kanger, B. G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, and A. van den Berg, “Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers,” J. Microelectromech. Syst. 10(2), 238–246 (2001).

Finzi, L.

S. B. Smith, L. Finzi, and C. Bustamante, “Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads,” Science 258(5085), 1122–1126 (1992).
[PubMed]

Fritzsche, W.

G. Maubach, A. Csaki, D. Born, and W. Fritzsche, “Controlled positioning of a DNA molecule in an electrode setup based on self-assembly and microstructuring,” Nanotechnology 14(5), 546–550 (2003).

Gascoyne, P. R. C.

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).

Gelles, J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[PubMed]

Greve, J.

C. Rusu, R. van’t Oever, M. J. de Boer, H. V. Jansen, J. W. Berenschot, M. L. Bennink, J. S. Kanger, B. G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, and A. van den Berg, “Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers,” J. Microelectromech. Syst. 10(2), 238–246 (2001).

M. L. Bennink, O. D. Schärer, R. Kanaar, K. Sakata-Sogawa, J. M. Schins, J. S. Kanger, B. G. de Grooth, and J. Greve, “Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1,” Cytometry 36(3), 200–208 (1999).
[PubMed]

Gu, J.

J. Gu, R. Gupta, C. F. Chou, Q. Wei, and F. Zenhausern, “A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature,” Lab Chip 7(9), 1198–1201 (2007).
[PubMed]

Guo, L.

L. Guo, X. Cheng, and C. F. Chou, “Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching,” Nano Lett. 4(1), 69–73 (2004).

Gupta, R.

J. Gu, R. Gupta, C. F. Chou, Q. Wei, and F. Zenhausern, “A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature,” Lab Chip 7(9), 1198–1201 (2007).
[PubMed]

Gutsche, C.

M. Salomo, K. Kegler, C. Gutsche, M. Struhalla, J. Reinmuth, W. Skokow, H. Hahn, and F. Kremer, “The elastic properties of single double-stranded DNA chains of different lengths as measured with optical tweezers,” Colloid Polym. Sci. 284(11), 1325–1331 (2006).

Hahn, H.

M. Salomo, K. Kegler, C. Gutsche, M. Struhalla, J. Reinmuth, W. Skokow, H. Hahn, and F. Kremer, “The elastic properties of single double-stranded DNA chains of different lengths as measured with optical tweezers,” Colloid Polym. Sci. 284(11), 1325–1331 (2006).

Haruta, H.

T. Morii, R. Mizuno, H. Haruta, and T. Okada, “An AFM study of the elasticity of DNA molecules,” Thin Solid Films 464–465, 456–458 (2004).

Ho, C. M.

P. K. Wong, Y. K. Lee, and C. M. Ho, “Deformation of DNA molecules by hydrodynamic focusing,” J. Fluid Mech. 497, 55–65 (2003).

Houseal, T.

J. Yuqiu, C.-B. Juang, D. Keller, C. Bustamante, D. Beach, T. Houseal, and E. Builes, “Mechanical, electrical, and chemical manipulation of single DNA molecules,” Nanotechnology 3(1), 16–20 (1992).

Huang, S. C.

S. C. Huang, M. D. Stump, R. Weiss, and K. D. Caldwell, “Binding of biotinylated DNA to streptavidin-coated polystyrene latex: effects of chain length and particle size,” Anal. Biochem. 237(1), 115–122 (1996).
[PubMed]

Huang, Y.

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).

Huang, Y. Y.

C. H. Chiou, Y. Y. Huang, M. H. Chiang, H. H. Lee, and G. B. Lee, “New magnetic tweezers for investigation of the mechanical properties of single DNA molecules,” Nanotechnology 17(5), 1217–1224 (2006).

Humphreys, C. J.

L. C. Campbell, M. J. Wilkinson, A. Manz, P. Camilleri, and C. J. Humphreys, “Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries,” Lab Chip 4(3), 225–229 (2004).
[PubMed]

Jamshidi, A.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[PubMed]

Jansen, H. V.

C. Rusu, R. van’t Oever, M. J. de Boer, H. V. Jansen, J. W. Berenschot, M. L. Bennink, J. S. Kanger, B. G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, and A. van den Berg, “Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers,” J. Microelectromech. Syst. 10(2), 238–246 (2001).

Juang, C.-B.

J. Yuqiu, C.-B. Juang, D. Keller, C. Bustamante, D. Beach, T. Houseal, and E. Builes, “Mechanical, electrical, and chemical manipulation of single DNA molecules,” Nanotechnology 3(1), 16–20 (1992).

Kanaar, R.

M. L. Bennink, O. D. Schärer, R. Kanaar, K. Sakata-Sogawa, J. M. Schins, J. S. Kanger, B. G. de Grooth, and J. Greve, “Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1,” Cytometry 36(3), 200–208 (1999).
[PubMed]

Kanger, J. S.

C. Rusu, R. van’t Oever, M. J. de Boer, H. V. Jansen, J. W. Berenschot, M. L. Bennink, J. S. Kanger, B. G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, and A. van den Berg, “Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers,” J. Microelectromech. Syst. 10(2), 238–246 (2001).

M. L. Bennink, O. D. Schärer, R. Kanaar, K. Sakata-Sogawa, J. M. Schins, J. S. Kanger, B. G. de Grooth, and J. Greve, “Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1,” Cytometry 36(3), 200–208 (1999).
[PubMed]

Karpel, R. L.

M. C. Williams, K. Pant, I. Rouzina, and R. L. Karpel, “Single molecule force spectroscopy studies of DNA denaturation by T4 gene 32 protein,” Spectroscopy 18, 203–211 (2004).

Kayyem, J. F.

A. Noy, D. V. Vezenov, J. F. Kayyem, T. J. Meade, and C. M. Lieber, “Stretching and breaking duplex DNA by chemical force microscopy,” Chem. Biol. 4(7), 519–527 (1997).
[PubMed]

Kegler, K.

M. Salomo, K. Kegler, C. Gutsche, M. Struhalla, J. Reinmuth, W. Skokow, H. Hahn, and F. Kremer, “The elastic properties of single double-stranded DNA chains of different lengths as measured with optical tweezers,” Colloid Polym. Sci. 284(11), 1325–1331 (2006).

Keller, D.

J. Yuqiu, C.-B. Juang, D. Keller, C. Bustamante, D. Beach, T. Houseal, and E. Builes, “Mechanical, electrical, and chemical manipulation of single DNA molecules,” Nanotechnology 3(1), 16–20 (1992).

Kim, J. M.

J. M. Kim and P. S. Doyle, “Design and numerical simulation of a DNA electrophoretic stretching device,” Lab Chip 7(2), 213–225 (2007).
[PubMed]

Kraeft, J.

Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox, and N. P. Ong, “Insulating behavior of λ-DNA on the micron scale,” Phys. Rev. Lett. 89(19), 198102 (2002).
[PubMed]

Kremer, F.

M. Salomo, K. Kegler, C. Gutsche, M. Struhalla, J. Reinmuth, W. Skokow, H. Hahn, and F. Kremer, “The elastic properties of single double-stranded DNA chains of different lengths as measured with optical tweezers,” Colloid Polym. Sci. 284(11), 1325–1331 (2006).

Landick, R.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[PubMed]

Lee, G. B.

Y. H. Lin and G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosens. Bioelectron. 24(4), 572–578 (2008).
[PubMed]

C. H. Chiou, Y. Y. Huang, M. H. Chiang, H. H. Lee, and G. B. Lee, “New magnetic tweezers for investigation of the mechanical properties of single DNA molecules,” Nanotechnology 17(5), 1217–1224 (2006).

C. H. Chiou and G. B. Lee, “A micromachined DNA manipulation platform for the stretching and rotation of a single DNA molecule,” J. Micromech. Microeng. 15(1), 109–117 (2005).

Lee, H. H.

C. H. Chiou, Y. Y. Huang, M. H. Chiang, H. H. Lee, and G. B. Lee, “New magnetic tweezers for investigation of the mechanical properties of single DNA molecules,” Nanotechnology 17(5), 1217–1224 (2006).

Lee, Y. K.

P. K. Wong, Y. K. Lee, and C. M. Ho, “Deformation of DNA molecules by hydrodynamic focusing,” J. Fluid Mech. 497, 55–65 (2003).

Leuba, S. H.

J. Zlatanova and S. H. Leuba, “Magnetic tweezers: a sensitive tool to study DNA and chromatin at the single-molecule level,” Biochem. Cell Biol. 81(3), 151–159 (2003).
[PubMed]

J. Zlatanova and S. H. Leuba, “Stretching and imaging single DNA molecules and chromatin,” J. Muscle Res. Cell Motil. 23(5-6), 377–395 (2002).

Lieber, C. M.

A. Noy, D. V. Vezenov, J. F. Kayyem, T. J. Meade, and C. M. Lieber, “Stretching and breaking duplex DNA by chemical force microscopy,” Chem. Biol. 4(7), 519–527 (1997).
[PubMed]

Lin, H. Y.

H. Y. Lin, L. C. Tsai, P. Y. Chi, and C. D. Chen, “Positioning of extended individual DNA molecules on electrodes by non-uniform AC electric fields,” Nanotechnology 16(11), 2738–2742 (2005).

Lin, Y. H.

Y. H. Lin and G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosens. Bioelectron. 24(4), 572–578 (2008).
[PubMed]

Manz, A.

L. C. Campbell, M. J. Wilkinson, A. Manz, P. Camilleri, and C. J. Humphreys, “Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries,” Lab Chip 4(3), 225–229 (2004).
[PubMed]

Marko, J. F.

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28(26), 8759–8770 (1995).

Maubach, G.

G. Maubach, A. Csaki, D. Born, and W. Fritzsche, “Controlled positioning of a DNA molecule in an electrode setup based on self-assembly and microstructuring,” Nanotechnology 14(5), 546–550 (2003).

Meade, T. J.

A. Noy, D. V. Vezenov, J. F. Kayyem, T. J. Meade, and C. M. Lieber, “Stretching and breaking duplex DNA by chemical force microscopy,” Chem. Biol. 4(7), 519–527 (1997).
[PubMed]

Mizuno, R.

T. Morii, R. Mizuno, H. Haruta, and T. Okada, “An AFM study of the elasticity of DNA molecules,” Thin Solid Films 464–465, 456–458 (2004).

Morii, T.

T. Morii, R. Mizuno, H. Haruta, and T. Okada, “An AFM study of the elasticity of DNA molecules,” Thin Solid Films 464–465, 456–458 (2004).

Noy, A.

A. Noy, D. V. Vezenov, J. F. Kayyem, T. J. Meade, and C. M. Lieber, “Stretching and breaking duplex DNA by chemical force microscopy,” Chem. Biol. 4(7), 519–527 (1997).
[PubMed]

Ohta, A. T.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[PubMed]

Okada, T.

T. Morii, R. Mizuno, H. Haruta, and T. Okada, “An AFM study of the elasticity of DNA molecules,” Thin Solid Films 464–465, 456–458 (2004).

Ong, N. P.

Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox, and N. P. Ong, “Insulating behavior of λ-DNA on the micron scale,” Phys. Rev. Lett. 89(19), 198102 (2002).
[PubMed]

Pant, K.

M. C. Williams, K. Pant, I. Rouzina, and R. L. Karpel, “Single molecule force spectroscopy studies of DNA denaturation by T4 gene 32 protein,” Spectroscopy 18, 203–211 (2004).

Pauzauskie, P. J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[PubMed]

Porath, D.

D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, “Direct measurement of electrical transport through DNA molecules,” Nature 403(6770), 635–638 (2000).
[PubMed]

Randall, G. C.

G. C. Randall, K. M. Schultz, and P. S. Doyle, “Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices,” Lab Chip 6(4), 516–525 (2006).
[PubMed]

Reinmuth, J.

M. Salomo, K. Kegler, C. Gutsche, M. Struhalla, J. Reinmuth, W. Skokow, H. Hahn, and F. Kremer, “The elastic properties of single double-stranded DNA chains of different lengths as measured with optical tweezers,” Colloid Polym. Sci. 284(11), 1325–1331 (2006).

Rouzina, I.

M. C. Williams, K. Pant, I. Rouzina, and R. L. Karpel, “Single molecule force spectroscopy studies of DNA denaturation by T4 gene 32 protein,” Spectroscopy 18, 203–211 (2004).

Rusu, C.

C. Rusu, R. van’t Oever, M. J. de Boer, H. V. Jansen, J. W. Berenschot, M. L. Bennink, J. S. Kanger, B. G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, and A. van den Berg, “Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers,” J. Microelectromech. Syst. 10(2), 238–246 (2001).

Sakata-Sogawa, K.

M. L. Bennink, O. D. Schärer, R. Kanaar, K. Sakata-Sogawa, J. M. Schins, J. S. Kanger, B. G. de Grooth, and J. Greve, “Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1,” Cytometry 36(3), 200–208 (1999).
[PubMed]

Salomo, M.

M. Salomo, K. Kegler, C. Gutsche, M. Struhalla, J. Reinmuth, W. Skokow, H. Hahn, and F. Kremer, “The elastic properties of single double-stranded DNA chains of different lengths as measured with optical tweezers,” Colloid Polym. Sci. 284(11), 1325–1331 (2006).

Schärer, O. D.

M. L. Bennink, O. D. Schärer, R. Kanaar, K. Sakata-Sogawa, J. M. Schins, J. S. Kanger, B. G. de Grooth, and J. Greve, “Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1,” Cytometry 36(3), 200–208 (1999).
[PubMed]

Schins, J. M.

M. L. Bennink, O. D. Schärer, R. Kanaar, K. Sakata-Sogawa, J. M. Schins, J. S. Kanger, B. G. de Grooth, and J. Greve, “Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1,” Cytometry 36(3), 200–208 (1999).
[PubMed]

Schuck, P. J.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[PubMed]

Schultz, K. M.

G. C. Randall, K. M. Schultz, and P. S. Doyle, “Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices,” Lab Chip 6(4), 516–525 (2006).
[PubMed]

Siggia, E. D.

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28(26), 8759–8770 (1995).

Skokow, W.

M. Salomo, K. Kegler, C. Gutsche, M. Struhalla, J. Reinmuth, W. Skokow, H. Hahn, and F. Kremer, “The elastic properties of single double-stranded DNA chains of different lengths as measured with optical tweezers,” Colloid Polym. Sci. 284(11), 1325–1331 (2006).

Smith, S. B.

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
[PubMed]

S. B. Smith, L. Finzi, and C. Bustamante, “Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads,” Science 258(5085), 1122–1126 (1992).
[PubMed]

Struhalla, M.

M. Salomo, K. Kegler, C. Gutsche, M. Struhalla, J. Reinmuth, W. Skokow, H. Hahn, and F. Kremer, “The elastic properties of single double-stranded DNA chains of different lengths as measured with optical tweezers,” Colloid Polym. Sci. 284(11), 1325–1331 (2006).

Stump, M. D.

S. C. Huang, M. D. Stump, R. Weiss, and K. D. Caldwell, “Binding of biotinylated DNA to streptavidin-coated polystyrene latex: effects of chain length and particle size,” Anal. Biochem. 237(1), 115–122 (1996).
[PubMed]

Tsai, L. C.

H. Y. Lin, L. C. Tsai, P. Y. Chi, and C. D. Chen, “Positioning of extended individual DNA molecules on electrodes by non-uniform AC electric fields,” Nanotechnology 16(11), 2738–2742 (2005).

van den Berg, A.

C. Rusu, R. van’t Oever, M. J. de Boer, H. V. Jansen, J. W. Berenschot, M. L. Bennink, J. S. Kanger, B. G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, and A. van den Berg, “Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers,” J. Microelectromech. Syst. 10(2), 238–246 (2001).

van’t Oever, R.

C. Rusu, R. van’t Oever, M. J. de Boer, H. V. Jansen, J. W. Berenschot, M. L. Bennink, J. S. Kanger, B. G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, and A. van den Berg, “Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers,” J. Microelectromech. Syst. 10(2), 238–246 (2001).

Vezenov, D. V.

A. Noy, D. V. Vezenov, J. F. Kayyem, T. J. Meade, and C. M. Lieber, “Stretching and breaking duplex DNA by chemical force microscopy,” Chem. Biol. 4(7), 519–527 (1997).
[PubMed]

Wang, M. D.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[PubMed]

Wang, X. B.

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).

Wei, Q.

J. Gu, R. Gupta, C. F. Chou, Q. Wei, and F. Zenhausern, “A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature,” Lab Chip 7(9), 1198–1201 (2007).
[PubMed]

Weiss, R.

S. C. Huang, M. D. Stump, R. Weiss, and K. D. Caldwell, “Binding of biotinylated DNA to streptavidin-coated polystyrene latex: effects of chain length and particle size,” Anal. Biochem. 237(1), 115–122 (1996).
[PubMed]

Wilkinson, M. J.

L. C. Campbell, M. J. Wilkinson, A. Manz, P. Camilleri, and C. J. Humphreys, “Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries,” Lab Chip 4(3), 225–229 (2004).
[PubMed]

Williams, M. C.

M. C. Williams, K. Pant, I. Rouzina, and R. L. Karpel, “Single molecule force spectroscopy studies of DNA denaturation by T4 gene 32 protein,” Spectroscopy 18, 203–211 (2004).

Wong, P. K.

P. K. Wong, Y. K. Lee, and C. M. Ho, “Deformation of DNA molecules by hydrodynamic focusing,” J. Fluid Mech. 497, 55–65 (2003).

Wu, M. C.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[PubMed]

Yang, P.

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[PubMed]

Yin, H.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[PubMed]

Yuqiu, J.

J. Yuqiu, C.-B. Juang, D. Keller, C. Bustamante, D. Beach, T. Houseal, and E. Builes, “Mechanical, electrical, and chemical manipulation of single DNA molecules,” Nanotechnology 3(1), 16–20 (1992).

Zenhausern, F.

J. Gu, R. Gupta, C. F. Chou, Q. Wei, and F. Zenhausern, “A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature,” Lab Chip 7(9), 1198–1201 (2007).
[PubMed]

Zhang, Y.

Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox, and N. P. Ong, “Insulating behavior of λ-DNA on the micron scale,” Phys. Rev. Lett. 89(19), 198102 (2002).
[PubMed]

Zlatanova, J.

J. Zlatanova and S. H. Leuba, “Magnetic tweezers: a sensitive tool to study DNA and chromatin at the single-molecule level,” Biochem. Cell Biol. 81(3), 151–159 (2003).
[PubMed]

J. Zlatanova and S. H. Leuba, “Stretching and imaging single DNA molecules and chromatin,” J. Muscle Res. Cell Motil. 23(5-6), 377–395 (2002).

Anal. Biochem.

S. C. Huang, M. D. Stump, R. Weiss, and K. D. Caldwell, “Binding of biotinylated DNA to streptavidin-coated polystyrene latex: effects of chain length and particle size,” Anal. Biochem. 237(1), 115–122 (1996).
[PubMed]

Biochem. Cell Biol.

J. Zlatanova and S. H. Leuba, “Magnetic tweezers: a sensitive tool to study DNA and chromatin at the single-molecule level,” Biochem. Cell Biol. 81(3), 151–159 (2003).
[PubMed]

Biophys. J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72(3), 1335–1346 (1997).
[PubMed]

Biosens. Bioelectron.

Y. H. Lin and G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosens. Bioelectron. 24(4), 572–578 (2008).
[PubMed]

Chem. Biol.

A. Noy, D. V. Vezenov, J. F. Kayyem, T. J. Meade, and C. M. Lieber, “Stretching and breaking duplex DNA by chemical force microscopy,” Chem. Biol. 4(7), 519–527 (1997).
[PubMed]

Colloid Polym. Sci.

M. Salomo, K. Kegler, C. Gutsche, M. Struhalla, J. Reinmuth, W. Skokow, H. Hahn, and F. Kremer, “The elastic properties of single double-stranded DNA chains of different lengths as measured with optical tweezers,” Colloid Polym. Sci. 284(11), 1325–1331 (2006).

Cytometry

M. L. Bennink, O. D. Schärer, R. Kanaar, K. Sakata-Sogawa, J. M. Schins, J. S. Kanger, B. G. de Grooth, and J. Greve, “Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1,” Cytometry 36(3), 200–208 (1999).
[PubMed]

J. Fluid Mech.

P. K. Wong, Y. K. Lee, and C. M. Ho, “Deformation of DNA molecules by hydrodynamic focusing,” J. Fluid Mech. 497, 55–65 (2003).

J. Microelectromech. Syst.

C. Rusu, R. van’t Oever, M. J. de Boer, H. V. Jansen, J. W. Berenschot, M. L. Bennink, J. S. Kanger, B. G. de Grooth, M. Elwenspoek, J. Greve, J. Brugger, and A. van den Berg, “Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers,” J. Microelectromech. Syst. 10(2), 238–246 (2001).

J. Micromech. Microeng.

C. H. Chiou and G. B. Lee, “A micromachined DNA manipulation platform for the stretching and rotation of a single DNA molecule,” J. Micromech. Microeng. 15(1), 109–117 (2005).

J. Muscle Res. Cell Motil.

J. Zlatanova and S. H. Leuba, “Stretching and imaging single DNA molecules and chromatin,” J. Muscle Res. Cell Motil. 23(5-6), 377–395 (2002).

J. Phys. D Appl. Phys.

X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D Appl. Phys. 27(7), 1571–1574 (1994).

Lab Chip

J. Gu, R. Gupta, C. F. Chou, Q. Wei, and F. Zenhausern, “A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature,” Lab Chip 7(9), 1198–1201 (2007).
[PubMed]

G. C. Randall, K. M. Schultz, and P. S. Doyle, “Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices,” Lab Chip 6(4), 516–525 (2006).
[PubMed]

J. M. Kim and P. S. Doyle, “Design and numerical simulation of a DNA electrophoretic stretching device,” Lab Chip 7(2), 213–225 (2007).
[PubMed]

L. C. Campbell, M. J. Wilkinson, A. Manz, P. Camilleri, and C. J. Humphreys, “Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries,” Lab Chip 4(3), 225–229 (2004).
[PubMed]

Macromolecules

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28(26), 8759–8770 (1995).

Nano Lett.

L. Guo, X. Cheng, and C. F. Chou, “Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching,” Nano Lett. 4(1), 69–73 (2004).

Nanotechnology

H. Y. Lin, L. C. Tsai, P. Y. Chi, and C. D. Chen, “Positioning of extended individual DNA molecules on electrodes by non-uniform AC electric fields,” Nanotechnology 16(11), 2738–2742 (2005).

G. Maubach, A. Csaki, D. Born, and W. Fritzsche, “Controlled positioning of a DNA molecule in an electrode setup based on self-assembly and microstructuring,” Nanotechnology 14(5), 546–550 (2003).

J. Yuqiu, C.-B. Juang, D. Keller, C. Bustamante, D. Beach, T. Houseal, and E. Builes, “Mechanical, electrical, and chemical manipulation of single DNA molecules,” Nanotechnology 3(1), 16–20 (1992).

C. H. Chiou, Y. Y. Huang, M. H. Chiang, H. H. Lee, and G. B. Lee, “New magnetic tweezers for investigation of the mechanical properties of single DNA molecules,” Nanotechnology 17(5), 1217–1224 (2006).

Nat. Photonics

A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nat. Photonics 2(2), 86–89 (2008).
[PubMed]

Nature

D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, “Direct measurement of electrical transport through DNA molecules,” Nature 403(6770), 635–638 (2000).
[PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[PubMed]

Phys. Rev. Lett.

Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox, and N. P. Ong, “Insulating behavior of λ-DNA on the micron scale,” Phys. Rev. Lett. 89(19), 198102 (2002).
[PubMed]

Science

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
[PubMed]

S. B. Smith, L. Finzi, and C. Bustamante, “Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads,” Science 258(5085), 1122–1126 (1992).
[PubMed]

Spectroscopy

M. C. Williams, K. Pant, I. Rouzina, and R. L. Karpel, “Single molecule force spectroscopy studies of DNA denaturation by T4 gene 32 protein,” Spectroscopy 18, 203–211 (2004).

Thin Solid Films

T. Morii, R. Mizuno, H. Haruta, and T. Okada, “An AFM study of the elasticity of DNA molecules,” Thin Solid Films 464–465, 456–458 (2004).

Supplementary Material (2)

» Media 1: MPG (3687 KB)     
» Media 2: MPG (6264 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic illustration of (a) the stretching of a single DNA molecule by using the ODEP platform. One end of the DNA is anchored onto the substrate and the other end of DNA is bound with a micro-bead. The ODEP platform can manipulate the micro-bead and thus, correspondingly, the attached DNA molecule. (b) Rotation of the tethered-DNA molecule is achieved by projecting a moving optical image.

Fig. 2
Fig. 2

(a) Conceptual illustration of the generation of the ODEP force. The ODEP chip consists of a top and a bottom layer. The top layer is an ITO glass and the bottom layer is another ITO glass deposited with amorphous silicon as a photoconductive layer. When the top and the bottom ITO layers are applied with an AC voltage, the electron-hole pairs are excited and thus the AC voltage will drop across the fluid layer when a light illuminates the photoconductive layer. Then the micro-bead experiences a dielectrophoresis force induced by this non-uniform electric field. (b) Schematic illustration of biotinylated deoxynucleoside triphosphates modified withλ-DNA sticky ends by using the Klenow fragment (3′→5′ exo-). Biotin is labeled at the ends of DNA through modified deoxynucleoside triphosphates, and dCTP-11-biotin.

Fig. 3
Fig. 3

The experimental setup for the manipulation of a single DNA molecule by using the ODEP platform.

Fig. 4
Fig. 4

A single DNA molecule is stretched by gradually increasing the magnitude of the applied voltage, thus increasing the repelling ODEP force. At larger applied voltages, the DNA molecule is stretched longer (Media 1).

Fig. 5
Fig. 5

A single DNA molecule is elongated by the interaction of a tethered micro-bead and optical images.

Fig. 6
Fig. 6

A bead-tethered single DNA molecule can be rotated either clockwise or counter-clockwise by using a moving optical image projected through a commercial projector (Media 2).

Fig. 7
Fig. 7

Relationship between the generated ODEP force and the applied voltage for 4.5- and 10.1-μm beads. The ODEP force is calibrated by Stokes’ law using the balance of the ODEP force and the drag force at the terminal velocity of the micro-bead.

Fig. 8
Fig. 8

(a) Relationship between the applied ODEP force and the extension length of a single DNA molecule. (b) Experimental data show that the trend in elongation length is consistent with the WLC model.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

FDEP=2πr3εmRe(fCM)E2
fCM(ω)=εp*εm*εp*+2εm*,εp*=εpjσpω,εm*=εmjσmω
FelasticityPKbT=14[1RL]214+RL
F=6πrηv(1+9r16h)

Metrics