Abstract

We demonstrate a regenerative optical grooming switch for buffer-less interconnection of metro/access and metro/core ring networks with switching functionality in time, space and wavelength domain. Key functionalities of the router are the traffic aggregation with time-slot interchanging (TSI) functionality, the WDM-to-ODTM multiplexing and the OTDM-to-WDM demultiplexing of high-speed channel into lower bit-rate tributaries as well as multi-wavelength all-optical 2R regeneration of several higher-speed signals. BER and Q-factor measurements of different switching scenarios show excellent performance with no error floor and Q-factors above 21 dB.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Saleh and J. M. Simmons, “Evolution toward the next-generation core optical network,” J. Lightwave Technol. 24(9), 3303–3321 (2006).
    [CrossRef]
  2. A. Gladisch, R.-P. Braun, D. Breuer, A. Ehrhardt, H.-M. Foisel, M. Jaeger, R. Leppla, M. Schneiders, S. Vorbeck, W. Weiershausen, and F.-J. Westphal, “Evolution of Terrestrial Optical System and Core Network Architecture,” in Proc. IEEE 94, 869–891 (2006).
  3. S. Sygletos, I. Tomkos, and J. Leuthold, “Technological challenges on the road toward transparent networking,” J. Opt. Netw. 7(4), 321–350 (2008).
    [CrossRef]
  4. J. Livas, “Optical Transmission Evolution: From Digital to Analog to? Network Tradeoffs Between Optical Transparency and Reduced Regeneration Cost,” J. Lightwave Technol. 23(1), 219–224 (2005).
    [CrossRef]
  5. O. Leclerc, “Towards Transparent Optical Networks: still some challenges ahead,” in Proceedings 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, paper TuCC3 (invited), 418–419 (2005).
  6. L. Berthelon, C. Mathieu, D. Domin, J.-P. Fauro, R. Laalaoua, F. Pain, and M. Garnot, “Implementation of All-Optical Networks,” in Proceedings ECOC 2002, vol. 1, paper 1.4.1, (2002).
  7. A. Morea, and J. Poirrier, “A Critical Analysis of the Possible Cost Savings of Translucent Networks,” in Proceedings of 5th international Workshop on Design of Reliable Communication Networks, 311–317, (2005).
  8. D. T. Neilson, C. R. Doerr, D. M. Marom, R. Ryf, and M. P. Earnshaw, “Wavelength Selective Switching for Optical Bandwidth Management,” Bell Labs Technical J. 11(2), 105–128 (2006).
    [CrossRef]
  9. R. Ryf, J. Kim, J. P. Hickey, A. Gnauck, D. Carr, F. Pardo, C. Bolle, R. Frahm, N. Basavanhally, C. Yoh, D. Ramsey, R. Boie, R. George, J. Kraus, C. Lichtenwalner, R. Papazian, J. Gates, H. R. Shea, A. Gasparyan, V. Muratov, J. E. Griffith, J. A. Prybyla, S. Goyal, C. D. White, M. T. Lin, R. Ruel, C. Nijander, S. Arney, D. T. Nellson, D. J. Bishop, P. Kolodner, S. Pau, C. Nuzman, A. Weis, B. Kumar, D. Lieuwen, V. Aksyuk, D. S. Greywall, T. C. Lee, H. T. Soh, W. M. Mansfield, S. Jin, W. Y. Lai, H. A. Huggins, D. L. Barr, R. A. Cirelli, G. R. Bogart, K. Teffeau, R. Vella, H. Mavoori, A. Ramirez, N. A. Ciampa, F. P. Klemens, M. D. Morris, T. Boone, J. Q. Liu, J. M. Rosamilia, and C. R. Giles, “1296-port MEMS Transparent Optical Crossconnect with 2.07Petabit/s Switch Capacity,” in Proceedings Optical Fiber Communications Conference 2001, paper PD28–1, (2001).
  10. D. J. Bishop, C. R. Giles, and G. P. Austin, “The Lucent LambdaRouter: MEMS Technology of the Future Here Today,” IEEE Commun. Mag. 40(3), 75–79 (2002).
    [CrossRef]
  11. P. Vorreau, D. Hillerkuss, F. Parmigiani, S. Sygletos, R. Bonk, P. Petropoulos, D. Richardson, G. Zarris, D. Simeonidou, D. Klonidis, I. Tomkos, R. Weerasyriya, S. Ibrahim, A. Ellis, R. Morais, P. Monteiro, S. Ben Ezra, S. Tsadka, W. Freude, and J. Leuthold, “2R/3R Optical Grooming Switch with Time-Slot Interchange,” in Proceedings ECOC 2008, PDP Th.3.F.4, (2008).
  12. G. Zarris, F. Parmigiani, E. Hugues-Salas, R. Weerasuriya, D. Hillerkuss, N. Amaya, and M. Gonzalez, Spyropoulou, P. Vorreau, R. Morais, S.K. Ibrahim, D. Klonidis, P. Petropoulos, A. D. Ellis, P. Monteiro, A. Tzanakaki, D. Richardson, I. Tomkos, R. Bonk, W. Freude, J. Leuthold, and D. Simeonidou, “Field Trial of WDM-OTDM transmultiplexing employing photonic switch fabric-based buffer-less bit-interleaved data grooming and all-optical regeneration,” in Proceedings OFC 2009, PDPC10, (2009).
  13. B. Mukherjee, C. Ou, H. Zhu, K. Zhu, N. Singhal, and S. Yao, “Traffic Grooming in Mesh Optical Networks,” in Proceedings of Optical Fiber Communications Conference, vol. 2, paper ThG1, Feb. 23–27, (2004).
  14. D. Cotter and A. D. Ellis, “Asynchronous digital optical regeneration and networks,” J. Lightwave Technol. 16(12), 2068–2080 (1998).
    [CrossRef]
  15. G. Zarris, P. Vorreau, D. Hillerkuss, S. K. Ibrahim, R. Weerasuriya, A. D. Ellis, J. Leuthold, and D. Simeonidou, “WDM-to-OTDM Traffic Grooming by means of Asynchronous Retiming,” in Proceedings OFC 2009, paper OThJ6, (2009).
  16. F. Parmigiani, P. Vorreau, L. Provost, K. Mukasa, P. Petropoulos, D. J. Richardson, W. Freude, and J. Leuthold, “2R Regeneration of two 130 Gbit/s Channels within a Single Fiber,” in Proceedings OFC 2009, paper JThA56, (2009).
  17. R. Morais, R. Meleiro, P. Monteiro, and P. Marques, “OTDM-to-WDM Conversion based on Wavelength Conversion and Time Gating in a Single Optical Gate,” in Proceedings OFC 2007, paper OTuD5, (2007).
  18. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in Proceedings ECOC 1998, pp. 475–476, (1998).
  19. H. Sotobayashi, W. Chujo, and K.- Kitayama, “Photonic gateway: TDM-to-WDM-to-TDM conversion and reconversion at 40 Gbit/s (4 channels × 10 Gbit/s),” J. Opt. Soc. Am. B 19(11), 2810–2816 (2002).
    [CrossRef]
  20. P. Vorreau, F. Parmigiani, K. Mukasa, M. Ibsen, P. Ptropoulos, D. J. Richardson, A. Ellis, W. Freude, and J. Leuthold, “TDM-to-WDM Conversion from 130 Gbit/s to 3 × 43 Gbit/s Using XPM in a NOLM Switch,” in Proceedings ICTON 2008, paper Th.PD.2, (2008).
  21. S. K. Ibrahim, R. Weerasuriya, D. Hillerkuss, G. Zarris, D. Simeonidou, J. Leuthold, D. Cotter, and A. Ellis, “Experimental demonstration of 42.6Gbit/S asynchronous digital optical regenerators,” in Proceedings ICTON 2008, paper We.C3.3, (2008).
  22. P. Vorreau, Ch. Kouloumentas, L. Provost, I. Tomkos, W. Freude, and J. Leuthold, “Simultaneous Processing of 43 Gb/s WDM Channels by a Fiber-Based Dispersion-Managed 2R Regenerator,” in Proceedings ECOC 2008, paper Th.1.B.3, (2008).
  23. D. V. Kuksenkov, S. Li, M. Sauer, and D. A. Nolan, “Nonlinear Fibre Devices Operating on Multiple WDM Channels,” in Proceedings ECOC 2005, paper Mo3.5.1, (2005).
  24. L. Provost, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Investigation of Simultaneous 2R Regeneration of Two 40-Gb/s Channels in a Single Optical Fiber,” Photon. Technol. Lett. 20(4), 270–272 (2008).
    [CrossRef]
  25. L. Provost, F. Parmigiani, P. Petropoulos, D. J. Richardson, K. Mukasa, M. Takahashi, J. Hiroishi, and M. Tadakuma, “Investigation of Four-Wavelength Regenerator Using Polarization- and Direction-Multiplexing,” Photon. Technol. Lett. 20(20), 1676–1678 (2008).
    [CrossRef]
  26. F. Cisternino, R. Girardi, S. Romisch, R. Calvani, E. Riccardi, and P. Garino, “A novel approach to pre-scaled clock recovery in OTDM systems,” in Proc. ECOC 19981, 477–478 (1998).
  27. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
    [CrossRef]

2009 (1)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

2008 (3)

L. Provost, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Investigation of Simultaneous 2R Regeneration of Two 40-Gb/s Channels in a Single Optical Fiber,” Photon. Technol. Lett. 20(4), 270–272 (2008).
[CrossRef]

L. Provost, F. Parmigiani, P. Petropoulos, D. J. Richardson, K. Mukasa, M. Takahashi, J. Hiroishi, and M. Tadakuma, “Investigation of Four-Wavelength Regenerator Using Polarization- and Direction-Multiplexing,” Photon. Technol. Lett. 20(20), 1676–1678 (2008).
[CrossRef]

S. Sygletos, I. Tomkos, and J. Leuthold, “Technological challenges on the road toward transparent networking,” J. Opt. Netw. 7(4), 321–350 (2008).
[CrossRef]

2006 (2)

A. M. Saleh and J. M. Simmons, “Evolution toward the next-generation core optical network,” J. Lightwave Technol. 24(9), 3303–3321 (2006).
[CrossRef]

D. T. Neilson, C. R. Doerr, D. M. Marom, R. Ryf, and M. P. Earnshaw, “Wavelength Selective Switching for Optical Bandwidth Management,” Bell Labs Technical J. 11(2), 105–128 (2006).
[CrossRef]

2005 (1)

2002 (2)

H. Sotobayashi, W. Chujo, and K.- Kitayama, “Photonic gateway: TDM-to-WDM-to-TDM conversion and reconversion at 40 Gbit/s (4 channels × 10 Gbit/s),” J. Opt. Soc. Am. B 19(11), 2810–2816 (2002).
[CrossRef]

D. J. Bishop, C. R. Giles, and G. P. Austin, “The Lucent LambdaRouter: MEMS Technology of the Future Here Today,” IEEE Commun. Mag. 40(3), 75–79 (2002).
[CrossRef]

1998 (1)

Austin, G. P.

D. J. Bishop, C. R. Giles, and G. P. Austin, “The Lucent LambdaRouter: MEMS Technology of the Future Here Today,” IEEE Commun. Mag. 40(3), 75–79 (2002).
[CrossRef]

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Bishop, D. J.

D. J. Bishop, C. R. Giles, and G. P. Austin, “The Lucent LambdaRouter: MEMS Technology of the Future Here Today,” IEEE Commun. Mag. 40(3), 75–79 (2002).
[CrossRef]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Chujo, W.

Cotter, D.

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Doerr, C. R.

D. T. Neilson, C. R. Doerr, D. M. Marom, R. Ryf, and M. P. Earnshaw, “Wavelength Selective Switching for Optical Bandwidth Management,” Bell Labs Technical J. 11(2), 105–128 (2006).
[CrossRef]

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Earnshaw, M. P.

D. T. Neilson, C. R. Doerr, D. M. Marom, R. Ryf, and M. P. Earnshaw, “Wavelength Selective Switching for Optical Bandwidth Management,” Bell Labs Technical J. 11(2), 105–128 (2006).
[CrossRef]

Ellis, A. D.

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Giles, C. R.

D. J. Bishop, C. R. Giles, and G. P. Austin, “The Lucent LambdaRouter: MEMS Technology of the Future Here Today,” IEEE Commun. Mag. 40(3), 75–79 (2002).
[CrossRef]

Hiroishi, J.

L. Provost, F. Parmigiani, P. Petropoulos, D. J. Richardson, K. Mukasa, M. Takahashi, J. Hiroishi, and M. Tadakuma, “Investigation of Four-Wavelength Regenerator Using Polarization- and Direction-Multiplexing,” Photon. Technol. Lett. 20(20), 1676–1678 (2008).
[CrossRef]

Kitayama, K.-

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

S. Sygletos, I. Tomkos, and J. Leuthold, “Technological challenges on the road toward transparent networking,” J. Opt. Netw. 7(4), 321–350 (2008).
[CrossRef]

Livas, J.

Marom, D. M.

D. T. Neilson, C. R. Doerr, D. M. Marom, R. Ryf, and M. P. Earnshaw, “Wavelength Selective Switching for Optical Bandwidth Management,” Bell Labs Technical J. 11(2), 105–128 (2006).
[CrossRef]

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Mukasa, K.

L. Provost, F. Parmigiani, P. Petropoulos, D. J. Richardson, K. Mukasa, M. Takahashi, J. Hiroishi, and M. Tadakuma, “Investigation of Four-Wavelength Regenerator Using Polarization- and Direction-Multiplexing,” Photon. Technol. Lett. 20(20), 1676–1678 (2008).
[CrossRef]

Neilson, D. T.

D. T. Neilson, C. R. Doerr, D. M. Marom, R. Ryf, and M. P. Earnshaw, “Wavelength Selective Switching for Optical Bandwidth Management,” Bell Labs Technical J. 11(2), 105–128 (2006).
[CrossRef]

Parmigiani, F.

L. Provost, F. Parmigiani, P. Petropoulos, D. J. Richardson, K. Mukasa, M. Takahashi, J. Hiroishi, and M. Tadakuma, “Investigation of Four-Wavelength Regenerator Using Polarization- and Direction-Multiplexing,” Photon. Technol. Lett. 20(20), 1676–1678 (2008).
[CrossRef]

L. Provost, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Investigation of Simultaneous 2R Regeneration of Two 40-Gb/s Channels in a Single Optical Fiber,” Photon. Technol. Lett. 20(4), 270–272 (2008).
[CrossRef]

Petropoulos, P.

L. Provost, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Investigation of Simultaneous 2R Regeneration of Two 40-Gb/s Channels in a Single Optical Fiber,” Photon. Technol. Lett. 20(4), 270–272 (2008).
[CrossRef]

L. Provost, F. Parmigiani, P. Petropoulos, D. J. Richardson, K. Mukasa, M. Takahashi, J. Hiroishi, and M. Tadakuma, “Investigation of Four-Wavelength Regenerator Using Polarization- and Direction-Multiplexing,” Photon. Technol. Lett. 20(20), 1676–1678 (2008).
[CrossRef]

Provost, L.

L. Provost, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Investigation of Simultaneous 2R Regeneration of Two 40-Gb/s Channels in a Single Optical Fiber,” Photon. Technol. Lett. 20(4), 270–272 (2008).
[CrossRef]

L. Provost, F. Parmigiani, P. Petropoulos, D. J. Richardson, K. Mukasa, M. Takahashi, J. Hiroishi, and M. Tadakuma, “Investigation of Four-Wavelength Regenerator Using Polarization- and Direction-Multiplexing,” Photon. Technol. Lett. 20(20), 1676–1678 (2008).
[CrossRef]

Richardson, D. J.

L. Provost, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Investigation of Simultaneous 2R Regeneration of Two 40-Gb/s Channels in a Single Optical Fiber,” Photon. Technol. Lett. 20(4), 270–272 (2008).
[CrossRef]

L. Provost, F. Parmigiani, P. Petropoulos, D. J. Richardson, K. Mukasa, M. Takahashi, J. Hiroishi, and M. Tadakuma, “Investigation of Four-Wavelength Regenerator Using Polarization- and Direction-Multiplexing,” Photon. Technol. Lett. 20(20), 1676–1678 (2008).
[CrossRef]

Ryf, R.

D. T. Neilson, C. R. Doerr, D. M. Marom, R. Ryf, and M. P. Earnshaw, “Wavelength Selective Switching for Optical Bandwidth Management,” Bell Labs Technical J. 11(2), 105–128 (2006).
[CrossRef]

Saleh, A. M.

Simmons, J. M.

Sotobayashi, H.

Sygletos, S.

Tadakuma, M.

L. Provost, F. Parmigiani, P. Petropoulos, D. J. Richardson, K. Mukasa, M. Takahashi, J. Hiroishi, and M. Tadakuma, “Investigation of Four-Wavelength Regenerator Using Polarization- and Direction-Multiplexing,” Photon. Technol. Lett. 20(20), 1676–1678 (2008).
[CrossRef]

Takahashi, M.

L. Provost, F. Parmigiani, P. Petropoulos, D. J. Richardson, K. Mukasa, M. Takahashi, J. Hiroishi, and M. Tadakuma, “Investigation of Four-Wavelength Regenerator Using Polarization- and Direction-Multiplexing,” Photon. Technol. Lett. 20(20), 1676–1678 (2008).
[CrossRef]

Tomkos, I.

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Bell Labs Technical J. (1)

D. T. Neilson, C. R. Doerr, D. M. Marom, R. Ryf, and M. P. Earnshaw, “Wavelength Selective Switching for Optical Bandwidth Management,” Bell Labs Technical J. 11(2), 105–128 (2006).
[CrossRef]

IEEE Commun. Mag. (1)

D. J. Bishop, C. R. Giles, and G. P. Austin, “The Lucent LambdaRouter: MEMS Technology of the Future Here Today,” IEEE Commun. Mag. 40(3), 75–79 (2002).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Netw. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Photon. Technol. Lett. (2)

L. Provost, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Investigation of Simultaneous 2R Regeneration of Two 40-Gb/s Channels in a Single Optical Fiber,” Photon. Technol. Lett. 20(4), 270–272 (2008).
[CrossRef]

L. Provost, F. Parmigiani, P. Petropoulos, D. J. Richardson, K. Mukasa, M. Takahashi, J. Hiroishi, and M. Tadakuma, “Investigation of Four-Wavelength Regenerator Using Polarization- and Direction-Multiplexing,” Photon. Technol. Lett. 20(20), 1676–1678 (2008).
[CrossRef]

Other (17)

F. Cisternino, R. Girardi, S. Romisch, R. Calvani, E. Riccardi, and P. Garino, “A novel approach to pre-scaled clock recovery in OTDM systems,” in Proc. ECOC 19981, 477–478 (1998).

R. Ryf, J. Kim, J. P. Hickey, A. Gnauck, D. Carr, F. Pardo, C. Bolle, R. Frahm, N. Basavanhally, C. Yoh, D. Ramsey, R. Boie, R. George, J. Kraus, C. Lichtenwalner, R. Papazian, J. Gates, H. R. Shea, A. Gasparyan, V. Muratov, J. E. Griffith, J. A. Prybyla, S. Goyal, C. D. White, M. T. Lin, R. Ruel, C. Nijander, S. Arney, D. T. Nellson, D. J. Bishop, P. Kolodner, S. Pau, C. Nuzman, A. Weis, B. Kumar, D. Lieuwen, V. Aksyuk, D. S. Greywall, T. C. Lee, H. T. Soh, W. M. Mansfield, S. Jin, W. Y. Lai, H. A. Huggins, D. L. Barr, R. A. Cirelli, G. R. Bogart, K. Teffeau, R. Vella, H. Mavoori, A. Ramirez, N. A. Ciampa, F. P. Klemens, M. D. Morris, T. Boone, J. Q. Liu, J. M. Rosamilia, and C. R. Giles, “1296-port MEMS Transparent Optical Crossconnect with 2.07Petabit/s Switch Capacity,” in Proceedings Optical Fiber Communications Conference 2001, paper PD28–1, (2001).

O. Leclerc, “Towards Transparent Optical Networks: still some challenges ahead,” in Proceedings 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, paper TuCC3 (invited), 418–419 (2005).

L. Berthelon, C. Mathieu, D. Domin, J.-P. Fauro, R. Laalaoua, F. Pain, and M. Garnot, “Implementation of All-Optical Networks,” in Proceedings ECOC 2002, vol. 1, paper 1.4.1, (2002).

A. Morea, and J. Poirrier, “A Critical Analysis of the Possible Cost Savings of Translucent Networks,” in Proceedings of 5th international Workshop on Design of Reliable Communication Networks, 311–317, (2005).

P. Vorreau, D. Hillerkuss, F. Parmigiani, S. Sygletos, R. Bonk, P. Petropoulos, D. Richardson, G. Zarris, D. Simeonidou, D. Klonidis, I. Tomkos, R. Weerasyriya, S. Ibrahim, A. Ellis, R. Morais, P. Monteiro, S. Ben Ezra, S. Tsadka, W. Freude, and J. Leuthold, “2R/3R Optical Grooming Switch with Time-Slot Interchange,” in Proceedings ECOC 2008, PDP Th.3.F.4, (2008).

G. Zarris, F. Parmigiani, E. Hugues-Salas, R. Weerasuriya, D. Hillerkuss, N. Amaya, and M. Gonzalez, Spyropoulou, P. Vorreau, R. Morais, S.K. Ibrahim, D. Klonidis, P. Petropoulos, A. D. Ellis, P. Monteiro, A. Tzanakaki, D. Richardson, I. Tomkos, R. Bonk, W. Freude, J. Leuthold, and D. Simeonidou, “Field Trial of WDM-OTDM transmultiplexing employing photonic switch fabric-based buffer-less bit-interleaved data grooming and all-optical regeneration,” in Proceedings OFC 2009, PDPC10, (2009).

B. Mukherjee, C. Ou, H. Zhu, K. Zhu, N. Singhal, and S. Yao, “Traffic Grooming in Mesh Optical Networks,” in Proceedings of Optical Fiber Communications Conference, vol. 2, paper ThG1, Feb. 23–27, (2004).

A. Gladisch, R.-P. Braun, D. Breuer, A. Ehrhardt, H.-M. Foisel, M. Jaeger, R. Leppla, M. Schneiders, S. Vorbeck, W. Weiershausen, and F.-J. Westphal, “Evolution of Terrestrial Optical System and Core Network Architecture,” in Proc. IEEE 94, 869–891 (2006).

G. Zarris, P. Vorreau, D. Hillerkuss, S. K. Ibrahim, R. Weerasuriya, A. D. Ellis, J. Leuthold, and D. Simeonidou, “WDM-to-OTDM Traffic Grooming by means of Asynchronous Retiming,” in Proceedings OFC 2009, paper OThJ6, (2009).

F. Parmigiani, P. Vorreau, L. Provost, K. Mukasa, P. Petropoulos, D. J. Richardson, W. Freude, and J. Leuthold, “2R Regeneration of two 130 Gbit/s Channels within a Single Fiber,” in Proceedings OFC 2009, paper JThA56, (2009).

R. Morais, R. Meleiro, P. Monteiro, and P. Marques, “OTDM-to-WDM Conversion based on Wavelength Conversion and Time Gating in a Single Optical Gate,” in Proceedings OFC 2007, paper OTuD5, (2007).

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in Proceedings ECOC 1998, pp. 475–476, (1998).

P. Vorreau, F. Parmigiani, K. Mukasa, M. Ibsen, P. Ptropoulos, D. J. Richardson, A. Ellis, W. Freude, and J. Leuthold, “TDM-to-WDM Conversion from 130 Gbit/s to 3 × 43 Gbit/s Using XPM in a NOLM Switch,” in Proceedings ICTON 2008, paper Th.PD.2, (2008).

S. K. Ibrahim, R. Weerasuriya, D. Hillerkuss, G. Zarris, D. Simeonidou, J. Leuthold, D. Cotter, and A. Ellis, “Experimental demonstration of 42.6Gbit/S asynchronous digital optical regenerators,” in Proceedings ICTON 2008, paper We.C3.3, (2008).

P. Vorreau, Ch. Kouloumentas, L. Provost, I. Tomkos, W. Freude, and J. Leuthold, “Simultaneous Processing of 43 Gb/s WDM Channels by a Fiber-Based Dispersion-Managed 2R Regenerator,” in Proceedings ECOC 2008, paper Th.1.B.3, (2008).

D. V. Kuksenkov, S. Li, M. Sauer, and D. A. Nolan, “Nonlinear Fibre Devices Operating on Multiple WDM Channels,” in Proceedings ECOC 2005, paper Mo3.5.1, (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Network scenario and switch node. (a) Two metro/access rings are interconnected to a metro/core ring via the grooming switch. Each ring carries a multiple of WDM channels, either at 43 Gbit/s or 130 Gbit/s per wavelength. (b) Grooming switch block diagram. Traffic from the metro/access rings is switched by the space switch either to the other access rings, or via the add path to the metro/core ring. Conversely, an OTDM channel from the metro/core ring can be dropped, and any of the three OTDM tributaries may be mapped to any of the metro/access rings or back to the core ring. The signals in this plot show one possible switching scenario: Three OTDM tributaries at λcore1 are dropped to the OTDM-to-WDM converter. Two of its outputs (carrying time-slots TS1 and TS3) are switched to the WDM-to-OTDM converter, slot-interchanged and looped back to the core ring. Channel λacc1 from metro ring 1 is added and mapped to time-slot TS2. In addition, the dropped time-slot TS2 is mapped to λacc2 on metro ring 2.

Fig. 2
Fig. 2

Operation principle of the OTDM to WDM conversion. HP-EDFA – high-power EDFA; HNLF – highly-nonlinear fiber.

Fig. 3
Fig. 3

Receiver bit error rates of the three 43 Gbit/s outputs of the TDM-to-WDM subsystem and the 130 Gbit/s input signal to the subsystem demultiplexed with the same type of EAM used in the subsystem. A small maximal penalty of 2.2 dB compared to the back-to-back (B-to-B) signal is observed for the 1560.6 nm output signal.

Fig. 4
Fig. 4

WDM-to-OTDM traffic grooming utilizing the asynchronous retiming concept. The incoming 43 Gbit/s signals are synchronized to a local oscillator, wavelength converted and the pulse width is shortened using three ADOREs. The output short pulse signals are temporally aligned and combined to form the 130 Gbit/s OTDM signal. Sync. – synchronization; WLC – wavelength conversion; MLL – mode-locked laser.

Fig. 5
Fig. 5

(a) Receiver bit error rate curve measurements for the three OTDM tributaries (ADORE, TS2, TS3) under best and worst input data clock phases to the ADORE. (b) Eye diagram (PicosolveTM optical sampling scope) for the worst input phase to the ADORE.

Fig. 6
Fig. 6

Operation principle of the fiber-based 2R regenerator. The two degraded 130 Gbit/s input signals are individually amplified and counter propagate in the HNLF, where self-phase modulation (SPM) induced spectral broadening takes place. In combination with subsequent offset filtering this leads to the regenerated output signals. Eye diagrams indicate excellent regenerative performance in dual-channel operation.

Fig. 7
Fig. 7

Node setup for switching scenario 1: λcore1 is switched through, see E. λcore2 is dropped and mapped to different tributaries (λdrop1, λdrop2, λdrop3), see C. λdrop1 and λdrop3 are looped back together with the added λaccess2, see D, while λdrop2 is switched to the metro / access ring. The multi-wavelength core signal is finally regenerated, see (E,F).

Fig. 8
Fig. 8

Optical spectra, eye diagrams and Q-factors at various reference points for different switching scenarios: (a) 130 Gbit/s input signals and OTDM-to-WDM converted signals when λcore2 is dropped. (b) Switching Scenario 1 (see also Fig. 7).

Fig. 9
Fig. 9

BER measurements for switching scenario 1. All measurements were taken using an EAM performing temporal demultiplexing from 130 Gbit/s to 43 Gbit/s.

Tables (1)

Tables Icon

Table 1 Three different switching scenarios giving time slot constellations and excellent Q-factors for the added core signal λcore2, add. Note that in scenario 2 and 3, time-slots TS1 and TS2 are interchanged.

Metrics