Abstract

We present theoretical considerations as well as detailed numerical design of absorber and emitter for Solar Thermophotovoltaics (STPV) applications. The absorber, consisting of an array of tungsten pyramids, was designed to provide near-unity absorptivity over all solar wavelengths for a wide angular range, enabling it to absorb light effectively from solar sources regardless of concentration. The emitter, a tungsten slab with Si/SiO2 multilayer stack, provides a sharp emissivity peak at the solar cell band-gap while suppressing emission at lower frequencies. We show that, under a suitable light concentration condition, and with a reasonable area ratio between the emitter and absorber, a STPV system employing such absorber-emitter pair and a single-junction solar cell can attain efficiency that exceeds the Shockley-Queisser limit.

© 2009 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [CrossRef]
  2. R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979).
    [CrossRef]
  3. W. Ruppel and P. Wurfel, “Upper limit for the conversion of solar energy,” IEEE Trans. Electron. Dev. 27(4), 877–882 (1980).
    [CrossRef]
  4. W. Spirkl and H. Ries, “Solar thermophotovoltaics: An assessment,” J. Appl. Phys. 57(9), 4409–4414 (1985).
    [CrossRef]
  5. P. T. Landsberg and P. Baruch, “The thermodynamics of the conversion of radiation energy for photovoltaics,” J. Phys. Math. Gen. 22(11), 1911–1926 (1989).
    [CrossRef]
  6. T. K. Chaudhuri, “A solar thermophotovoltaic converter using Pbs photovoltaic cells,” Int. J. Energy Res. 16(6), 481–487 (1992).
    [CrossRef]
  7. V. Badescu, “Thermodynamic theory of thermophotovoltaic solar energy conversion,” J. Appl. Phys. 90(12), 6476–6486 (2001).
    [CrossRef]
  8. V. Badescu, “Upper bounds for solar thermophotovoltaic efficiency,” Renew. Energy 30(2), 211–225 (2005).
    [CrossRef]
  9. N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
    [CrossRef]
  10. I. Tobias and A. Luque, “Ideal efficiency and potential of solar thermophotonic converters under optically and thermally concentrated power flux,” IEEE Trans. Electron. Dev. 49(11), 2024–2030 (2002).
    [CrossRef]
  11. M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
    [CrossRef]
  12. A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV Systems with Solar Powered Tungsten Emitters,” AIP Conf. Proc. 890, 327–334 (2007).
  13. V. M. Andreev, V. P. Khvostikov, O. A. Khvostikova, A. S. Vlasov, P. Y. Gazaryan, N. A. Sadchikov, and V. D. Rumyantsev, Solar thermophotovoltaic system with high temperature tungsten emitter,” in Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE (2005), pp. 671–674.
  14. K. W. Stone, N. S. Fatemi, and L. M. Garverick, “Operation and component testing of a solar thermophotovoltaic power system,” in Photovoltaic Specialists Conference, 1996, Conference Record of the Twenty Fifth IEEE (1996), pp. 1421–1424.
  15. H. Yugami, H. Sai, K. Nakamura, N. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3Er3Al5O12 eutectic composite selective emitter,” in Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE (2000), pp. 1214–1217.
  16. D. L. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
    [CrossRef]
  17. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
    [CrossRef]
  18. Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
    [CrossRef]
  19. A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
  20. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
    [CrossRef]
  21. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399 (2004).
    [CrossRef]
  22. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380 (2003).
    [CrossRef]
  23. A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
    [CrossRef]
  24. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
    [CrossRef]
  25. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
    [CrossRef]
  26. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
    [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids, (Academic, New York, 1985).

2008

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[CrossRef]

2007

Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[CrossRef]

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV Systems with Solar Powered Tungsten Emitters,” AIP Conf. Proc. 890, 327–334 (2007).

2006

2005

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[CrossRef]

V. Badescu, “Upper bounds for solar thermophotovoltaic efficiency,” Renew. Energy 30(2), 211–225 (2005).
[CrossRef]

2004

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399 (2004).
[CrossRef]

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[CrossRef]

2003

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380 (2003).
[CrossRef]

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[CrossRef]

2002

I. Tobias and A. Luque, “Ideal efficiency and potential of solar thermophotonic converters under optically and thermally concentrated power flux,” IEEE Trans. Electron. Dev. 49(11), 2024–2030 (2002).
[CrossRef]

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

2001

V. Badescu, “Thermodynamic theory of thermophotovoltaic solar energy conversion,” J. Appl. Phys. 90(12), 6476–6486 (2001).
[CrossRef]

2000

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).

1998

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef]

1992

T. K. Chaudhuri, “A solar thermophotovoltaic converter using Pbs photovoltaic cells,” Int. J. Energy Res. 16(6), 481–487 (1992).
[CrossRef]

1989

P. T. Landsberg and P. Baruch, “The thermodynamics of the conversion of radiation energy for photovoltaics,” J. Phys. Math. Gen. 22(11), 1911–1926 (1989).
[CrossRef]

1985

W. Spirkl and H. Ries, “Solar thermophotovoltaics: An assessment,” J. Appl. Phys. 57(9), 4409–4414 (1985).
[CrossRef]

1980

W. Ruppel and P. Wurfel, “Upper limit for the conversion of solar energy,” IEEE Trans. Electron. Dev. 27(4), 877–882 (1980).
[CrossRef]

1979

R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979).
[CrossRef]

1961

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Andreev, V. M.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV Systems with Solar Powered Tungsten Emitters,” AIP Conf. Proc. 890, 327–334 (2007).

Badescu, V.

V. Badescu, “Upper bounds for solar thermophotovoltaic efficiency,” Renew. Energy 30(2), 211–225 (2005).
[CrossRef]

V. Badescu, “Thermodynamic theory of thermophotovoltaic solar energy conversion,” J. Appl. Phys. 90(12), 6476–6486 (2001).
[CrossRef]

Baruch, P.

P. T. Landsberg and P. Baruch, “The thermodynamics of the conversion of radiation energy for photovoltaics,” J. Phys. Math. Gen. 22(11), 1911–1926 (1989).
[CrossRef]

Blasi, B.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).

Boerner, V.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).

Celanovic, I.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[CrossRef]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[CrossRef]

Chan, D. L.

Chaudhuri, T. K.

T. K. Chaudhuri, “A solar thermophotovoltaic converter using Pbs photovoltaic cells,” Int. J. Energy Res. 16(6), 481–487 (1992).
[CrossRef]

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef]

Chen, G.

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[CrossRef]

Chen, Y. B.

Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[CrossRef]

Dowling, J. P.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Fan, S.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef]

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380 (2003).
[CrossRef]

Florescu, L.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Florescu, M.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Gazaryan, P. Y.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV Systems with Solar Powered Tungsten Emitters,” AIP Conf. Proc. 890, 327–334 (2007).

Gippius, N. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

Gombert, A.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).

Harder, N. P.

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[CrossRef]

Heinzel, A.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).

Ishihara, T.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

Joannopoulos, J. D.

D. L. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef]

Jovanovic, N.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[CrossRef]

Kassakian, J.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[CrossRef]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[CrossRef]

Khvostikov, V. P.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV Systems with Solar Powered Tungsten Emitters,” AIP Conf. Proc. 890, 327–334 (2007).

Khvostikova, O. A.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV Systems with Solar Powered Tungsten Emitters,” AIP Conf. Proc. 890, 327–334 (2007).

Landsberg, P. T.

P. T. Landsberg and P. Baruch, “The thermodynamics of the conversion of radiation energy for photovoltaics,” J. Phys. Math. Gen. 22(11), 1911–1926 (1989).
[CrossRef]

Lee, H.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380 (2003).
[CrossRef]

Luque, A.

I. Tobias and A. Luque, “Ideal efficiency and potential of solar thermophotonic converters under optically and thermally concentrated power flux,” IEEE Trans. Electron. Dev. 49(11), 2024–2030 (2002).
[CrossRef]

Luther, J.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef]

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380 (2003).
[CrossRef]

Muljarov, E. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

Narayanaswamy, A.

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[CrossRef]

Perreault, D.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[CrossRef]

Pralle, M.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Puscasu, I.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Rephaeli, E.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

Ries, H.

W. Spirkl and H. Ries, “Solar thermophotovoltaics: An assessment,” J. Appl. Phys. 57(9), 4409–4414 (1985).
[CrossRef]

Ruppel, W.

W. Ruppel and P. Wurfel, “Upper limit for the conversion of solar energy,” IEEE Trans. Electron. Dev. 27(4), 877–882 (1980).
[CrossRef]

Sai, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399 (2004).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

Soljacic, M.

Sorokina, S. V.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV Systems with Solar Powered Tungsten Emitters,” AIP Conf. Proc. 890, 327–334 (2007).

Spirkl, W.

W. Spirkl and H. Ries, “Solar thermophotovoltaics: An assessment,” J. Appl. Phys. 57(9), 4409–4414 (1985).
[CrossRef]

Swanson, R. M.

R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979).
[CrossRef]

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef]

Tikhodeev, S. G.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

Ting, D. Z.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Tobias, I.

I. Tobias and A. Luque, “Ideal efficiency and potential of solar thermophotonic converters under optically and thermally concentrated power flux,” IEEE Trans. Electron. Dev. 49(11), 2024–2030 (2002).
[CrossRef]

Vlasov, A. S.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV Systems with Solar Powered Tungsten Emitters,” AIP Conf. Proc. 890, 327–334 (2007).

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef]

Wittwer, V.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).

Wurfel, P.

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[CrossRef]

W. Ruppel and P. Wurfel, “Upper limit for the conversion of solar energy,” IEEE Trans. Electron. Dev. 27(4), 877–882 (1980).
[CrossRef]

Yablonskii, A. L.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

Yugami, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399 (2004).
[CrossRef]

Zhang, Z. M.

Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[CrossRef]

AIP Conf. Proc.

A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and V. M. Andreev, “TPV Systems with Solar Powered Tungsten Emitters,” AIP Conf. Proc. 890, 327–334 (2007).

Appl. Phys. Lett.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[CrossRef]

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399 (2004).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380 (2003).
[CrossRef]

IEEE Trans. Electron. Dev.

I. Tobias and A. Luque, “Ideal efficiency and potential of solar thermophotonic converters under optically and thermally concentrated power flux,” IEEE Trans. Electron. Dev. 49(11), 2024–2030 (2002).
[CrossRef]

W. Ruppel and P. Wurfel, “Upper limit for the conversion of solar energy,” IEEE Trans. Electron. Dev. 27(4), 877–882 (1980).
[CrossRef]

Int. J. Energy Res.

T. K. Chaudhuri, “A solar thermophotovoltaic converter using Pbs photovoltaic cells,” Int. J. Energy Res. 16(6), 481–487 (1992).
[CrossRef]

J. Appl. Phys.

V. Badescu, “Thermodynamic theory of thermophotovoltaic solar energy conversion,” J. Appl. Phys. 90(12), 6476–6486 (2001).
[CrossRef]

W. Spirkl and H. Ries, “Solar thermophotovoltaics: An assessment,” J. Appl. Phys. 57(9), 4409–4414 (1985).
[CrossRef]

W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[CrossRef]

J. Mod. Opt.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).

J. Phys. Math. Gen.

P. T. Landsberg and P. Baruch, “The thermodynamics of the conversion of radiation energy for photovoltaics,” J. Phys. Math. Gen. 22(11), 1911–1926 (1989).
[CrossRef]

Opt. Commun.

Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[CrossRef]

Opt. Express

Phys. Rev. B

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004).
[CrossRef]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005).
[CrossRef]

Proc. IEEE

R. M. Swanson, “A proposed thermophotovoltaic solar energy conversion system,” Proc. IEEE 67(3), 446–447 (1979).
[CrossRef]

Renew. Energy

V. Badescu, “Upper bounds for solar thermophotovoltaic efficiency,” Renew. Energy 30(2), 211–225 (2005).
[CrossRef]

Science

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[CrossRef]

Semicond. Sci. Technol.

N. P. Harder and P. Wurfel, “Theoretical limits of thermophotovoltaic solar energy conversion,” Semicond. Sci. Technol. 18(5), S151–S157 (2003).
[CrossRef]

Sol. Energy Mater. Sol. Cells

M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Other

V. M. Andreev, V. P. Khvostikov, O. A. Khvostikova, A. S. Vlasov, P. Y. Gazaryan, N. A. Sadchikov, and V. D. Rumyantsev, Solar thermophotovoltaic system with high temperature tungsten emitter,” in Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE (2005), pp. 671–674.

K. W. Stone, N. S. Fatemi, and L. M. Garverick, “Operation and component testing of a solar thermophotovoltaic power system,” in Photovoltaic Specialists Conference, 1996, Conference Record of the Twenty Fifth IEEE (1996), pp. 1421–1424.

H. Yugami, H. Sai, K. Nakamura, N. Nakagawa, and H. Ohtsubo, “Solar thermophotovoltaic using Al2O3Er3Al5O12 eutectic composite selective emitter,” in Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE (2000), pp. 1214–1217.

E. D. Palik, Handbook of Optical Constants of Solids, (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics