Abstract

We report on an high power ultra-short pulse regenerative Yb:KLuW amplifier based on the thin disk concept. A maximum pulse energy of 571 µJ was extracted at a repetition rate of 20 kHz. Compression of the output pulses resulted in a pulse duration of 197 fs assuming a deconvolution factor of 2.16. At a repetition rate of 125 kHz a maximum average power of 17.9 W was measured in front of the compressor.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65, 423–426 (1997).
    [CrossRef]
  2. U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
    [CrossRef] [PubMed]
  3. V. Petrov, M. Cinta Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. M. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
    [CrossRef]
  4. M. Larionov and A. Giesen, “50-kHz, 400-μJ, sub-100-fs pulses from a thin disk laser amplifier,” Proc. SPIE 7193, 1–8 (2009).
  5. P. Raybaut, F. Balembois, F. Druon, and P. Georges, “Numerical and Experimental Study of Gain Narrowing in Ytterbium-Based Regenerative Amplifiers,” IEEE J. Quantum Electron. 41(3), 415–425 (2005).
    [CrossRef]
  6. D. Strickland and G. Mourou, “Compression of Amplified Chirped Optical Pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [CrossRef]
  7. M. Grishin, V. Gulbinas, and A. Michailovas, “Dynamics of high repetition rate regenerative amplifiers,” Opt. Express 15(15), 9434–9443 (2007).
    [CrossRef] [PubMed]
  8. S. Kane and J. Squier, “Grism-pair stretcher–compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification,” Opt. Soc. Am. B 14(3), 661 (1997).
    [CrossRef]
  9. H. Sayinc, U. Buenting, P. Wessels, D. Wandt, U. Morgner, and D. Kracht, “Ultrafast Yb:KYW Thin Disk Regenerative Amplifier with Combined Gain Spectra and 200 µJ Pulse Energy,” Europhysics conference abstract 32G, ISBN: 2–914771–55-X, TUoB7 (2008).
  10. U. Buenting, H. Sayinc, D. Wandt, U. Morgner, and D. Kracht, “Regenerative thin disk amplifier with combined gain spectra producing 500 µJ sub 200 fs pulses,” Opt. Express 17(10), 8046–8050 (2009).
    [CrossRef] [PubMed]
  11. P. Staudt, APE Angewandte Physik und Elektronik GmbH, Plauener Str. 163–165,13053 Berlin, (personal communication, 2009)
  12. W. H. Lowdermilk and J. E. Murray, “The multipass amplifier: Theory and numerical analysis,” J. Appl. Phys. 51(5), 2436 (1980).
    [CrossRef]

2009 (2)

2007 (2)

M. Grishin, V. Gulbinas, and A. Michailovas, “Dynamics of high repetition rate regenerative amplifiers,” Opt. Express 15(15), 9434–9443 (2007).
[CrossRef] [PubMed]

V. Petrov, M. Cinta Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. M. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[CrossRef]

2005 (2)

P. Raybaut, F. Balembois, F. Druon, and P. Georges, “Numerical and Experimental Study of Gain Narrowing in Ytterbium-Based Regenerative Amplifiers,” IEEE J. Quantum Electron. 41(3), 415–425 (2005).
[CrossRef]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
[CrossRef] [PubMed]

1997 (2)

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65, 423–426 (1997).
[CrossRef]

S. Kane and J. Squier, “Grism-pair stretcher–compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification,” Opt. Soc. Am. B 14(3), 661 (1997).
[CrossRef]

1985 (1)

D. Strickland and G. Mourou, “Compression of Amplified Chirped Optical Pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

1980 (1)

W. H. Lowdermilk and J. E. Murray, “The multipass amplifier: Theory and numerical analysis,” J. Appl. Phys. 51(5), 2436 (1980).
[CrossRef]

Aguilo, M.

V. Petrov, M. Cinta Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. M. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[CrossRef]

Aguiló, M.

Balembois, F.

P. Raybaut, F. Balembois, F. Druon, and P. Georges, “Numerical and Experimental Study of Gain Narrowing in Ytterbium-Based Regenerative Amplifiers,” IEEE J. Quantum Electron. 41(3), 415–425 (2005).
[CrossRef]

Buenting, U.

Cinta Pujol, M.

V. Petrov, M. Cinta Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. M. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[CrossRef]

Diaz, F.

V. Petrov, M. Cinta Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. M. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[CrossRef]

Díaz, F.

Druon, F.

P. Raybaut, F. Balembois, F. Druon, and P. Georges, “Numerical and Experimental Study of Gain Narrowing in Ytterbium-Based Regenerative Amplifiers,” IEEE J. Quantum Electron. 41(3), 415–425 (2005).
[CrossRef]

Erbert, G.

Georges, P.

P. Raybaut, F. Balembois, F. Druon, and P. Georges, “Numerical and Experimental Study of Gain Narrowing in Ytterbium-Based Regenerative Amplifiers,” IEEE J. Quantum Electron. 41(3), 415–425 (2005).
[CrossRef]

Giesen, A.

M. Larionov and A. Giesen, “50-kHz, 400-μJ, sub-100-fs pulses from a thin disk laser amplifier,” Proc. SPIE 7193, 1–8 (2009).

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65, 423–426 (1997).
[CrossRef]

Griebner, U.

V. Petrov, M. Cinta Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. M. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[CrossRef]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
[CrossRef] [PubMed]

Grishin, M.

Gulbinas, V.

Hönninger, C.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65, 423–426 (1997).
[CrossRef]

Johannsen, I.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65, 423–426 (1997).
[CrossRef]

Kane, S.

S. Kane and J. Squier, “Grism-pair stretcher–compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification,” Opt. Soc. Am. B 14(3), 661 (1997).
[CrossRef]

Keller, U.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65, 423–426 (1997).
[CrossRef]

Kracht, D.

Larionov, M.

M. Larionov and A. Giesen, “50-kHz, 400-μJ, sub-100-fs pulses from a thin disk laser amplifier,” Proc. SPIE 7193, 1–8 (2009).

Liu, J.

V. Petrov, M. Cinta Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. M. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[CrossRef]

Lowdermilk, W. H.

W. H. Lowdermilk and J. E. Murray, “The multipass amplifier: Theory and numerical analysis,” J. Appl. Phys. 51(5), 2436 (1980).
[CrossRef]

Massons, J.

Mateos, X.

V. Petrov, M. Cinta Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. M. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[CrossRef]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
[CrossRef] [PubMed]

Michailovas, A.

Morgner, U.

Moser, M.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65, 423–426 (1997).
[CrossRef]

Mourou, G.

D. Strickland and G. Mourou, “Compression of Amplified Chirped Optical Pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Murray, J. E.

W. H. Lowdermilk and J. E. Murray, “The multipass amplifier: Theory and numerical analysis,” J. Appl. Phys. 51(5), 2436 (1980).
[CrossRef]

Petrov, V.

V. Petrov, M. Cinta Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. M. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[CrossRef]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
[CrossRef] [PubMed]

Raybaut, P.

P. Raybaut, F. Balembois, F. Druon, and P. Georges, “Numerical and Experimental Study of Gain Narrowing in Ytterbium-Based Regenerative Amplifiers,” IEEE J. Quantum Electron. 41(3), 415–425 (2005).
[CrossRef]

Rivier, S.

V. Petrov, M. Cinta Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. M. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[CrossRef]

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
[CrossRef] [PubMed]

Sayinc, H.

Silvestre, O.

V. Petrov, M. Cinta Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. M. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[CrossRef]

Sole, R. M.

V. Petrov, M. Cinta Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. M. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[CrossRef]

Squier, J.

S. Kane and J. Squier, “Grism-pair stretcher–compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification,” Opt. Soc. Am. B 14(3), 661 (1997).
[CrossRef]

Strickland, D.

D. Strickland and G. Mourou, “Compression of Amplified Chirped Optical Pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Wandt, D.

Weyers, M.

Zhang, G.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65, 423–426 (1997).
[CrossRef]

Zorn, M.

Appl. Phys. B (1)

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65, 423–426 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Raybaut, F. Balembois, F. Druon, and P. Georges, “Numerical and Experimental Study of Gain Narrowing in Ytterbium-Based Regenerative Amplifiers,” IEEE J. Quantum Electron. 41(3), 415–425 (2005).
[CrossRef]

J. Appl. Phys. (1)

W. H. Lowdermilk and J. E. Murray, “The multipass amplifier: Theory and numerical analysis,” J. Appl. Phys. 51(5), 2436 (1980).
[CrossRef]

Laser Photonics Rev. (1)

V. Petrov, M. Cinta Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. M. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[CrossRef]

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of Amplified Chirped Optical Pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Opt. Express (3)

Opt. Soc. Am. B (1)

S. Kane and J. Squier, “Grism-pair stretcher–compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification,” Opt. Soc. Am. B 14(3), 661 (1997).
[CrossRef]

Proc. SPIE (1)

M. Larionov and A. Giesen, “50-kHz, 400-μJ, sub-100-fs pulses from a thin disk laser amplifier,” Proc. SPIE 7193, 1–8 (2009).

Other (2)

H. Sayinc, U. Buenting, P. Wessels, D. Wandt, U. Morgner, and D. Kracht, “Ultrafast Yb:KYW Thin Disk Regenerative Amplifier with Combined Gain Spectra and 200 µJ Pulse Energy,” Europhysics conference abstract 32G, ISBN: 2–914771–55-X, TUoB7 (2008).

P. Staudt, APE Angewandte Physik und Elektronik GmbH, Plauener Str. 163–165,13053 Berlin, (personal communication, 2009)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of thin disk based regenerative chirped pulse amplifier.

Fig. 2
Fig. 2

(a) Energy of compressed pulses vs. seed pulse energy at 25 roundtrips and 70 W pump power. (b) Energy (left axis) and pulse duration (right axis) of compressed pulses vs. roundtrip number at 75 W pump power.

Fig. 3
Fig. 3

(a) Measured power spectrum of 400 µJ pulses after compression. (b) Measured intensity autocorrelation of dechirped 400 µJ pulses (solid) and Fourier-limited autocorrelation function assuming a zero phase (dashed).

Fig. 4
Fig. 4

(a) Autocorrelation trace of compressed 400 µJ pulses showing satellite pulses at ± 16 ps and ± 9 ps. (b) Pulse duration versus repetition rate at a fixed energy of 100 µJ behind the compressor.

Metrics