Abstract

The linear and nonlinear optical properties of a composite containing interacting spherical silver nanoparticles embedded in a dielectric host are studied as a function of interparticle separation using three dimensional frequency domain simulations. It is shown that for a fixed amount of metal, the effective third-order nonlinear susceptibility of the composite χ (3)(ω) can be significantly enhanced with respect to the linear optical properties, due to a combination of resonant surface plasmon excitation and local field redistribution. It is shown that this geometry-dependent susceptibility enhancement can lead to an improved figure of merit for nonlinear absorption. Enhancement factors for the nonlinear susceptibility of the composite are calculated, and the complex nature of the enhancement factors is discussed.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
    [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  3. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
    [CrossRef] [PubMed]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  6. K. Tsuchiya, S. Nagayasu, S. Okamoto, T. Hayakawa, T. Hihara, K. Yamamoto, I. Takumi, S. Hara, H. Hasegawa, S. Akasaka, and N. Kosikawa, “Nonlinear optical properties of gold nanoparticles selectively introduced into the periodic microdomains of block copolymers,” Opt. Express 16(8), 5362–5371 (2008).
    [CrossRef] [PubMed]
  7. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
    [CrossRef] [PubMed]
  8. M. I. Stockman, K. B. Kurlayev, and T. F. George, “Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory,” Phys. Rev. B 60(24), 17071–17083 (1999).
    [CrossRef]
  9. D. Stroud and P. M. Hui, “Nonlinear susceptibilities of granular matter,” Phys. Rev. B 37(15), 8719–8724 (1988).
    [CrossRef]
  10. H. Ditlbacher, N. Felidj, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Electromagnetic interaction of fluorophores with designed two-dimensional silver nanoparticle arrays,” Appl. Phys. B 73(4), 373–377 (2001).
    [CrossRef]
  11. A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, “Enhanced two-photon fluorescence of molecules adsorbed on silver particle films,” Phys. Rev. B 24(8), 4906–4909 (1981).
    [CrossRef]
  12. W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five Orders-of-Magnitude Enhancement of Two-Photon Absorption for Dyes on Silver Nanoparticle Fractal Clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
    [CrossRef]
  13. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
    [CrossRef]
  14. R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photonics Nanostruct. Fundam. Appl. 3(2-3), 116–119 (2005).
    [CrossRef]
  15. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73(10), 1368–1371 (1994).
    [CrossRef] [PubMed]
  16. D. C. Kohlgraf-Owens and P. G. Kik, “Numerical study of surface plasmon enhanced nonlinear absorption and refraction,” Opt. Express 16(14), 10823–10834 (2008).
    [CrossRef] [PubMed]
  17. G. Piredda, D. D. Smith, B. Wendling, and R. W. Boyd, “Nonlinear optical properties of a gold-silica composite with high gold fill fraction and the sign change of its nonlinear absorption coefficient,” J. Opt. Soc. Am. B 25(6), 945–950 (2008).
    [CrossRef]
  18. H. B. Liao, W. Wen, and G. K. L. Wong, “Preparation and characterization of Au/SiO2 multilayer composite films with nonspherical Au particles,” Appl. Phys., A Mater. Sci. Process. 80(4), 861–864 (2005).
    [CrossRef]
  19. N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002).
    [CrossRef]
  20. O. Maruyama, Y. Senda, and S. Omi, “Non-linear optical properties of titanium dioxide films containing dispersed gold particles,” J. Non-Cryst. Solids 259(1-3), 100–106 (1999).
    [CrossRef]
  21. G. Ma, W. Sun, S.-H. Tang, H. Zhang, Z. Shen, and S. Qian, “Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices,” Opt. Lett. 27(12), 1043–1045 (2002).
    [CrossRef]
  22. J. Jayabalan, A. Singh, R. Chari, and S. M. Oak, “Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs,” Nanotechnology 18(31), 315704 (2007).
    [CrossRef]
  23. O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers,” Phys. Rev. B 56(13), 8035–8046 (1997).
    [CrossRef]
  24. J. C. M. Garnett, ““Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. London Ser. A 203(1), 385–420 (1904).
    [CrossRef]
  25. H. R. Ma, R. F. Xiao, and P. Sheng, “Third-order optical nonlinearity enhancement through composite microstructures,” J. Opt. Soc. Am. B 15(3), 1022–1029 (1998).
    [CrossRef]
  26. R. del Coso and J. Solis, “Relation between nonlinear refractive index and third-order susceptibility in absorbing media,” J. Opt. Soc. Am. B 21(3), 640–644 (2004).
    [CrossRef]
  27. P. B. Johnson and R. W. Christy, “Optical-Constants Of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  28. Microwave Studio, Computer Simulation Technology, Darmstadt, Germany.
  29. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
    [CrossRef]
  30. D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14(7), 1625–1631 (1997).
    [CrossRef]

2008

2007

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

J. Jayabalan, A. Singh, R. Chari, and S. M. Oak, “Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs,” Nanotechnology 18(31), 315704 (2007).
[CrossRef]

2006

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2005

H. B. Liao, W. Wen, and G. K. L. Wong, “Preparation and characterization of Au/SiO2 multilayer composite films with nonspherical Au particles,” Appl. Phys., A Mater. Sci. Process. 80(4), 861–864 (2005).
[CrossRef]

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photonics Nanostruct. Fundam. Appl. 3(2-3), 116–119 (2005).
[CrossRef]

2004

2002

G. Ma, W. Sun, S.-H. Tang, H. Zhang, Z. Shen, and S. Qian, “Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices,” Opt. Lett. 27(12), 1043–1045 (2002).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five Orders-of-Magnitude Enhancement of Two-Photon Absorption for Dyes on Silver Nanoparticle Fractal Clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002).
[CrossRef]

2001

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

H. Ditlbacher, N. Felidj, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Electromagnetic interaction of fluorophores with designed two-dimensional silver nanoparticle arrays,” Appl. Phys. B 73(4), 373–377 (2001).
[CrossRef]

1999

M. I. Stockman, K. B. Kurlayev, and T. F. George, “Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory,” Phys. Rev. B 60(24), 17071–17083 (1999).
[CrossRef]

O. Maruyama, Y. Senda, and S. Omi, “Non-linear optical properties of titanium dioxide films containing dispersed gold particles,” J. Non-Cryst. Solids 259(1-3), 100–106 (1999).
[CrossRef]

1998

1997

1994

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73(10), 1368–1371 (1994).
[CrossRef] [PubMed]

1992

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

1988

D. Stroud and P. M. Hui, “Nonlinear susceptibilities of granular matter,” Phys. Rev. B 37(15), 8719–8724 (1988).
[CrossRef]

1981

A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, “Enhanced two-photon fluorescence of molecules adsorbed on silver particle films,” Phys. Rev. B 24(8), 4906–4909 (1981).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical-Constants Of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1904

J. C. M. Garnett, ““Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. London Ser. A 203(1), 385–420 (1904).
[CrossRef]

Akasaka, S.

Atwater, H. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

Aussenegg, F. R.

H. Ditlbacher, N. Felidj, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Electromagnetic interaction of fluorophores with designed two-dimensional silver nanoparticle arrays,” Appl. Phys. B 73(4), 373–377 (2001).
[CrossRef]

Bauer, C. A.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five Orders-of-Magnitude Enhancement of Two-Photon Absorption for Dyes on Silver Nanoparticle Fractal Clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Bergman, J. G.

A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, “Enhanced two-photon fluorescence of molecules adsorbed on silver particle films,” Phys. Rev. B 24(8), 4906–4909 (1981).
[CrossRef]

Bloemer, M. J.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73(10), 1368–1371 (1994).
[CrossRef] [PubMed]

Bowden, C. M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73(10), 1368–1371 (1994).
[CrossRef] [PubMed]

Boyd, R. W.

Chari, R.

J. Jayabalan, A. Singh, R. Chari, and S. M. Oak, “Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs,” Nanotechnology 18(31), 315704 (2007).
[CrossRef]

Charron, E.

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical-Constants Of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Debrus, S.

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002).
[CrossRef]

del Coso, R.

Ding, C.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Dionne, J. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Ditlbacher, H.

H. Ditlbacher, N. Felidj, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Electromagnetic interaction of fluorophores with designed two-dimensional silver nanoparticle arrays,” Appl. Phys. B 73(4), 373–377 (2001).
[CrossRef]

Dowling, J. P.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73(10), 1368–1371 (1994).
[CrossRef] [PubMed]

Felidj, N.

H. Ditlbacher, N. Felidj, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Electromagnetic interaction of fluorophores with designed two-dimensional silver nanoparticle arrays,” Appl. Phys. B 73(4), 373–377 (2001).
[CrossRef]

Fischer, G.

Garnett, J. C. M.

J. C. M. Garnett, ““Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. London Ser. A 203(1), 385–420 (1904).
[CrossRef]

George, T. F.

M. I. Stockman, K. B. Kurlayev, and T. F. George, “Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory,” Phys. Rev. B 60(24), 17071–17083 (1999).
[CrossRef]

Glass, A. M.

A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, “Enhanced two-photon fluorescence of molecules adsorbed on silver particle films,” Phys. Rev. B 24(8), 4906–4909 (1981).
[CrossRef]

Gong, Q.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Gregory, D. A.

Hara, S.

Hasegawa, H.

Hayakawa, T.

Heritage, J. P.

A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, “Enhanced two-photon fluorescence of molecules adsorbed on silver particle films,” Phys. Rev. B 24(8), 4906–4909 (1981).
[CrossRef]

Hihara, T.

Hu, X.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Hui, P. M.

D. Stroud and P. M. Hui, “Nonlinear susceptibilities of granular matter,” Phys. Rev. B 37(15), 8719–8724 (1988).
[CrossRef]

Itoh, M.

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photonics Nanostruct. Fundam. Appl. 3(2-3), 116–119 (2005).
[CrossRef]

Jayabalan, J.

J. Jayabalan, A. Singh, R. Chari, and S. M. Oak, “Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs,” Nanotechnology 18(31), 315704 (2007).
[CrossRef]

Jiang, P.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical-Constants Of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Katouf, R.

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photonics Nanostruct. Fundam. Appl. 3(2-3), 116–119 (2005).
[CrossRef]

Kik, P. G.

D. C. Kohlgraf-Owens and P. G. Kik, “Numerical study of surface plasmon enhanced nonlinear absorption and refraction,” Opt. Express 16(14), 10823–10834 (2008).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

Kohlgraf-Owens, D. C.

Komikado, T.

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photonics Nanostruct. Fundam. Appl. 3(2-3), 116–119 (2005).
[CrossRef]

Kosikawa, N.

Krenn, J. R.

H. Ditlbacher, N. Felidj, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Electromagnetic interaction of fluorophores with designed two-dimensional silver nanoparticle arrays,” Appl. Phys. B 73(4), 373–377 (2001).
[CrossRef]

Kurlayev, K. B.

M. I. Stockman, K. B. Kurlayev, and T. F. George, “Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory,” Phys. Rev. B 60(24), 17071–17083 (1999).
[CrossRef]

Lamprecht, B.

H. Ditlbacher, N. Felidj, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Electromagnetic interaction of fluorophores with designed two-dimensional silver nanoparticle arrays,” Appl. Phys. B 73(4), 373–377 (2001).
[CrossRef]

Leitner, A.

H. Ditlbacher, N. Felidj, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Electromagnetic interaction of fluorophores with designed two-dimensional silver nanoparticle arrays,” Appl. Phys. B 73(4), 373–377 (2001).
[CrossRef]

Levy, O.

O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers,” Phys. Rev. B 56(13), 8035–8046 (1997).
[CrossRef]

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Liao, H. B.

H. B. Liao, W. Wen, and G. K. L. Wong, “Preparation and characterization of Au/SiO2 multilayer composite films with nonspherical Au particles,” Appl. Phys., A Mater. Sci. Process. 80(4), 861–864 (2005).
[CrossRef]

Liao, P. F.

A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, “Enhanced two-photon fluorescence of molecules adsorbed on silver particle films,” Phys. Rev. B 24(8), 4906–4909 (1981).
[CrossRef]

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

Ma, G.

Ma, H. R.

Maier, S. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

Mangel, T.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five Orders-of-Magnitude Enhancement of Two-Photon Absorption for Dyes on Silver Nanoparticle Fractal Clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Marder, S. R.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five Orders-of-Magnitude Enhancement of Two-Photon Absorption for Dyes on Silver Nanoparticle Fractal Clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Maruyama, O.

O. Maruyama, Y. Senda, and S. Omi, “Non-linear optical properties of titanium dioxide films containing dispersed gold particles,” J. Non-Cryst. Solids 259(1-3), 100–106 (1999).
[CrossRef]

Meyer-Friedrichsen, T.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five Orders-of-Magnitude Enhancement of Two-Photon Absorption for Dyes on Silver Nanoparticle Fractal Clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Nagayasu, S.

Oak, S. M.

J. Jayabalan, A. Singh, R. Chari, and S. M. Oak, “Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs,” Nanotechnology 18(31), 315704 (2007).
[CrossRef]

Okamoto, S.

Olson, D. H.

A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, “Enhanced two-photon fluorescence of molecules adsorbed on silver particle films,” Phys. Rev. B 24(8), 4906–4909 (1981).
[CrossRef]

Omi, S.

O. Maruyama, Y. Senda, and S. Omi, “Non-linear optical properties of titanium dioxide films containing dispersed gold particles,” J. Non-Cryst. Solids 259(1-3), 100–106 (1999).
[CrossRef]

Palpant, B.

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Perry, J. W.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five Orders-of-Magnitude Enhancement of Two-Photon Absorption for Dyes on Silver Nanoparticle Fractal Clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Pinçon, N.

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002).
[CrossRef]

Piredda, G.

Pond, S. J. K.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five Orders-of-Magnitude Enhancement of Two-Photon Absorption for Dyes on Silver Nanoparticle Fractal Clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Prot, D.

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002).
[CrossRef]

Qian, S.

Scalora, M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73(10), 1368–1371 (1994).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Senda, Y.

O. Maruyama, Y. Senda, and S. Omi, “Non-linear optical properties of titanium dioxide films containing dispersed gold particles,” J. Non-Cryst. Solids 259(1-3), 100–106 (1999).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Shen, Z.

Sheng, P.

Singh, A.

J. Jayabalan, A. Singh, R. Chari, and S. M. Oak, “Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs,” Nanotechnology 18(31), 315704 (2007).
[CrossRef]

Sipe, J. E.

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

Smith, D. D.

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Solis, J.

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stellacci, F.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five Orders-of-Magnitude Enhancement of Two-Photon Absorption for Dyes on Silver Nanoparticle Fractal Clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Stockman, M. I.

M. I. Stockman, K. B. Kurlayev, and T. F. George, “Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory,” Phys. Rev. B 60(24), 17071–17083 (1999).
[CrossRef]

Stroud, D.

O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers,” Phys. Rev. B 56(13), 8035–8046 (1997).
[CrossRef]

D. Stroud and P. M. Hui, “Nonlinear susceptibilities of granular matter,” Phys. Rev. B 37(15), 8719–8724 (1988).
[CrossRef]

Sun, W.

Takumi, I.

Tang, S.-H.

Tsuchiya, K.

Umegaki, S.

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photonics Nanostruct. Fundam. Appl. 3(2-3), 116–119 (2005).
[CrossRef]

Wegener, M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

Wen, W.

H. B. Liao, W. Wen, and G. K. L. Wong, “Preparation and characterization of Au/SiO2 multilayer composite films with nonspherical Au particles,” Appl. Phys., A Mater. Sci. Process. 80(4), 861–864 (2005).
[CrossRef]

Wendling, B.

Wenseleers, W.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five Orders-of-Magnitude Enhancement of Two-Photon Absorption for Dyes on Silver Nanoparticle Fractal Clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Wokaun, A.

A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, “Enhanced two-photon fluorescence of molecules adsorbed on silver particle films,” Phys. Rev. B 24(8), 4906–4909 (1981).
[CrossRef]

Wong, G. K. L.

H. B. Liao, W. Wen, and G. K. L. Wong, “Preparation and characterization of Au/SiO2 multilayer composite films with nonspherical Au particles,” Appl. Phys., A Mater. Sci. Process. 80(4), 861–864 (2005).
[CrossRef]

Xiao, R. F.

Yamamoto, K.

Yang, H.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Yatagai, T.

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photonics Nanostruct. Fundam. Appl. 3(2-3), 116–119 (2005).
[CrossRef]

Zhang, H.

Appl. Phys. B

H. Ditlbacher, N. Felidj, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Electromagnetic interaction of fluorophores with designed two-dimensional silver nanoparticle arrays,” Appl. Phys. B 73(4), 373–377 (2001).
[CrossRef]

Appl. Phys. Lett.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

H. B. Liao, W. Wen, and G. K. L. Wong, “Preparation and characterization of Au/SiO2 multilayer composite films with nonspherical Au particles,” Appl. Phys., A Mater. Sci. Process. 80(4), 861–864 (2005).
[CrossRef]

Eur. Phys. J. D

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002).
[CrossRef]

J. Non-Cryst. Solids

O. Maruyama, Y. Senda, and S. Omi, “Non-linear optical properties of titanium dioxide films containing dispersed gold particles,” J. Non-Cryst. Solids 259(1-3), 100–106 (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five Orders-of-Magnitude Enhancement of Two-Photon Absorption for Dyes on Silver Nanoparticle Fractal Clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[CrossRef]

Nanotechnology

J. Jayabalan, A. Singh, R. Chari, and S. M. Oak, “Ultrafast third-order nonlinearity of silver nanospheres and nanodiscs,” Nanotechnology 18(31), 315704 (2007).
[CrossRef]

Nat. Photonics

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Philos. Trans. R. Soc. London Ser. A

J. C. M. Garnett, ““Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. London Ser. A 203(1), 385–420 (1904).
[CrossRef]

Photonics Nanostruct. Fundam. Appl.

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photonics Nanostruct. Fundam. Appl. 3(2-3), 116–119 (2005).
[CrossRef]

Phys. Rev. A

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

Phys. Rev. B

M. I. Stockman, K. B. Kurlayev, and T. F. George, “Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory,” Phys. Rev. B 60(24), 17071–17083 (1999).
[CrossRef]

D. Stroud and P. M. Hui, “Nonlinear susceptibilities of granular matter,” Phys. Rev. B 37(15), 8719–8724 (1988).
[CrossRef]

A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, “Enhanced two-photon fluorescence of molecules adsorbed on silver particle films,” Phys. Rev. B 24(8), 4906–4909 (1981).
[CrossRef]

O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers,” Phys. Rev. B 56(13), 8035–8046 (1997).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical-Constants Of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73(10), 1368–1371 (1994).
[CrossRef] [PubMed]

Science

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Other

Microwave Studio, Computer Simulation Technology, Darmstadt, Germany.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Surface plot of the x-component of the electric field in the x-y plane for (a) the square unit cell (Lx = 24 nm) close to resonance (ω = 4.64 × 1015 rad/s) and (b) a rectangular unit cell (Lx = 12.5 nm) close to resonance (ω = 4.0 × 1015 rad/s). The corresponding contour graph is shown on the lower x-y plane for both cases. Contour lines are separated by 2.5 V/m.

Fig. 2
Fig. 2

Linear absorption of rectangular arrays of interacting spherical Ag particles. Symbols represent numerically computed values and are connected by a spline fit. The unit cells and the corresponding incident field polarization are shown schematically in the x-y plane.

Fig. 3
Fig. 3

Complex geometry-dependent nonlinear susceptibility enhancement factor gh (3) for different frequencies of the incident plane wave, showing (a) the phase angle of the complex enhancement factor, and (b) the magnitude of the enhancement on a logarithmic scale. The dashed curves show the corresponding analytically obtained results for non-interacting particles (MG limit). The inset shows the real (solid line) and imaginary (dotted line) enhancement factors on a linear scale for the case of non-interacting particles.

Fig. 4
Fig. 4

Complex geometry-dependent nonlinear susceptibility enhancement factor gin (3) for different frequencies of the incident plane wave, showing (a) the phase angle of the complex enhancement factor, and (b) the magnitude of the enhancement on a logarithmic scale. The dashed curves show the corresponding results for non-interacting particles (MG limit).

Fig. 5
Fig. 5

Contributions to the figure of merit of the composite as a function of geometry considering separately (a) a nonlinear host, and (b) a nonlinear inclusion.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

εc(ω)=ε(ω,r)E(ω,r)2VE(ω,r)V2.
χc(3)(ω)=χ(3)(ω,r)|E|2E2V|EV|2EV2
χ(3)=fingin(3)χin(3)+fhgh(3)χh(3)
gj(3)=E2|E|2VjEV2|EV|2.

Metrics