Abstract

Diffuse optical imaging is an emerging medical imaging modality based on near-infrared and visible red light. The method can be used for imaging activations in the human brain. In this study, a deformable probabilistic atlas of the distribution of tissue types within the term neonatal head was created based on MR images. The use of anatomical prior information provided by such atlas in reconstructing brain activations from optical imaging measurements was studied using Monte Carlo simulations. The results suggest that use of generic anatomical information can greatly improve the spatial accuracy and robustness of the reconstruction when noise is present in the data.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci. 20, 435-442 (1997)
    [CrossRef] [PubMed]
  2. J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004)
    [CrossRef] [PubMed]
  3. A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate," NeuroImage 30, 521-528 (2006)
    [CrossRef]
  4. S. Chandrasekhar, Radiative transfer (Dover, New York 1960)
  5. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, "A Monte Carlo model of light propagation in tissue," Dosimetry of Laser Radiation in Medicine and Biology (SPIE IS Vol 5) G. J. Müller and D. H. Sliney, eds. (SPIE, Bellingham WA, 1989) 102-111
  6. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A Finite Element Approach for Modeling Photon Transport in Tissue," Med. Phys. 20, 299-309 (1993)
    [CrossRef] [PubMed]
  7. D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, S275-S288 (2004)
    [CrossRef] [PubMed]
  8. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, "Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons," Appl. Opt. 43, 3037-3047 (2004)
    [CrossRef] [PubMed]
  9. S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas: "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001)
    [CrossRef] [PubMed]
  10. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, "Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography," Proc. Nat. Acad. Sci 104, 12169-74 (2007)
    [CrossRef] [PubMed]
  11. J. Heiskala, P. Hiltunen, and I. Nissilä, "Significance of background optical properties, time-resolved information, and optode arrangement in diffuse optical imaging of term neonates," Phys. Med. Biol. 54, 535-554 (2009)
    [CrossRef] [PubMed]
  12. B. W. Pogue and K. D. Paulsen, "High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information," Opt. Lett. 23, 1716-1718 (1998)
    [CrossRef]
  13. M. Schweiger and S. R. Arridge, "Optical tomographic reconstruction in a complex head model using a priori region boundary information," Phys. Med. Biol. 44, 2703-2721 (1999)
    [CrossRef] [PubMed]
  14. M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005)
    [CrossRef] [PubMed]
  15. J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster, "A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM)," NeuroImage 2, 89-101 (1995)
    [CrossRef] [PubMed]
  16. P. M. Thompson, D. MacDonald, M. S. Mega, C. J. Holmes, A. C. Evans, and A. W. Toga, "Detection and Mapping of Abnormal Brain Structure with a Probabilistic Atlas of Cortical Surfaces," J. Comput. Assist. Tomogr. 21, 567-581 (1997)
    [CrossRef] [PubMed]
  17. B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002)
    [CrossRef] [PubMed]
  18. M. Okamoto and I. Dan, "Automated cortical projection transcranial functional brain of head-surface locations for mapping," NeuroImage 26, 18-28 (2005)
    [CrossRef] [PubMed]
  19. A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, "Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI," NeuroImage 27, 842-851 (2005)
    [CrossRef] [PubMed]
  20. D. Tsuzuki, V. Jurcak, A. K. Singh, M. Okamoto, E. Watanabe, and I. Dan, "Virtual spatial registration of standalone MRS data to MNI space," NeuroImage 34, 1506-1518 (2007)
    [CrossRef] [PubMed]
  21. A. CustoPurely Optical Tomography: Atlas-Based Reconstruction of Brain Activation, PhD thesis, Massachusetts Institute of Technology (2008)
  22. H. Kawaguchi and E. Okada, "Normalized Adult Head Model for the Image Reconstruction Algorithm of NIR Topography," in Biomedical Optics OSA Technical Digest (CD) (Optical Society of America, 2008), paper BSuE38.
  23. J. Heiskala, K. Kotilahti, L. Lipi¨ainen, P. Hiltunen, P. E. Grant, and I. Nissilä, "Optical tomographic imaging of activation of the infant auditory cortex using perturbation Monte Carlo with anatomical a priori information," in Diffuse Optical Imaging in Tissue Proc. SPIE 6629, (Bellingham: SPIE) 66290T (2007)
  24. J. Koikkalainen and J. Lötjönen, "Reconstruction of 3-D head geometry from digitized point sets: an evaluation study," IEEE Trans. Inf. Technol. Biomed. 8, 377-386 (2004)
    [CrossRef] [PubMed]
  25. F. SchmidtDevelopment of a time-resolved optical tomography system for neonatal brain imaging, PhD thesis, University of London (1999)
  26. Y. Fukui, Y. Ajichi, and E. Okada, "Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models," Appl. Opt. 42, 2881-2887 (2003)
    [CrossRef] [PubMed]
  27. E. Okada and D. T. Delpy, "The effect of overlying tissue on NIR light propagation in neonatal brain," Proc. OSA TOPS, Adv. Opt. Imaging Photon Migration 2, 338-343 (1996)
  28. C. Hayakawa, J. Spanier, F. Bevilacqua, A. Dunn, J. You, B. Tromberg, and V. Venugopalan, "Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues," Opt. Lett. 26, 1335-1337 (2001)
    [CrossRef]
  29. P. Kumar and R. M. Vasu, "Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method," J. Biomed. Opt. 9, 1002-1012 (2004)
    [CrossRef] [PubMed]
  30. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, "Determining changes in NIR absorption using a layered model of the human head," Phys. Med. Biol. 46, 879-96 (2001)
    [CrossRef] [PubMed]
  31. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, "Time-resolved optical imager for assessment of cerebral oxygenation," J. Biomed. Opt. 12, 034019 (2007)
    [CrossRef]
  32. S. R. Arridge, "Photon-measurement density-functions I: Analytical forms," Appl. Opt. 34, 7395-7409 (1995)
    [CrossRef] [PubMed]
  33. A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," NeuroImage 27, 279-290 (2005)
    [CrossRef] [PubMed]

2009

J. Heiskala, P. Hiltunen, and I. Nissilä, "Significance of background optical properties, time-resolved information, and optode arrangement in diffuse optical imaging of term neonates," Phys. Med. Biol. 54, 535-554 (2009)
[CrossRef] [PubMed]

2007

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, "Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography," Proc. Nat. Acad. Sci 104, 12169-74 (2007)
[CrossRef] [PubMed]

D. Tsuzuki, V. Jurcak, A. K. Singh, M. Okamoto, E. Watanabe, and I. Dan, "Virtual spatial registration of standalone MRS data to MNI space," NeuroImage 34, 1506-1518 (2007)
[CrossRef] [PubMed]

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, "Time-resolved optical imager for assessment of cerebral oxygenation," J. Biomed. Opt. 12, 034019 (2007)
[CrossRef]

2006

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate," NeuroImage 30, 521-528 (2006)
[CrossRef]

2005

M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005)
[CrossRef] [PubMed]

M. Okamoto and I. Dan, "Automated cortical projection transcranial functional brain of head-surface locations for mapping," NeuroImage 26, 18-28 (2005)
[CrossRef] [PubMed]

A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, "Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI," NeuroImage 27, 842-851 (2005)
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," NeuroImage 27, 279-290 (2005)
[CrossRef] [PubMed]

2004

P. Kumar and R. M. Vasu, "Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method," J. Biomed. Opt. 9, 1002-1012 (2004)
[CrossRef] [PubMed]

J. Koikkalainen and J. Lötjönen, "Reconstruction of 3-D head geometry from digitized point sets: an evaluation study," IEEE Trans. Inf. Technol. Biomed. 8, 377-386 (2004)
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004)
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, S275-S288 (2004)
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, "Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons," Appl. Opt. 43, 3037-3047 (2004)
[CrossRef] [PubMed]

2003

2002

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002)
[CrossRef] [PubMed]

2001

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas: "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001)
[CrossRef] [PubMed]

C. Hayakawa, J. Spanier, F. Bevilacqua, A. Dunn, J. You, B. Tromberg, and V. Venugopalan, "Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues," Opt. Lett. 26, 1335-1337 (2001)
[CrossRef]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, "Determining changes in NIR absorption using a layered model of the human head," Phys. Med. Biol. 46, 879-96 (2001)
[CrossRef] [PubMed]

1999

M. Schweiger and S. R. Arridge, "Optical tomographic reconstruction in a complex head model using a priori region boundary information," Phys. Med. Biol. 44, 2703-2721 (1999)
[CrossRef] [PubMed]

1998

1997

A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci. 20, 435-442 (1997)
[CrossRef] [PubMed]

P. M. Thompson, D. MacDonald, M. S. Mega, C. J. Holmes, A. C. Evans, and A. W. Toga, "Detection and Mapping of Abnormal Brain Structure with a Probabilistic Atlas of Cortical Surfaces," J. Comput. Assist. Tomogr. 21, 567-581 (1997)
[CrossRef] [PubMed]

1995

J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster, "A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM)," NeuroImage 2, 89-101 (1995)
[CrossRef] [PubMed]

S. R. Arridge, "Photon-measurement density-functions I: Analytical forms," Appl. Opt. 34, 7395-7409 (1995)
[CrossRef] [PubMed]

1993

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A Finite Element Approach for Modeling Photon Transport in Tissue," Med. Phys. 20, 299-309 (1993)
[CrossRef] [PubMed]

Ajichi, Y.

Albert, M.

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002)
[CrossRef] [PubMed]

Arridge, S. R.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate," NeuroImage 30, 521-528 (2006)
[CrossRef]

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004)
[CrossRef] [PubMed]

M. Schweiger and S. R. Arridge, "Optical tomographic reconstruction in a complex head model using a priori region boundary information," Phys. Med. Biol. 44, 2703-2721 (1999)
[CrossRef] [PubMed]

S. R. Arridge, "Photon-measurement density-functions I: Analytical forms," Appl. Opt. 34, 7395-7409 (1995)
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A Finite Element Approach for Modeling Photon Transport in Tissue," Med. Phys. 20, 299-309 (1993)
[CrossRef] [PubMed]

Austin, T.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate," NeuroImage 30, 521-528 (2006)
[CrossRef]

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004)
[CrossRef] [PubMed]

Benaron, D. A.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas: "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001)
[CrossRef] [PubMed]

Bevilacqua, F.

Boas, D. A.

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," NeuroImage 27, 279-290 (2005)
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, S275-S288 (2004)
[CrossRef] [PubMed]

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas: "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001)
[CrossRef] [PubMed]

Busa, E.

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002)
[CrossRef] [PubMed]

Chance, B.

M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005)
[CrossRef] [PubMed]

A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci. 20, 435-442 (1997)
[CrossRef] [PubMed]

Culver, J. P.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, "Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography," Proc. Nat. Acad. Sci 104, 12169-74 (2007)
[CrossRef] [PubMed]

Dale, A. M.

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," NeuroImage 27, 279-290 (2005)
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, S275-S288 (2004)
[CrossRef] [PubMed]

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002)
[CrossRef] [PubMed]

Dan, H.

A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, "Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI," NeuroImage 27, 842-851 (2005)
[CrossRef] [PubMed]

Dan, I.

D. Tsuzuki, V. Jurcak, A. K. Singh, M. Okamoto, E. Watanabe, and I. Dan, "Virtual spatial registration of standalone MRS data to MNI space," NeuroImage 34, 1506-1518 (2007)
[CrossRef] [PubMed]

A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, "Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI," NeuroImage 27, 842-851 (2005)
[CrossRef] [PubMed]

M. Okamoto and I. Dan, "Automated cortical projection transcranial functional brain of head-surface locations for mapping," NeuroImage 26, 18-28 (2005)
[CrossRef] [PubMed]

Dehghani, H.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, "Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography," Proc. Nat. Acad. Sci 104, 12169-74 (2007)
[CrossRef] [PubMed]

Delpy, D. T.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate," NeuroImage 30, 521-528 (2006)
[CrossRef]

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004)
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A Finite Element Approach for Modeling Photon Transport in Tissue," Med. Phys. 20, 299-309 (1993)
[CrossRef] [PubMed]

Devor, A.

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," NeuroImage 27, 279-290 (2005)
[CrossRef] [PubMed]

Dieterich, M.

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002)
[CrossRef] [PubMed]

Dunn, A.

Dunn, A. K.

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," NeuroImage 27, 279-290 (2005)
[CrossRef] [PubMed]

Evans, A.

J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster, "A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM)," NeuroImage 2, 89-101 (1995)
[CrossRef] [PubMed]

Evans, A. C.

P. M. Thompson, D. MacDonald, M. S. Mega, C. J. Holmes, A. C. Evans, and A. W. Toga, "Detection and Mapping of Abnormal Brain Structure with a Probabilistic Atlas of Cortical Surfaces," J. Comput. Assist. Tomogr. 21, 567-581 (1997)
[CrossRef] [PubMed]

Everdell, N.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004)
[CrossRef] [PubMed]

Everdell, N. L.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate," NeuroImage 30, 521-528 (2006)
[CrossRef]

Fischl, B.

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002)
[CrossRef] [PubMed]

Fox, P.

J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster, "A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM)," NeuroImage 2, 89-101 (1995)
[CrossRef] [PubMed]

Franceschini, M. A.

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, S275-S288 (2004)
[CrossRef] [PubMed]

Fukui, Y.

Gibson, A.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004)
[CrossRef] [PubMed]

Gibson, A. P.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate," NeuroImage 30, 521-528 (2006)
[CrossRef]

Guven, M.

M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005)
[CrossRef] [PubMed]

Haselgrove, C.

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002)
[CrossRef] [PubMed]

Hayakawa, C.

Hebden, J. C.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate," NeuroImage 30, 521-528 (2006)
[CrossRef]

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004)
[CrossRef] [PubMed]

Heiskala, J.

J. Heiskala, P. Hiltunen, and I. Nissilä, "Significance of background optical properties, time-resolved information, and optode arrangement in diffuse optical imaging of term neonates," Phys. Med. Biol. 54, 535-554 (2009)
[CrossRef] [PubMed]

Hiltunen, P.

J. Heiskala, P. Hiltunen, and I. Nissilä, "Significance of background optical properties, time-resolved information, and optode arrangement in diffuse optical imaging of term neonates," Phys. Med. Biol. 54, 535-554 (2009)
[CrossRef] [PubMed]

Hintz, S. R.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas: "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001)
[CrossRef] [PubMed]

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A Finite Element Approach for Modeling Photon Transport in Tissue," Med. Phys. 20, 299-309 (1993)
[CrossRef] [PubMed]

Holmes, C. J.

P. M. Thompson, D. MacDonald, M. S. Mega, C. J. Holmes, A. C. Evans, and A. W. Toga, "Detection and Mapping of Abnormal Brain Structure with a Probabilistic Atlas of Cortical Surfaces," J. Comput. Assist. Tomogr. 21, 567-581 (1997)
[CrossRef] [PubMed]

Intes, X.

M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005)
[CrossRef] [PubMed]

Jurcak, V.

D. Tsuzuki, V. Jurcak, A. K. Singh, M. Okamoto, E. Watanabe, and I. Dan, "Virtual spatial registration of standalone MRS data to MNI space," NeuroImage 34, 1506-1518 (2007)
[CrossRef] [PubMed]

A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, "Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI," NeuroImage 27, 842-851 (2005)
[CrossRef] [PubMed]

Kacprzak, M.

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, "Time-resolved optical imager for assessment of cerebral oxygenation," J. Biomed. Opt. 12, 034019 (2007)
[CrossRef]

Kennedy, D.

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002)
[CrossRef] [PubMed]

Killiany, R.

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002)
[CrossRef] [PubMed]

Klaveness, S.

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002)
[CrossRef] [PubMed]

Koikkalainen, J.

J. Koikkalainen and J. Lötjönen, "Reconstruction of 3-D head geometry from digitized point sets: an evaluation study," IEEE Trans. Inf. Technol. Biomed. 8, 377-386 (2004)
[CrossRef] [PubMed]

Kumar, P.

P. Kumar and R. M. Vasu, "Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method," J. Biomed. Opt. 9, 1002-1012 (2004)
[CrossRef] [PubMed]

Lancaster, J.

J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster, "A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM)," NeuroImage 2, 89-101 (1995)
[CrossRef] [PubMed]

Liebert, A.

Lötjönen, J.

J. Koikkalainen and J. Lötjönen, "Reconstruction of 3-D head geometry from digitized point sets: an evaluation study," IEEE Trans. Inf. Technol. Biomed. 8, 377-386 (2004)
[CrossRef] [PubMed]

MacDonald, D.

P. M. Thompson, D. MacDonald, M. S. Mega, C. J. Holmes, A. C. Evans, and A. W. Toga, "Detection and Mapping of Abnormal Brain Structure with a Probabilistic Atlas of Cortical Surfaces," J. Comput. Assist. Tomogr. 21, 567-581 (1997)
[CrossRef] [PubMed]

Macdonald, R.

Makris, N.

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002)
[CrossRef] [PubMed]

Maniewski, R.

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, "Time-resolved optical imager for assessment of cerebral oxygenation," J. Biomed. Opt. 12, 034019 (2007)
[CrossRef]

Mazziotta, J. C.

J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster, "A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM)," NeuroImage 2, 89-101 (1995)
[CrossRef] [PubMed]

Meek, J. H.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate," NeuroImage 30, 521-528 (2006)
[CrossRef]

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004)
[CrossRef] [PubMed]

Mega, M. S.

P. M. Thompson, D. MacDonald, M. S. Mega, C. J. Holmes, A. C. Evans, and A. W. Toga, "Detection and Mapping of Abnormal Brain Structure with a Probabilistic Atlas of Cortical Surfaces," J. Comput. Assist. Tomogr. 21, 567-581 (1997)
[CrossRef] [PubMed]

Möller, M.

Montillo, A.

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002)
[CrossRef] [PubMed]

Nissilä, I.

J. Heiskala, P. Hiltunen, and I. Nissilä, "Significance of background optical properties, time-resolved information, and optode arrangement in diffuse optical imaging of term neonates," Phys. Med. Biol. 54, 535-554 (2009)
[CrossRef] [PubMed]

Obrig, H.

Okada, E.

Okamoto, M.

D. Tsuzuki, V. Jurcak, A. K. Singh, M. Okamoto, E. Watanabe, and I. Dan, "Virtual spatial registration of standalone MRS data to MNI space," NeuroImage 34, 1506-1518 (2007)
[CrossRef] [PubMed]

A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, "Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI," NeuroImage 27, 842-851 (2005)
[CrossRef] [PubMed]

M. Okamoto and I. Dan, "Automated cortical projection transcranial functional brain of head-surface locations for mapping," NeuroImage 26, 18-28 (2005)
[CrossRef] [PubMed]

Paulsen, K. D.

Pogue, B. W.

Rinneberg, H.

Rosen, B.

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002)
[CrossRef] [PubMed]

Salat, D. H.

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002)
[CrossRef] [PubMed]

Sawosz, P.

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, "Time-resolved optical imager for assessment of cerebral oxygenation," J. Biomed. Opt. 12, 034019 (2007)
[CrossRef]

Schlaggar, B. L.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, "Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography," Proc. Nat. Acad. Sci 104, 12169-74 (2007)
[CrossRef] [PubMed]

Schweiger, M.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate," NeuroImage 30, 521-528 (2006)
[CrossRef]

M. Schweiger and S. R. Arridge, "Optical tomographic reconstruction in a complex head model using a priori region boundary information," Phys. Med. Biol. 44, 2703-2721 (1999)
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A Finite Element Approach for Modeling Photon Transport in Tissue," Med. Phys. 20, 299-309 (1993)
[CrossRef] [PubMed]

Siegel, A. M.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas: "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001)
[CrossRef] [PubMed]

Singh, A. K.

D. Tsuzuki, V. Jurcak, A. K. Singh, M. Okamoto, E. Watanabe, and I. Dan, "Virtual spatial registration of standalone MRS data to MNI space," NeuroImage 34, 1506-1518 (2007)
[CrossRef] [PubMed]

A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, "Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI," NeuroImage 27, 842-851 (2005)
[CrossRef] [PubMed]

Spanier, J.

Steinbrink, J.

Stevenson, D. K.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas: "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001)
[CrossRef] [PubMed]

Thompson, P. M.

P. M. Thompson, D. MacDonald, M. S. Mega, C. J. Holmes, A. C. Evans, and A. W. Toga, "Detection and Mapping of Abnormal Brain Structure with a Probabilistic Atlas of Cortical Surfaces," J. Comput. Assist. Tomogr. 21, 567-581 (1997)
[CrossRef] [PubMed]

Toga, A. W.

P. M. Thompson, D. MacDonald, M. S. Mega, C. J. Holmes, A. C. Evans, and A. W. Toga, "Detection and Mapping of Abnormal Brain Structure with a Probabilistic Atlas of Cortical Surfaces," J. Comput. Assist. Tomogr. 21, 567-581 (1997)
[CrossRef] [PubMed]

J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster, "A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM)," NeuroImage 2, 89-101 (1995)
[CrossRef] [PubMed]

Tromberg, B.

Tsuzuki, D.

D. Tsuzuki, V. Jurcak, A. K. Singh, M. Okamoto, E. Watanabe, and I. Dan, "Virtual spatial registration of standalone MRS data to MNI space," NeuroImage 34, 1506-1518 (2007)
[CrossRef] [PubMed]

van der Kouwe, A.

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002)
[CrossRef] [PubMed]

Vasu, R. M.

P. Kumar and R. M. Vasu, "Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method," J. Biomed. Opt. 9, 1002-1012 (2004)
[CrossRef] [PubMed]

Venugopalan, V.

Villringer, A.

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, "Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons," Appl. Opt. 43, 3037-3047 (2004)
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, "Determining changes in NIR absorption using a layered model of the human head," Phys. Med. Biol. 46, 879-96 (2001)
[CrossRef] [PubMed]

A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci. 20, 435-442 (1997)
[CrossRef] [PubMed]

Wabnitz, H.

Watanabe, E.

D. Tsuzuki, V. Jurcak, A. K. Singh, M. Okamoto, E. Watanabe, and I. Dan, "Virtual spatial registration of standalone MRS data to MNI space," NeuroImage 34, 1506-1518 (2007)
[CrossRef] [PubMed]

White, B. R.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, "Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography," Proc. Nat. Acad. Sci 104, 12169-74 (2007)
[CrossRef] [PubMed]

Wyatt, J S.

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate," NeuroImage 30, 521-528 (2006)
[CrossRef]

Wyatt, J. S.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004)
[CrossRef] [PubMed]

Yazici, B.

M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005)
[CrossRef] [PubMed]

You, J.

Yusof, R.

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004)
[CrossRef] [PubMed]

Zeff, B. W.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, "Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography," Proc. Nat. Acad. Sci 104, 12169-74 (2007)
[CrossRef] [PubMed]

Zolek, N.

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, "Time-resolved optical imager for assessment of cerebral oxygenation," J. Biomed. Opt. 12, 034019 (2007)
[CrossRef]

Zourabian, A.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas: "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001)
[CrossRef] [PubMed]

Appl. Opt.

IEEE Trans. Inf. Technol. Biomed.

J. Koikkalainen and J. Lötjönen, "Reconstruction of 3-D head geometry from digitized point sets: an evaluation study," IEEE Trans. Inf. Technol. Biomed. 8, 377-386 (2004)
[CrossRef] [PubMed]

J. Biomed. Opt.

P. Kumar and R. M. Vasu, "Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method," J. Biomed. Opt. 9, 1002-1012 (2004)
[CrossRef] [PubMed]

M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, "Time-resolved optical imager for assessment of cerebral oxygenation," J. Biomed. Opt. 12, 034019 (2007)
[CrossRef]

J. Comput. Assist. Tomogr.

P. M. Thompson, D. MacDonald, M. S. Mega, C. J. Holmes, A. C. Evans, and A. W. Toga, "Detection and Mapping of Abnormal Brain Structure with a Probabilistic Atlas of Cortical Surfaces," J. Comput. Assist. Tomogr. 21, 567-581 (1997)
[CrossRef] [PubMed]

J. Perinat. Med.

S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, and D. A. Boas: "Bedside functional imaging of the premature infant brain during passive motor activation," J. Perinat. Med. 29, 335-343 (2001)
[CrossRef] [PubMed]

Med. Phys.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, "A Finite Element Approach for Modeling Photon Transport in Tissue," Med. Phys. 20, 299-309 (1993)
[CrossRef] [PubMed]

NeuroImage

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," NeuroImage 23, S275-S288 (2004)
[CrossRef] [PubMed]

A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate," NeuroImage 30, 521-528 (2006)
[CrossRef]

J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster, "A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM)," NeuroImage 2, 89-101 (1995)
[CrossRef] [PubMed]

M. Okamoto and I. Dan, "Automated cortical projection transcranial functional brain of head-surface locations for mapping," NeuroImage 26, 18-28 (2005)
[CrossRef] [PubMed]

A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, "Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI," NeuroImage 27, 842-851 (2005)
[CrossRef] [PubMed]

D. Tsuzuki, V. Jurcak, A. K. Singh, M. Okamoto, E. Watanabe, and I. Dan, "Virtual spatial registration of standalone MRS data to MNI space," NeuroImage 34, 1506-1518 (2007)
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, "Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex," NeuroImage 27, 279-290 (2005)
[CrossRef] [PubMed]

Neuron

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, "Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain," Neuron 33, 341-355 (2002)
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

M. Schweiger and S. R. Arridge, "Optical tomographic reconstruction in a complex head model using a priori region boundary information," Phys. Med. Biol. 44, 2703-2721 (1999)
[CrossRef] [PubMed]

M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005)
[CrossRef] [PubMed]

J. Heiskala, P. Hiltunen, and I. Nissilä, "Significance of background optical properties, time-resolved information, and optode arrangement in diffuse optical imaging of term neonates," Phys. Med. Biol. 54, 535-554 (2009)
[CrossRef] [PubMed]

J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004)
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, "Determining changes in NIR absorption using a layered model of the human head," Phys. Med. Biol. 46, 879-96 (2001)
[CrossRef] [PubMed]

Proc. Nat. Acad. Sci

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, "Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography," Proc. Nat. Acad. Sci 104, 12169-74 (2007)
[CrossRef] [PubMed]

Trends Neurosci.

A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci. 20, 435-442 (1997)
[CrossRef] [PubMed]

Other

S. Chandrasekhar, Radiative transfer (Dover, New York 1960)

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, "A Monte Carlo model of light propagation in tissue," Dosimetry of Laser Radiation in Medicine and Biology (SPIE IS Vol 5) G. J. Müller and D. H. Sliney, eds. (SPIE, Bellingham WA, 1989) 102-111

A. CustoPurely Optical Tomography: Atlas-Based Reconstruction of Brain Activation, PhD thesis, Massachusetts Institute of Technology (2008)

H. Kawaguchi and E. Okada, "Normalized Adult Head Model for the Image Reconstruction Algorithm of NIR Topography," in Biomedical Optics OSA Technical Digest (CD) (Optical Society of America, 2008), paper BSuE38.

J. Heiskala, K. Kotilahti, L. Lipi¨ainen, P. Hiltunen, P. E. Grant, and I. Nissilä, "Optical tomographic imaging of activation of the infant auditory cortex using perturbation Monte Carlo with anatomical a priori information," in Diffuse Optical Imaging in Tissue Proc. SPIE 6629, (Bellingham: SPIE) 66290T (2007)

E. Okada and D. T. Delpy, "The effect of overlying tissue on NIR light propagation in neonatal brain," Proc. OSA TOPS, Adv. Opt. Imaging Photon Migration 2, 338-343 (1996)

F. SchmidtDevelopment of a time-resolved optical tomography system for neonatal brain imaging, PhD thesis, University of London (1999)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Illustration of deformation between head models. In A and B, axial slices of segmented head models from two individuals. Due to difference in the orientations of the two models, the level of the slice in the axial direction is approximately the same in both cases in the anterior part of the head, and different in the posterior part of the head. In C, an axial slice of head model shown in B, coregistered and deformed to the surface shape of the model in A, at the same level as the slice in A. In D, an example of a layered model with same surface shape as the model shown in A.

Fig. 2.
Fig. 2.

A transaxial slice through the reference model, and probabilities for different tissue types of the atlas at the same level. To ease comparison between the reference model and the atlas, contours of the surface of the head and the CSF space are superimposed in red. Note that the surface shape for all models and all images in the atlas is the same.

Fig. 3.
Fig. 3.

Arrangement of optodes. The 17 crosses stand for light sources, the 18 circles for detectors.

Fig. 4.
Fig. 4.

Results from reconstructing a single absorptive perturbation, high contrast case. In A, axial slices through center of the target perturbation. In B, tangential maps. On top row, the target perturbation, and the reconstruction obtained with the reference model. On second row, reconstructions obtained with the atlas using reference (left) and deviated (right) optical parameters. On third row, reconstructions obtained using the atlas based layered models with a CSF layer (left) and without a CSF layer (right). On fourth row, reconstructions obtained with the ’ad hoc’ layered model and the homogeneous model.

Fig. 5.
Fig. 5.

Results from reconstructing a single absorptive perturbation, low contrast case. In A, axial slices through center of the target perturbation. In B, tangential maps. Cases as in Fig. 4.

Fig. 6.
Fig. 6.

Results from reconstructing three absorptive perturbations, high contrast case. In A, axial slices through center of the target perturbation. In B, tangential maps. On top row, the target perturbations, and the reconstruction obtained with the reference model. On second row, reconstructions obtained with the atlas using reference (left) and deviated (right) optical parameters. On third row, reconstructions obtained using the atlas based layered models with a CSF layer (left) and without a CSF layer (right). On fourth row, reconstructions obtained with the ’ad hoc’ layered model and the homogeneous model.

Fig. 7.
Fig. 7.

Results from reconstructing three absorptive perturbations, low contrast case. In A, axial slices through center of the target perturbation. In B, tangential maps. Cases as in Fig. 6.

Fig. 8.
Fig. 8.

Contrast profiles calculated from the tangential maps in the case of three absorptive perturbations. On the y-axis, mean contrast in the band containing the target perturbations (10-3 mm-1). On the x-axis, location in mm. Cases as in Fig. 6.

Tables (4)

Tables Icon

Table 1. Thickness of tissue layers * in the layer models (mm). All models have central region of WM, thus no thickness is given for WM. LAY=atlas based layered model with CSF, LAYnoC=atlas based without CSF, LAYAh=ad hoc layered model.

Tables Icon

Table 2. Optical properties of tissue types [25, 26]. Parameter sets REF, DEV and HOM are given. The absorption (µ a) and reduced scattering coefficients (µs), vary between sets of optical parameters, while the anisotropy factor g and the refractive index n remain the same for all sets.

Tables Icon

Table 3. Localization error, contrast and contrast-to-noise ratio for reconstructions from the single perturbation, with the high and low target contrasts. PC=Peak Contrast, IC=Integrated Contrast, CNR=Contrast-to-Noise Ratio. Contrasts given as percentrage of target contrast. On the row defining anatomical model: LAY=Atlas based layered model, LAYnoC=Atlas based layered model, no CSF, LAYAh=Ad hoc layered model. On the row defining optical parameters: REF=reference parameters, DEV=deviated parameters, HOM=homogeneous parameters.

Tables Icon

Table 4. Localization error, contrast and contrast-to-noise ratio for reconstructions from three separate perturbations, with the high and low target contrasts. PC=Peak Contrast, IC=Integrated Contrast, CNR=Contrast-to-Noise Ratio. Contrasts given as percentrage of target contrast. On the row defining anatomical model: LAY=Atlas based layered model, LAYnoC=Atlas based layered model, no CSF, LAYAh=Ad hoc layered model. On the row defining optical parameters: REF=reference parameters, DEV=deviated parameters, HOM=homogeneous parameters. A, B and C refer to the target perturbations from posterior to anterior (left to right in Figs. 4 through 7.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

W =pwp=pexp (rμa(r)lr,p)
t =ΣptpwpΣpwp =Σptpexp(Σrμa(r)lr,p)Σpexp(Σrμa(r)lr,p)
Wμa(ρ) =plρ,pexp(rμa(r)lr,p)=lp W
tμa(ρ) = lρt +lρt ,
Φ (Δμa) =αA (Δμa)+γ1R1 (Δμa) +γ2R2(Δμa),

Metrics