Abstract

We apply the three-dimensional Discontinuous-Galerkin Time-Domain method to the investigation of the optical properties of bar- and V-shaped metallic nanostructures on dielectric substrates. A flexible finite element-like mesh together with an expansion into high-order basis functions allows for an accurate resolution of complex geometries and strong field gradients. In turn, this provides accurate results on the optical response of realistic structures. We study in detail the influence of particle size and shape on resonance frequencies as well as on scattering and absorption efficiencies. Beyond a critical size which determines the onset of the quasi-static limit we find significant deviations from the quasi-static theory. Furthermore, we investigate the influence of the excitation by comparing normal illumination and attenuated total internal reflection setups. Finally, we examine the possibility of coherently controlling the local field enhancement of V-structures via chirped pulses.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Soller,M. Ringler,M. Wunderlich, T. A. Klar, J. Feldmann, H.-P. Josel, Y. Markert, A. Nichl, and K. K¨urzinger, "Radiative and nonradiative rates of phosphors attached to gold nanoparticles," Nano Lett. 7, 1941-1946 (2008).
  2. J. Steidtner and B. Pettinger, "Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution," Phys. Rev. Lett. 100, 236101-1-4 (2008).
  3. S. Kim, J. Jin., Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, "High-harmonic generation by resonant Plasmon field enhancement," Nature 453, 757-760 (2008).
    [PubMed]
  4. D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402-1-4 (2003).
  5. N. I. Zheludev, S. I. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nature Photon. 2, 351-354 (2008).
  6. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2008).
  7. M. Righini, V. Giovani, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804-1-4 (2008).
  8. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photon. 2, 365-370 (2008).
  9. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo,W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
    [PubMed]
  10. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
  11. C. M. Aikens, S. Li, and G. C. Schatz, "From discrete electronic states to plasmons: TDDFT optical absorption properties of Agn(n=10,20,35,56,84,120) tetrahedral clusters," J. Phys. Chem. C 112, 11272-11279 (2008).
  12. M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherent control of femtosecond energy localization in nanosystems," Phys. Rev. Lett. 88, 067402-1-4 (2002).
  13. M. I. Stockman, D. J. Bergmann, and T. Kobayashi, "Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems," Phys. Rev. B 69, 054202-054211 (2004).
  14. X. Li and M. I. Stockman, "Highly efficient spatiotemporal control in nanoplasmonics on a nanometerfemtosecond scale by time reversal," Phys. Rev. B 77, 195109 (2008).
  15. V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Martin, and F. J. Garcia de Abajo, "Modelling the optical response of gold nanoparticles," Chem. Soc. Rev. 37, 1792-1805 (2008).
    [PubMed]
  16. J. Jin, Computational Electrodynamics: The Finite Element Method in Electromagnetics (2nd edition, John Wiley & Sons, New York, 2002).
  17. C. Hafner, Post-modern Electromagnetics (John Wiley & Sons, New York, 1999).
  18. N. Calander and M. Willander, "Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids," J. Appl. Phys. 92, 4878-4884, (2002).
  19. R. Kappeler, D. Erni, C. Xudong, and L. Novotny, "Field computations of optical antennas," J. Comput. Theor. Nanosci. 4, 686-691 (2007).
  20. X. Cui,W. Zhang, B.-S. Yeo, R. Zenobi, Ch. Hafner, and D. Erni, "Tuning the resonance frequency of Ag-coated dielectric tips," Opt. Express 15, 8309-8316 (2007).
    [PubMed]
  21. H. Fischer and O. J. F. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express 16, 9144-9154 (2008).
    [PubMed]
  22. M. I. Stockman, "Ultrafast nanoplasmonics under coherent control," New J. Phys. 10, 025031 (2008).
  23. A. Taflove and S. C. Hagness, Computational electrodynamics (3rd edition, Artech House, Boston, 2005).
  24. J. Niegemann, M. K¨onig, K. Stannigel, and K. Busch, "Higher-order time-domain methods for the analysis of nano-photonic systems," Photon. Nanostruct. Fundam. Appl. 7, 2-11 (2008).
  25. J. S. Hesthaven and T. Warburton, "Nodal high-order methods on unstructured grids - I. Time-domain solution of Maxwell’s equations," J. Comput. Phys. 181, 186-221 (2002).
  26. T. Lu, P. Zhang, and W. Cai, "Discontinuous Galerkin methods for dispersive and lossy Maxwell’s equations and ML boundary conditions," J. Comput. Phys. 200, 549-580 (2004).
  27. M. H. Carpenter and C. A. Kennedy, "Fourth-Order 2N-Storage Runge-Kutta Schemes," Technical Report NASA-TM-109112, NASA Langley Research Center, VA (1994).
  28. K. Busch, J. Niegemann, M. Pototschnig, and L. Tkeshelashvili, "A Krylov-subspace based solver for the linear and nonlinear Maxwell equations," phys. stat. sol. (b) 244, 3479-2496 (2007).
  29. H. C. van de Hulst, Light scattering by small particles (Dover Publ., New York, 1981).
  30. M. Liu, P. Guyot-Sionnest, T.-W. Lee, and S. K. Gray, "Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations," Phys. Rev. B 76, 235428 (2007).
  31. E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004).
    [PubMed]
  32. H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, "Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation," Appl. Phys. Lett. 83, 4625-4627 (2003).
  33. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (JohnWiley & Sons, New York, 1983).
  34. C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).
  35. A. Arbouet, D. Christofilos, N. Del Fatti, F. Vall´ee, J.R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, "Direct Measurement of the Single-Metal-Cluster Optical Absorption," Phys. Rev. Lett. 93, 127401-1-4 (2004).
  36. M. Husnik, M. W. Klein, N. Feth, M. K¨onig, J. Niegemann, K. Busch, S. Linden, and M. Wegener, "Absolute extinction cross-section of individual magnetic split-ring resonators," Nature Photon. 2, 614-617 (2008).

2008

T. Soller,M. Ringler,M. Wunderlich, T. A. Klar, J. Feldmann, H.-P. Josel, Y. Markert, A. Nichl, and K. K¨urzinger, "Radiative and nonradiative rates of phosphors attached to gold nanoparticles," Nano Lett. 7, 1941-1946 (2008).

S. Kim, J. Jin., Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, "High-harmonic generation by resonant Plasmon field enhancement," Nature 453, 757-760 (2008).
[PubMed]

N. I. Zheludev, S. I. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nature Photon. 2, 351-354 (2008).

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2008).

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photon. 2, 365-370 (2008).

C. M. Aikens, S. Li, and G. C. Schatz, "From discrete electronic states to plasmons: TDDFT optical absorption properties of Agn(n=10,20,35,56,84,120) tetrahedral clusters," J. Phys. Chem. C 112, 11272-11279 (2008).

X. Li and M. I. Stockman, "Highly efficient spatiotemporal control in nanoplasmonics on a nanometerfemtosecond scale by time reversal," Phys. Rev. B 77, 195109 (2008).

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Martin, and F. J. Garcia de Abajo, "Modelling the optical response of gold nanoparticles," Chem. Soc. Rev. 37, 1792-1805 (2008).
[PubMed]

M. I. Stockman, "Ultrafast nanoplasmonics under coherent control," New J. Phys. 10, 025031 (2008).

J. Niegemann, M. K¨onig, K. Stannigel, and K. Busch, "Higher-order time-domain methods for the analysis of nano-photonic systems," Photon. Nanostruct. Fundam. Appl. 7, 2-11 (2008).

M. Husnik, M. W. Klein, N. Feth, M. K¨onig, J. Niegemann, K. Busch, S. Linden, and M. Wegener, "Absolute extinction cross-section of individual magnetic split-ring resonators," Nature Photon. 2, 614-617 (2008).

H. Fischer and O. J. F. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express 16, 9144-9154 (2008).
[PubMed]

2007

X. Cui,W. Zhang, B.-S. Yeo, R. Zenobi, Ch. Hafner, and D. Erni, "Tuning the resonance frequency of Ag-coated dielectric tips," Opt. Express 15, 8309-8316 (2007).
[PubMed]

R. Kappeler, D. Erni, C. Xudong, and L. Novotny, "Field computations of optical antennas," J. Comput. Theor. Nanosci. 4, 686-691 (2007).

M. Liu, P. Guyot-Sionnest, T.-W. Lee, and S. K. Gray, "Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations," Phys. Rev. B 76, 235428 (2007).

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo,W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
[PubMed]

2004

M. I. Stockman, D. J. Bergmann, and T. Kobayashi, "Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems," Phys. Rev. B 69, 054202-054211 (2004).

E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004).
[PubMed]

T. Lu, P. Zhang, and W. Cai, "Discontinuous Galerkin methods for dispersive and lossy Maxwell’s equations and ML boundary conditions," J. Comput. Phys. 200, 549-580 (2004).

2003

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, "Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation," Appl. Phys. Lett. 83, 4625-4627 (2003).

2002

J. S. Hesthaven and T. Warburton, "Nodal high-order methods on unstructured grids - I. Time-domain solution of Maxwell’s equations," J. Comput. Phys. 181, 186-221 (2002).

N. Calander and M. Willander, "Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids," J. Appl. Phys. 92, 4878-4884, (2002).

2000

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

1972

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

Aeschlimann, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo,W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
[PubMed]

Aikens, C. M.

C. M. Aikens, S. Li, and G. C. Schatz, "From discrete electronic states to plasmons: TDDFT optical absorption properties of Agn(n=10,20,35,56,84,120) tetrahedral clusters," J. Phys. Chem. C 112, 11272-11279 (2008).

Arbouet, A.

A. Arbouet, D. Christofilos, N. Del Fatti, F. Vall´ee, J.R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, "Direct Measurement of the Single-Metal-Cluster Optical Absorption," Phys. Rev. Lett. 93, 127401-1-4 (2004).

Arnaud, L.

A. Arbouet, D. Christofilos, N. Del Fatti, F. Vall´ee, J.R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, "Direct Measurement of the Single-Metal-Cluster Optical Absorption," Phys. Rev. Lett. 93, 127401-1-4 (2004).

Aussenegg, F. R.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Bauer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo,W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
[PubMed]

Bayer, D.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo,W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
[PubMed]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402-1-4 (2003).

M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherent control of femtosecond energy localization in nanosystems," Phys. Rev. Lett. 88, 067402-1-4 (2002).

Bergmann, D. J.

M. I. Stockman, D. J. Bergmann, and T. Kobayashi, "Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems," Phys. Rev. B 69, 054202-054211 (2004).

Billaud, P.

A. Arbouet, D. Christofilos, N. Del Fatti, F. Vall´ee, J.R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, "Direct Measurement of the Single-Metal-Cluster Optical Absorption," Phys. Rev. Lett. 93, 127401-1-4 (2004).

Brixner, T.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo,W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
[PubMed]

Broyer, M.

A. Arbouet, D. Christofilos, N. Del Fatti, F. Vall´ee, J.R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, "Direct Measurement of the Single-Metal-Cluster Optical Absorption," Phys. Rev. Lett. 93, 127401-1-4 (2004).

Busch, K.

M. Husnik, M. W. Klein, N. Feth, M. K¨onig, J. Niegemann, K. Busch, S. Linden, and M. Wegener, "Absolute extinction cross-section of individual magnetic split-ring resonators," Nature Photon. 2, 614-617 (2008).

J. Niegemann, M. K¨onig, K. Stannigel, and K. Busch, "Higher-order time-domain methods for the analysis of nano-photonic systems," Photon. Nanostruct. Fundam. Appl. 7, 2-11 (2008).

K. Busch, J. Niegemann, M. Pototschnig, and L. Tkeshelashvili, "A Krylov-subspace based solver for the linear and nonlinear Maxwell equations," phys. stat. sol. (b) 244, 3479-2496 (2007).

Calander, N.

N. Calander and M. Willander, "Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids," J. Appl. Phys. 92, 4878-4884, (2002).

Chan, V. Z-H.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Christofilos, D.

A. Arbouet, D. Christofilos, N. Del Fatti, F. Vall´ee, J.R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, "Direct Measurement of the Single-Metal-Cluster Optical Absorption," Phys. Rev. Lett. 93, 127401-1-4 (2004).

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

Cui, X.

Del Fatti, N.

A. Arbouet, D. Christofilos, N. Del Fatti, F. Vall´ee, J.R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, "Direct Measurement of the Single-Metal-Cluster Optical Absorption," Phys. Rev. Lett. 93, 127401-1-4 (2004).

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photon. 2, 365-370 (2008).

Ditlbacher, H.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Erni, D.

X. Cui,W. Zhang, B.-S. Yeo, R. Zenobi, Ch. Hafner, and D. Erni, "Tuning the resonance frequency of Ag-coated dielectric tips," Opt. Express 15, 8309-8316 (2007).
[PubMed]

R. Kappeler, D. Erni, C. Xudong, and L. Novotny, "Field computations of optical antennas," J. Comput. Theor. Nanosci. 4, 686-691 (2007).

Esumi, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, "Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation," Appl. Phys. Lett. 83, 4625-4627 (2003).

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherent control of femtosecond energy localization in nanosystems," Phys. Rev. Lett. 88, 067402-1-4 (2002).

Fedotov, V. A.

N. I. Zheludev, S. I. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nature Photon. 2, 351-354 (2008).

Feldmann, J.

T. Soller,M. Ringler,M. Wunderlich, T. A. Klar, J. Feldmann, H.-P. Josel, Y. Markert, A. Nichl, and K. K¨urzinger, "Radiative and nonradiative rates of phosphors attached to gold nanoparticles," Nano Lett. 7, 1941-1946 (2008).

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Feth, N.

M. Husnik, M. W. Klein, N. Feth, M. K¨onig, J. Niegemann, K. Busch, S. Linden, and M. Wegener, "Absolute extinction cross-section of individual magnetic split-ring resonators," Nature Photon. 2, 614-617 (2008).

Fischer, H.

Funston, A. M.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Martin, and F. J. Garcia de Abajo, "Modelling the optical response of gold nanoparticles," Chem. Soc. Rev. 37, 1792-1805 (2008).
[PubMed]

Garcia de Abajo, F. J.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Martin, and F. J. Garcia de Abajo, "Modelling the optical response of gold nanoparticles," Chem. Soc. Rev. 37, 1792-1805 (2008).
[PubMed]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo,W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
[PubMed]

Geier, S.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Giovani, V.

M. Righini, V. Giovani, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804-1-4 (2008).

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2008).

M. Righini, V. Giovani, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804-1-4 (2008).

Gray, S. K.

M. Liu, P. Guyot-Sionnest, T.-W. Lee, and S. K. Gray, "Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations," Phys. Rev. B 76, 235428 (2007).

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photon. 2, 365-370 (2008).

Guyot-Sionnest, P.

M. Liu, P. Guyot-Sionnest, T.-W. Lee, and S. K. Gray, "Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations," Phys. Rev. B 76, 235428 (2007).

Hafner, Ch.

Hao, E.

E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004).
[PubMed]

Hecker, N. E.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Hesthaven, J. S.

J. S. Hesthaven and T. Warburton, "Nodal high-order methods on unstructured grids - I. Time-domain solution of Maxwell’s equations," J. Comput. Phys. 181, 186-221 (2002).

Huntzinger, J.R.

A. Arbouet, D. Christofilos, N. Del Fatti, F. Vall´ee, J.R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, "Direct Measurement of the Single-Metal-Cluster Optical Absorption," Phys. Rev. Lett. 93, 127401-1-4 (2004).

Husnik, M.

M. Husnik, M. W. Klein, N. Feth, M. K¨onig, J. Niegemann, K. Busch, S. Linden, and M. Wegener, "Absolute extinction cross-section of individual magnetic split-ring resonators," Nature Photon. 2, 614-617 (2008).

Jin, J.

S. Kim, J. Jin., Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, "High-harmonic generation by resonant Plasmon field enhancement," Nature 453, 757-760 (2008).
[PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

Josel, H.-P.

T. Soller,M. Ringler,M. Wunderlich, T. A. Klar, J. Feldmann, H.-P. Josel, Y. Markert, A. Nichl, and K. K¨urzinger, "Radiative and nonradiative rates of phosphors attached to gold nanoparticles," Nano Lett. 7, 1941-1946 (2008).

K¨onig, M.

M. Husnik, M. W. Klein, N. Feth, M. K¨onig, J. Niegemann, K. Busch, S. Linden, and M. Wegener, "Absolute extinction cross-section of individual magnetic split-ring resonators," Nature Photon. 2, 614-617 (2008).

J. Niegemann, M. K¨onig, K. Stannigel, and K. Busch, "Higher-order time-domain methods for the analysis of nano-photonic systems," Photon. Nanostruct. Fundam. Appl. 7, 2-11 (2008).

K¨urzinger, K.

T. Soller,M. Ringler,M. Wunderlich, T. A. Klar, J. Feldmann, H.-P. Josel, Y. Markert, A. Nichl, and K. K¨urzinger, "Radiative and nonradiative rates of phosphors attached to gold nanoparticles," Nano Lett. 7, 1941-1946 (2008).

Kappeler, R.

R. Kappeler, D. Erni, C. Xudong, and L. Novotny, "Field computations of optical antennas," J. Comput. Theor. Nanosci. 4, 686-691 (2007).

Kim, S.

S. Kim, J. Jin., Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, "High-harmonic generation by resonant Plasmon field enhancement," Nature 453, 757-760 (2008).
[PubMed]

Klar, T. A.

T. Soller,M. Ringler,M. Wunderlich, T. A. Klar, J. Feldmann, H.-P. Josel, Y. Markert, A. Nichl, and K. K¨urzinger, "Radiative and nonradiative rates of phosphors attached to gold nanoparticles," Nano Lett. 7, 1941-1946 (2008).

Klein, M. W.

M. Husnik, M. W. Klein, N. Feth, M. K¨onig, J. Niegemann, K. Busch, S. Linden, and M. Wegener, "Absolute extinction cross-section of individual magnetic split-ring resonators," Nature Photon. 2, 614-617 (2008).

Kobayashi, T.

M. I. Stockman, D. J. Bergmann, and T. Kobayashi, "Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems," Phys. Rev. B 69, 054202-054211 (2004).

Krenn, J. R.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Kuwata, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, "Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation," Appl. Phys. Lett. 83, 4625-4627 (2003).

Lamprecht, B.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Lee, T.-W.

M. Liu, P. Guyot-Sionnest, T.-W. Lee, and S. K. Gray, "Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations," Phys. Rev. B 76, 235428 (2007).

Li, S.

C. M. Aikens, S. Li, and G. C. Schatz, "From discrete electronic states to plasmons: TDDFT optical absorption properties of Agn(n=10,20,35,56,84,120) tetrahedral clusters," J. Phys. Chem. C 112, 11272-11279 (2008).

Li, X.

X. Li and M. I. Stockman, "Highly efficient spatiotemporal control in nanoplasmonics on a nanometerfemtosecond scale by time reversal," Phys. Rev. B 77, 195109 (2008).

Linden, S.

M. Husnik, M. W. Klein, N. Feth, M. K¨onig, J. Niegemann, K. Busch, S. Linden, and M. Wegener, "Absolute extinction cross-section of individual magnetic split-ring resonators," Nature Photon. 2, 614-617 (2008).

Liu, M.

M. Liu, P. Guyot-Sionnest, T.-W. Lee, and S. K. Gray, "Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations," Phys. Rev. B 76, 235428 (2007).

Liz-Martin, L. M.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Martin, and F. J. Garcia de Abajo, "Modelling the optical response of gold nanoparticles," Chem. Soc. Rev. 37, 1792-1805 (2008).
[PubMed]

Lu, T.

T. Lu, P. Zhang, and W. Cai, "Discontinuous Galerkin methods for dispersive and lossy Maxwell’s equations and ML boundary conditions," J. Comput. Phys. 200, 549-580 (2004).

Markert, Y.

T. Soller,M. Ringler,M. Wunderlich, T. A. Klar, J. Feldmann, H.-P. Josel, Y. Markert, A. Nichl, and K. K¨urzinger, "Radiative and nonradiative rates of phosphors attached to gold nanoparticles," Nano Lett. 7, 1941-1946 (2008).

Martin, O. J. F.

Miyano, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, "Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation," Appl. Phys. Lett. 83, 4625-4627 (2003).

Moller, M.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Mulvaney, P.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Martin, and F. J. Garcia de Abajo, "Modelling the optical response of gold nanoparticles," Chem. Soc. Rev. 37, 1792-1805 (2008).
[PubMed]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Martin, and F. J. Garcia de Abajo, "Modelling the optical response of gold nanoparticles," Chem. Soc. Rev. 37, 1792-1805 (2008).
[PubMed]

Nichl, A.

T. Soller,M. Ringler,M. Wunderlich, T. A. Klar, J. Feldmann, H.-P. Josel, Y. Markert, A. Nichl, and K. K¨urzinger, "Radiative and nonradiative rates of phosphors attached to gold nanoparticles," Nano Lett. 7, 1941-1946 (2008).

Niegemann, J.

M. Husnik, M. W. Klein, N. Feth, M. K¨onig, J. Niegemann, K. Busch, S. Linden, and M. Wegener, "Absolute extinction cross-section of individual magnetic split-ring resonators," Nature Photon. 2, 614-617 (2008).

J. Niegemann, M. K¨onig, K. Stannigel, and K. Busch, "Higher-order time-domain methods for the analysis of nano-photonic systems," Photon. Nanostruct. Fundam. Appl. 7, 2-11 (2008).

K. Busch, J. Niegemann, M. Pototschnig, and L. Tkeshelashvili, "A Krylov-subspace based solver for the linear and nonlinear Maxwell equations," phys. stat. sol. (b) 244, 3479-2496 (2007).

Novo, C.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Martin, and F. J. Garcia de Abajo, "Modelling the optical response of gold nanoparticles," Chem. Soc. Rev. 37, 1792-1805 (2008).
[PubMed]

Novotny, L.

R. Kappeler, D. Erni, C. Xudong, and L. Novotny, "Field computations of optical antennas," J. Comput. Theor. Nanosci. 4, 686-691 (2007).

Papasimakis, N.

N. I. Zheludev, S. I. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nature Photon. 2, 351-354 (2008).

Pastoriza-Santos, I.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Martin, and F. J. Garcia de Abajo, "Modelling the optical response of gold nanoparticles," Chem. Soc. Rev. 37, 1792-1805 (2008).
[PubMed]

Petrov, D.

M. Righini, V. Giovani, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804-1-4 (2008).

Pettinger, B.

J. Steidtner and B. Pettinger, "Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution," Phys. Rev. Lett. 100, 236101-1-4 (2008).

Pfeiffer, W.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo,W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
[PubMed]

Pototschnig, M.

K. Busch, J. Niegemann, M. Pototschnig, and L. Tkeshelashvili, "A Krylov-subspace based solver for the linear and nonlinear Maxwell equations," phys. stat. sol. (b) 244, 3479-2496 (2007).

Prosvirnin, S. I.

N. I. Zheludev, S. I. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nature Photon. 2, 351-354 (2008).

Quidant, R.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2008).

M. Righini, V. Giovani, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804-1-4 (2008).

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2008).

M. Righini, V. Giovani, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804-1-4 (2008).

Ringler, M.

T. Soller,M. Ringler,M. Wunderlich, T. A. Klar, J. Feldmann, H.-P. Josel, Y. Markert, A. Nichl, and K. K¨urzinger, "Radiative and nonradiative rates of phosphors attached to gold nanoparticles," Nano Lett. 7, 1941-1946 (2008).

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photon. 2, 365-370 (2008).

Rodriguez-Fernandez, J.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Martin, and F. J. Garcia de Abajo, "Modelling the optical response of gold nanoparticles," Chem. Soc. Rev. 37, 1792-1805 (2008).
[PubMed]

Rohmer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo,W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
[PubMed]

Schatz, G. C.

C. M. Aikens, S. Li, and G. C. Schatz, "From discrete electronic states to plasmons: TDDFT optical absorption properties of Agn(n=10,20,35,56,84,120) tetrahedral clusters," J. Phys. Chem. C 112, 11272-11279 (2008).

E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004).
[PubMed]

Soller, T.

T. Soller,M. Ringler,M. Wunderlich, T. A. Klar, J. Feldmann, H.-P. Josel, Y. Markert, A. Nichl, and K. K¨urzinger, "Radiative and nonradiative rates of phosphors attached to gold nanoparticles," Nano Lett. 7, 1941-1946 (2008).

Sonnichsen, C.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Spatz, J. P.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Spindler, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo,W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
[PubMed]

Stannigel, K.

J. Niegemann, M. K¨onig, K. Stannigel, and K. Busch, "Higher-order time-domain methods for the analysis of nano-photonic systems," Photon. Nanostruct. Fundam. Appl. 7, 2-11 (2008).

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo,W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
[PubMed]

Steidtner, J.

J. Steidtner and B. Pettinger, "Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution," Phys. Rev. Lett. 100, 236101-1-4 (2008).

Stockman, M. I.

X. Li and M. I. Stockman, "Highly efficient spatiotemporal control in nanoplasmonics on a nanometerfemtosecond scale by time reversal," Phys. Rev. B 77, 195109 (2008).

M. I. Stockman, "Ultrafast nanoplasmonics under coherent control," New J. Phys. 10, 025031 (2008).

M. I. Stockman, D. J. Bergmann, and T. Kobayashi, "Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems," Phys. Rev. B 69, 054202-054211 (2004).

M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherent control of femtosecond energy localization in nanosystems," Phys. Rev. Lett. 88, 067402-1-4 (2002).

D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402-1-4 (2003).

Tamaru, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, "Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation," Appl. Phys. Lett. 83, 4625-4627 (2003).

Tkeshelashvili, L.

K. Busch, J. Niegemann, M. Pototschnig, and L. Tkeshelashvili, "A Krylov-subspace based solver for the linear and nonlinear Maxwell equations," phys. stat. sol. (b) 244, 3479-2496 (2007).

Vall´ee, F.

A. Arbouet, D. Christofilos, N. Del Fatti, F. Vall´ee, J.R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, "Direct Measurement of the Single-Metal-Cluster Optical Absorption," Phys. Rev. Lett. 93, 127401-1-4 (2004).

von Plessen, G.

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Warburton, T.

J. S. Hesthaven and T. Warburton, "Nodal high-order methods on unstructured grids - I. Time-domain solution of Maxwell’s equations," J. Comput. Phys. 181, 186-221 (2002).

Wegener, M.

M. Husnik, M. W. Klein, N. Feth, M. K¨onig, J. Niegemann, K. Busch, S. Linden, and M. Wegener, "Absolute extinction cross-section of individual magnetic split-ring resonators," Nature Photon. 2, 614-617 (2008).

Willander, M.

N. Calander and M. Willander, "Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids," J. Appl. Phys. 92, 4878-4884, (2002).

Wunderlich, M.

T. Soller,M. Ringler,M. Wunderlich, T. A. Klar, J. Feldmann, H.-P. Josel, Y. Markert, A. Nichl, and K. K¨urzinger, "Radiative and nonradiative rates of phosphors attached to gold nanoparticles," Nano Lett. 7, 1941-1946 (2008).

Xudong, C.

R. Kappeler, D. Erni, C. Xudong, and L. Novotny, "Field computations of optical antennas," J. Comput. Theor. Nanosci. 4, 686-691 (2007).

Yeo, B.-S.

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2008).

Zenobi, R.

Zhang, P.

T. Lu, P. Zhang, and W. Cai, "Discontinuous Galerkin methods for dispersive and lossy Maxwell’s equations and ML boundary conditions," J. Comput. Phys. 200, 549-580 (2004).

Zhang, W.

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photon. 2, 365-370 (2008).

Zheludev, N. I.

N. I. Zheludev, S. I. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nature Photon. 2, 351-354 (2008).

Appl. Phys. Lett.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, "Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation," Appl. Phys. Lett. 83, 4625-4627 (2003).

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl. Phys. Lett. 77, 2949-2951 (2000).

Chem. Soc. Rev.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Martin, and F. J. Garcia de Abajo, "Modelling the optical response of gold nanoparticles," Chem. Soc. Rev. 37, 1792-1805 (2008).
[PubMed]

J. Appl. Phys.

N. Calander and M. Willander, "Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids," J. Appl. Phys. 92, 4878-4884, (2002).

J. Chem. Phys.

E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004).
[PubMed]

J. Comput. Phys.

J. S. Hesthaven and T. Warburton, "Nodal high-order methods on unstructured grids - I. Time-domain solution of Maxwell’s equations," J. Comput. Phys. 181, 186-221 (2002).

T. Lu, P. Zhang, and W. Cai, "Discontinuous Galerkin methods for dispersive and lossy Maxwell’s equations and ML boundary conditions," J. Comput. Phys. 200, 549-580 (2004).

J. Comput. Theor. Nanosci.

R. Kappeler, D. Erni, C. Xudong, and L. Novotny, "Field computations of optical antennas," J. Comput. Theor. Nanosci. 4, 686-691 (2007).

J. Phys. Chem. C

C. M. Aikens, S. Li, and G. C. Schatz, "From discrete electronic states to plasmons: TDDFT optical absorption properties of Agn(n=10,20,35,56,84,120) tetrahedral clusters," J. Phys. Chem. C 112, 11272-11279 (2008).

Nano Lett.

T. Soller,M. Ringler,M. Wunderlich, T. A. Klar, J. Feldmann, H.-P. Josel, Y. Markert, A. Nichl, and K. K¨urzinger, "Radiative and nonradiative rates of phosphors attached to gold nanoparticles," Nano Lett. 7, 1941-1946 (2008).

Nature

S. Kim, J. Jin., Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, "High-harmonic generation by resonant Plasmon field enhancement," Nature 453, 757-760 (2008).
[PubMed]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo,W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
[PubMed]

Nature Photon.

N. I. Zheludev, S. I. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nature Photon. 2, 351-354 (2008).

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photon. 2, 365-370 (2008).

M. Husnik, M. W. Klein, N. Feth, M. K¨onig, J. Niegemann, K. Busch, S. Linden, and M. Wegener, "Absolute extinction cross-section of individual magnetic split-ring resonators," Nature Photon. 2, 614-617 (2008).

Nature Phys.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2008).

New J. Phys.

M. I. Stockman, "Ultrafast nanoplasmonics under coherent control," New J. Phys. 10, 025031 (2008).

Opt. Express

Photon. Nanostruct. Fundam. Appl.

J. Niegemann, M. K¨onig, K. Stannigel, and K. Busch, "Higher-order time-domain methods for the analysis of nano-photonic systems," Photon. Nanostruct. Fundam. Appl. 7, 2-11 (2008).

Phys. Rev. B

M. Liu, P. Guyot-Sionnest, T.-W. Lee, and S. K. Gray, "Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations," Phys. Rev. B 76, 235428 (2007).

M. I. Stockman, D. J. Bergmann, and T. Kobayashi, "Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems," Phys. Rev. B 69, 054202-054211 (2004).

X. Li and M. I. Stockman, "Highly efficient spatiotemporal control in nanoplasmonics on a nanometerfemtosecond scale by time reversal," Phys. Rev. B 77, 195109 (2008).

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

Other

M. Righini, V. Giovani, C. Girard, D. Petrov, and R. Quidant, "Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range," Phys. Rev. Lett. 100, 186804-1-4 (2008).

D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402-1-4 (2003).

J. Steidtner and B. Pettinger, "Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution," Phys. Rev. Lett. 100, 236101-1-4 (2008).

M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherent control of femtosecond energy localization in nanosystems," Phys. Rev. Lett. 88, 067402-1-4 (2002).

A. Taflove and S. C. Hagness, Computational electrodynamics (3rd edition, Artech House, Boston, 2005).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (JohnWiley & Sons, New York, 1983).

A. Arbouet, D. Christofilos, N. Del Fatti, F. Vall´ee, J.R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, "Direct Measurement of the Single-Metal-Cluster Optical Absorption," Phys. Rev. Lett. 93, 127401-1-4 (2004).

J. Jin, Computational Electrodynamics: The Finite Element Method in Electromagnetics (2nd edition, John Wiley & Sons, New York, 2002).

C. Hafner, Post-modern Electromagnetics (John Wiley & Sons, New York, 1999).

M. H. Carpenter and C. A. Kennedy, "Fourth-Order 2N-Storage Runge-Kutta Schemes," Technical Report NASA-TM-109112, NASA Langley Research Center, VA (1994).

K. Busch, J. Niegemann, M. Pototschnig, and L. Tkeshelashvili, "A Krylov-subspace based solver for the linear and nonlinear Maxwell equations," phys. stat. sol. (b) 244, 3479-2496 (2007).

H. C. van de Hulst, Light scattering by small particles (Dover Publ., New York, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Scattering and (b) absorption cross sections of a silver sphere with radius 50nm embedded in vacuum. The computations involve 2750 tetrahedra for the sphere itsself and have been performed with interpolation polynomials of order p=3. The results agree well with analytic Mie theory. See the text for further details.

Fig. 2.
Fig. 2.

(a) Sketch of the general computational setup for computing the optical properties of metallic nanostructures. (b) Dimensions of a nano-bar that is positioned on a glass substrate. The two points A and B mark the recording sites for the electric field enhancements (not to scale).

Fig. 3.
Fig. 3.

Local field enhancements for silver nano-bars on glass substrates: Panel (a) displays the saturation of the recorded time signal for the y-component of the electric field at point A (bar length l=150nm). Panel (b) shows the extracted values of the field enhancement at points A and B for bars of different lengths l (see Fig. 2 for further details of the system).

Fig. 4.
Fig. 4.

Scaling analysis for a nano-bar with reference geometry parameters l=100nm and w=h=25nm (see Fig. 2). The graphs show the behavior of (a) the scattering and (b) the absorption efficiencies upon scaling of this reference geometry by a common factor s, which is given for both panels in the legend of (b). Panels (c) and (d) show the peak values of the respective efficiencies as a function of the scaling factor on a double-logarithmic scale. A linear fit to the three data points that correspond to the smallest structures is used to determine the exponent of the power-law dependence. The units for the efficiencies are the same in all graphs.

Fig. 5.
Fig. 5.

(a) Sketch of the setup used for the V-structure computations. The radii of the tips and the arm edges are taken to be half of the arm width w unless otherwise noted. For the calculation of the field enhancements the structure is placed on a glass substrate and the fields are recorded at points A and B. Again, A (B) is located half the height of the metal film above the substrate and 1nm (5nm) away from the tip. (b) Summary of the extracted enhancements at the two sites A and B for V-structures of different lengths l, fixed width and height, w=h=20nm, and fixed apex angle α=30°.

Fig. 6.
Fig. 6.

Intensity distributions |E(x, y)|2 normalized to unit illumination for a monochromatic on-resonance excitation of a silver V with equal width and height w=h=20nm and arm length l=150nm. Panels (a) and (b), respectively, depict the intensity 10nm and 30nm above the substrate. Note that the intensity is displayed on a logarithmic scale.

Fig. 7.
Fig. 7.

(a) Sketch of the ATIR geometry. (b) Normalized spectra for NIT- and ATIR-spectroscopy. See text for details.

Fig. 8.
Fig. 8.

Scaling analysis for V-structures. The graphs show the behavior of the scattering (panel (a)) and absorption (panel (b)) efficiencies upon scaling a reference V-structure with l=150nm, w=h=25nm, and α=30° embedded in vacuum with a common factor s given in the legend.

Fig. 9.
Fig. 9.

Response of the structure on chirped pulse excitation for chirp parameters β=-0.3 (panel (a)) and β=0.3 (panel (b)) at point A (1nm from the V’s tip and 10nm above the substrate). The parameters of the silver nano-V are l=150nm, w=h=20nm, and α=30°. For reference, we also depict the response to an unchirped pulse (β=0). The time is given in units of 1/f res=2.94fs, where f res is the resonance frequency of the structure and, at the same time, the central frequency of the pulse.

Tables (2)

Tables Icon

Table 1. Lowest frequency resonance wavelengths λ res and corresponding quality factors Q for nano-bars with different lengths l and fixed width and height, w=h=20nm.

Tables Icon

Table 2. Resonance wavelengths λres and quality factors Q for the lowest frequency resonance of V-structures of different lengths on a glass substrate. For all structures, we have fixed parameters w=h=20nm and α=30°.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f (t) =sin ((1+βτt0)ω0τ) exp {τ22σ2} τ =tt0 .
ω0 =2πfres , σ =6 fres , t0 =4σ.

Metrics