Abstract

We demonstrate that the bandwidth of an electro-optic sensing system can be significantly enhanced by the use of even-order harmonic sidebands (order > 2) produced on an optical-carrier probe beam with two cascaded electro-optic modulators. The sensing frequency range may be routinely expanded by at least four times, with respect to the use of fundamental-harmonic sidebands, by enhancing the nonlinearity of high-order-harmonic electro-optic modulation. The creation of harmonic modulation sidebands up to the sixth order of the drive frequency on a laser-diode output is described analytically, as is photonic heterodyne down-conversion of microwave signals using these high-order even harmonics within an electro-optic sensor crystal. The nonlinear harmonics serve as beneficial local-oscillator modulations for broadband electro-optic detection of microwave fields without nonlinear distortion. Transverse near-field distributions from an 18.5 GHz patch antenna are extracted using the fourth- (sixth-) order-harmonic sidebands at the output of the cascaded electro-optic modulators driven with a 4.6- (3.1-) GHz continuous-wave input.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic mapping of near-field distributions in integrated microwave circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
    [CrossRef]
  2. K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, "Live electrooptic imaging system based on ultraparallel photonic heterodyne for microwave near-fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
    [CrossRef]
  3. D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-optic probing of microwave fields using a wavelength-tunable modulation depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
    [CrossRef]
  4. T. Kawanishi, H. Kiuchi, M. Yamada, T. Sakamoto, M. Tsuchiya, J. Amagai, and M. Izutsu. "High carrier suppression double sideband modulation with integrated LiNbO3 optical modulators for photonic local oscillators," Atacama Large Millimeter/Submillieter Array Commitee (ALMA 2005) Memo 540, http:www.alma.nrao.edu/memos/htmlmemos/ alma540/memo540.pdf.
  5. T. Kawanishi, H. Kiuchi, M. Yamada, T. Sakamoto, M. Tsuchiya, J. Amagai, and M. Izutsu, "Quadruple frequency double sideband carrier suppressed modulation using high extinction ratio optical modulators for photonic local oscillators," International Topical Meeting on Micro Wave Photonics (2005), Paper PDP-03.
  6. Q1. T. Kawanishi, T. Sakamoto, and M. Izutsu, "High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect," IEEE J. Sel. Top. Quantum Electron. 13, 79-91, (2007).
    [CrossRef]
  7. Q2. K. Sasagawa, A. Kanno, and M. Tsuchiya, "Instantaneous visualization of K-band electric near-fields by a live electrooptic imaging system based on double sideband suppressed carrier modulation," J. Lightwave Technol. 26, 2782-2778, (2008).
    [CrossRef]
  8. D. J. Lee, and J. F. Whitaker, "Bandwidth enhancement of electro-optic field sensing using photonic down-mixing with harmonic sidebands," Opt. Express. 16, 14771-14779 (2008).
    [CrossRef] [PubMed]
  9. K. Sasagawa, and M. Tsuchiya, "Low-noise and high-frequency resolution electrooptic sensing of RF near-fields using an external optical modulator," J. Lightwave Technol. 26, 1242-1248, (2008).
    [CrossRef]
  10. K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
    [CrossRef]

2008 (4)

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-optic probing of microwave fields using a wavelength-tunable modulation depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

D. J. Lee, and J. F. Whitaker, "Bandwidth enhancement of electro-optic field sensing using photonic down-mixing with harmonic sidebands," Opt. Express. 16, 14771-14779 (2008).
[CrossRef] [PubMed]

K. Sasagawa, and M. Tsuchiya, "Low-noise and high-frequency resolution electrooptic sensing of RF near-fields using an external optical modulator," J. Lightwave Technol. 26, 1242-1248, (2008).
[CrossRef]

Q2. K. Sasagawa, A. Kanno, and M. Tsuchiya, "Instantaneous visualization of K-band electric near-fields by a live electrooptic imaging system based on double sideband suppressed carrier modulation," J. Lightwave Technol. 26, 2782-2778, (2008).
[CrossRef]

2007 (2)

Q1. T. Kawanishi, T. Sakamoto, and M. Izutsu, "High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect," IEEE J. Sel. Top. Quantum Electron. 13, 79-91, (2007).
[CrossRef]

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, "Live electrooptic imaging system based on ultraparallel photonic heterodyne for microwave near-fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

2000 (1)

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

1998 (1)

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic mapping of near-field distributions in integrated microwave circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Crites, M. H.

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-optic probing of microwave fields using a wavelength-tunable modulation depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

David, G.

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic mapping of near-field distributions in integrated microwave circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Izutsu, M.

Q1. T. Kawanishi, T. Sakamoto, and M. Izutsu, "High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect," IEEE J. Sel. Top. Quantum Electron. 13, 79-91, (2007).
[CrossRef]

Kanno, A.

Q2. K. Sasagawa, A. Kanno, and M. Tsuchiya, "Instantaneous visualization of K-band electric near-fields by a live electrooptic imaging system based on double sideband suppressed carrier modulation," J. Lightwave Technol. 26, 2782-2778, (2008).
[CrossRef]

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, "Live electrooptic imaging system based on ultraparallel photonic heterodyne for microwave near-fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

Katehi, L. P. B.

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic mapping of near-field distributions in integrated microwave circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Kawanishi, T.

Q1. T. Kawanishi, T. Sakamoto, and M. Izutsu, "High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect," IEEE J. Sel. Top. Quantum Electron. 13, 79-91, (2007).
[CrossRef]

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, "Live electrooptic imaging system based on ultraparallel photonic heterodyne for microwave near-fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

Lee, D. J.

D. J. Lee, and J. F. Whitaker, "Bandwidth enhancement of electro-optic field sensing using photonic down-mixing with harmonic sidebands," Opt. Express. 16, 14771-14779 (2008).
[CrossRef] [PubMed]

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-optic probing of microwave fields using a wavelength-tunable modulation depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

Robertson, S.

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic mapping of near-field distributions in integrated microwave circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Sakamoto, T.

Q1. T. Kawanishi, T. Sakamoto, and M. Izutsu, "High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect," IEEE J. Sel. Top. Quantum Electron. 13, 79-91, (2007).
[CrossRef]

Sasagawa, K.

Tsuchiya, M.

Whitaker, J. F.

D. J. Lee, and J. F. Whitaker, "Bandwidth enhancement of electro-optic field sensing using photonic down-mixing with harmonic sidebands," Opt. Express. 16, 14771-14779 (2008).
[CrossRef] [PubMed]

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-optic probing of microwave fields using a wavelength-tunable modulation depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic mapping of near-field distributions in integrated microwave circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Yang, K.

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic mapping of near-field distributions in integrated microwave circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Q1. T. Kawanishi, T. Sakamoto, and M. Izutsu, "High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect," IEEE J. Sel. Top. Quantum Electron. 13, 79-91, (2007).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic mapping of near-field distributions in integrated microwave circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

K. Sasagawa, A. Kanno, T. Kawanishi, and M. Tsuchiya, "Live electrooptic imaging system based on ultraparallel photonic heterodyne for microwave near-fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-optic probing of microwave fields using a wavelength-tunable modulation depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

Opt. Express. (1)

D. J. Lee, and J. F. Whitaker, "Bandwidth enhancement of electro-optic field sensing using photonic down-mixing with harmonic sidebands," Opt. Express. 16, 14771-14779 (2008).
[CrossRef] [PubMed]

Other (2)

T. Kawanishi, H. Kiuchi, M. Yamada, T. Sakamoto, M. Tsuchiya, J. Amagai, and M. Izutsu. "High carrier suppression double sideband modulation with integrated LiNbO3 optical modulators for photonic local oscillators," Atacama Large Millimeter/Submillieter Array Commitee (ALMA 2005) Memo 540, http:www.alma.nrao.edu/memos/htmlmemos/ alma540/memo540.pdf.

T. Kawanishi, H. Kiuchi, M. Yamada, T. Sakamoto, M. Tsuchiya, J. Amagai, and M. Izutsu, "Quadruple frequency double sideband carrier suppressed modulation using high extinction ratio optical modulators for photonic local oscillators," International Topical Meeting on Micro Wave Photonics (2005), Paper PDP-03.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Cascaded EOMs for creating fourth-order harmonic (4×LO/4) modulations. (PC: polarization controller, a, b and c are reference points to be investigated)

Fig. 2.
Fig. 2.

Relative strength of even-order-harmonic coefficients at point b in Fig. 1 (i.e., b2k ). The dotted, solid, dashed, and dot-dashed lines for k=0, 1, 2, and 3, respectively.

Fig. 3.
Fig. 3.

Relative 5 strength of even-order-harmonic coefficient at point c in Fig. 1 (i.e., c2k ). The dotted, solid, dashed, dot-dash, and double dot-dash lines are for k=0, 1, 2, 3, and 4, respectively.

Fig. 4.
Fig. 4.

Normalized strength of even-order-harmonic coefficients versus log scale input driving power. The style and color of the plots in Figs. 2 and 3 are reused accordingly.

Fig. 5.
Fig. 5.

Attenuated modulation spectra at point c in Fig. 1 (LO/4=4.633 GHz, driving power=9, 12, 15, 18, 21, and 24 dBm, starting from the bottom spectrum, respectively).

Fig. 6.
Fig. 6.

Experimental schematic of the entirely fiber-coupled, photonic down-conversion EO sensing system using modulated cw light [3]. (DFB LD: distributed feedback, continuous-wave laser diode; PC: polarization controller; PD: photo detector; OSA: optical spectrum analyzer). The gray and black lines are optical fibers and electrical connections, respectively.

Fig. 7.
Fig. 7.

Evolution of the transverse EO near-field distribution (vertical polarization) from the K-band patch antenna for different modulator-drive powers (listed along the bottom).

Fig. 8
Fig. 8

Evolution of the peak EO signal levels in Fig. 7 versus driving powers.

Fig. 9.
Fig. 9.

Evolution of the modulated power with increasing EOM input power.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

INullDC@pointb=Σk=0b2kcos(2k·ωLO4t+ϕb)
INullDC@pointc=Σk=0c2kcos(2k·ωLO4t+ϕc)

Metrics