Abstract

Negative index metamaterial designs for the mid-infrared with low absorption and impedance mismatch losses are presented. A robust genetic algorithm is employed to optimize the flexible metamaterial structure for targeted refractive index and impedance values. A new figure of merit is introduced to evaluate the impedance match of the metamaterial to free space. Two designs are presented demonstrating low-loss characteristics for a thin metamaterial with two metal screens and a thick metamaterial stack with five screens. The device performance is analyzed when adding more screens to the structure, revealing that optimizing a thick stack produces a metamaterial with properties approaching those of a bulk material.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  3. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
    [CrossRef] [PubMed]
  4. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
    [CrossRef]
  5. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
    [CrossRef]
  6. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
    [CrossRef] [PubMed]
  7. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [CrossRef] [PubMed]
  8. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  9. R. L. Haupt, and D. H. Werner, Genetic Algorithms in Electromagnetics (Wiley, Hoboken, NJ, 2007).
  10. J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
    [CrossRef]
  11. Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
    [CrossRef]
  12. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11(7), 735–745 (2003).
    [CrossRef] [PubMed]
  13. D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8–17 (2005).
    [CrossRef]
  14. D. J. Kern, D. H. Werner, M. J. Wilhelm, and K. H. Church, “Genetically engineered multiband high-impedance frequency selective surfaces,” Microw. Opt. Technol. Lett. 38(5), 400–403 (2003).
    [CrossRef]
  15. Y. Yuan, C. H. Chan, K. F. Man, and K. M. Luk, “Meta-material surface design using the hierarchical genetic algorithm,” Microw. Opt. Technol. Lett. 39(3), 226–230 (2003).
    [CrossRef]
  16. D. J. Kern and D. H. Werner, “A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers,” Microw. Opt. Technol. Lett. 38(1), 61–64 (2003).
    [CrossRef]
  17. P. Y. Chen, C. H. Chen, H. Wang, J. H. Tsai, and W. X. Ni, “Synthesis design of artificial magnetic metamaterials using a genetic algorithm,” Opt. Express 16(17), 12806–12818 (2008).
    [CrossRef] [PubMed]
  18. D. J. Kern, D. H. Werner, and M. Lisovich, “Metaferrites: Using electromagnetic bandgap structures to synthesize metamaterial ferrites,” IEEE Trans. Antenn. Propag. 53(4), 1382–1389 (2005).
    [CrossRef]
  19. M. A. Gingrich and D. H. Werner, “Synthesis of low/zero index of refraction metamaterials from frequency selective surfaces using genetic algorithms,” IEE Electron. Lett. 41(23), 1266–1267 (2005).
    [CrossRef]
  20. D.-H. Kwon, L. Li, J. A. Bossard, M. G. Bray, and D. H. Werner, “Zero index metamaterials with checkerboard structure,” Elec. Lett. 43(6), 319–320 (2007).
    [CrossRef]
  21. T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag. 47(5), 843–850 (1999).
    [CrossRef]
  22. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef]
  23. W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE 62(1), 33–36 (1974).
    [CrossRef]
  24. J. Radovanović, V. Milanović, Z. Ikonić, and D. Indjin, “Application of the genetic algorithm to the optimized design of semimagnetic semiconductor-based spin-filters,” J. Phys. D Appl. Phys. 40(17), 5066–5070 (2007).
    [CrossRef]
  25. C. García-Meca, R. Ortuño, R. Salvador, A. Martínez, and J. Martí, “Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths,” Opt. Express 15(15), 9320–9325 (2007).
    [CrossRef] [PubMed]
  26. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
    [CrossRef] [PubMed]

2008

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

P. Y. Chen, C. H. Chen, H. Wang, J. H. Tsai, and W. X. Ni, “Synthesis design of artificial magnetic metamaterials using a genetic algorithm,” Opt. Express 16(17), 12806–12818 (2008).
[CrossRef] [PubMed]

2007

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[CrossRef]

C. García-Meca, R. Ortuño, R. Salvador, A. Martínez, and J. Martí, “Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths,” Opt. Express 15(15), 9320–9325 (2007).
[CrossRef] [PubMed]

D.-H. Kwon, L. Li, J. A. Bossard, M. G. Bray, and D. H. Werner, “Zero index metamaterials with checkerboard structure,” Elec. Lett. 43(6), 319–320 (2007).
[CrossRef]

J. Radovanović, V. Milanović, Z. Ikonić, and D. Indjin, “Application of the genetic algorithm to the optimized design of semimagnetic semiconductor-based spin-filters,” J. Phys. D Appl. Phys. 40(17), 5066–5070 (2007).
[CrossRef]

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

2006

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006).
[CrossRef] [PubMed]

2005

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

D. J. Kern, D. H. Werner, and M. Lisovich, “Metaferrites: Using electromagnetic bandgap structures to synthesize metamaterial ferrites,” IEEE Trans. Antenn. Propag. 53(4), 1382–1389 (2005).
[CrossRef]

M. A. Gingrich and D. H. Werner, “Synthesis of low/zero index of refraction metamaterials from frequency selective surfaces using genetic algorithms,” IEE Electron. Lett. 41(23), 1266–1267 (2005).
[CrossRef]

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8–17 (2005).
[CrossRef]

2004

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[CrossRef] [PubMed]

2003

D. J. Kern, D. H. Werner, M. J. Wilhelm, and K. H. Church, “Genetically engineered multiband high-impedance frequency selective surfaces,” Microw. Opt. Technol. Lett. 38(5), 400–403 (2003).
[CrossRef]

Y. Yuan, C. H. Chan, K. F. Man, and K. M. Luk, “Meta-material surface design using the hierarchical genetic algorithm,” Microw. Opt. Technol. Lett. 39(3), 226–230 (2003).
[CrossRef]

D. J. Kern and D. H. Werner, “A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers,” Microw. Opt. Technol. Lett. 38(1), 61–64 (2003).
[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11(7), 735–745 (2003).
[CrossRef] [PubMed]

2001

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

2000

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag. 47(5), 843–850 (1999).
[CrossRef]

1998

1974

W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE 62(1), 33–36 (1974).
[CrossRef]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Bossard, J. A.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

D.-H. Kwon, L. Li, J. A. Bossard, M. G. Bray, and D. H. Werner, “Zero index metamaterials with checkerboard structure,” Elec. Lett. 43(6), 319–320 (2007).
[CrossRef]

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[CrossRef]

Bray, M. G.

D.-H. Kwon, L. Li, J. A. Bossard, M. G. Bray, and D. H. Werner, “Zero index metamaterials with checkerboard structure,” Elec. Lett. 43(6), 319–320 (2007).
[CrossRef]

Cai, W.

Chan, C. H.

Y. Yuan, C. H. Chan, K. F. Man, and K. M. Luk, “Meta-material surface design using the hierarchical genetic algorithm,” Microw. Opt. Technol. Lett. 39(3), 226–230 (2003).
[CrossRef]

Chen, C. H.

Chen, P. Y.

Chettiar, U. K.

Church, K. H.

D. J. Kern, D. H. Werner, M. J. Wilhelm, and K. H. Church, “Genetically engineered multiband high-impedance frequency selective surfaces,” Microw. Opt. Technol. Lett. 38(5), 400–403 (2003).
[CrossRef]

Djurišic, A. B.

Dolling, G.

Drachev, V. P.

Drupp, R. P.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[CrossRef]

Eibert, T. F.

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag. 47(5), 843–850 (1999).
[CrossRef]

Elazar, J. M.

Eleftheriades, G. V.

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[CrossRef] [PubMed]

Enkrich, C.

García-Meca, C.

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Gingrich, M. A.

M. A. Gingrich and D. H. Werner, “Synthesis of low/zero index of refraction metamaterials from frequency selective surfaces using genetic algorithms,” IEE Electron. Lett. 41(23), 1266–1267 (2005).
[CrossRef]

Grbic, A.

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[CrossRef] [PubMed]

Ikonic, Z.

J. Radovanović, V. Milanović, Z. Ikonić, and D. Indjin, “Application of the genetic algorithm to the optimized design of semimagnetic semiconductor-based spin-filters,” J. Phys. D Appl. Phys. 40(17), 5066–5070 (2007).
[CrossRef]

Indjin, D.

J. Radovanović, V. Milanović, Z. Ikonić, and D. Indjin, “Application of the genetic algorithm to the optimized design of semimagnetic semiconductor-based spin-filters,” J. Phys. D Appl. Phys. 40(17), 5066–5070 (2007).
[CrossRef]

Jackson, D. R.

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag. 47(5), 843–850 (1999).
[CrossRef]

Kern, D. J.

D. J. Kern, D. H. Werner, and M. Lisovich, “Metaferrites: Using electromagnetic bandgap structures to synthesize metamaterial ferrites,” IEEE Trans. Antenn. Propag. 53(4), 1382–1389 (2005).
[CrossRef]

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8–17 (2005).
[CrossRef]

D. J. Kern, D. H. Werner, M. J. Wilhelm, and K. H. Church, “Genetically engineered multiband high-impedance frequency selective surfaces,” Microw. Opt. Technol. Lett. 38(5), 400–403 (2003).
[CrossRef]

D. J. Kern and D. H. Werner, “A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers,” Microw. Opt. Technol. Lett. 38(1), 61–64 (2003).
[CrossRef]

Kildishev, A. V.

Kwon, D.-H.

D.-H. Kwon, L. Li, J. A. Bossard, M. G. Bray, and D. H. Werner, “Zero index metamaterials with checkerboard structure,” Elec. Lett. 43(6), 319–320 (2007).
[CrossRef]

Lanuzza, L.

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8–17 (2005).
[CrossRef]

Li, L.

D.-H. Kwon, L. Li, J. A. Bossard, M. G. Bray, and D. H. Werner, “Zero index metamaterials with checkerboard structure,” Elec. Lett. 43(6), 319–320 (2007).
[CrossRef]

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[CrossRef]

Linden, S.

Lisovich, M.

D. J. Kern, D. H. Werner, and M. Lisovich, “Metaferrites: Using electromagnetic bandgap structures to synthesize metamaterial ferrites,” IEEE Trans. Antenn. Propag. 53(4), 1382–1389 (2005).
[CrossRef]

Luk, K. M.

Y. Yuan, C. H. Chan, K. F. Man, and K. M. Luk, “Meta-material surface design using the hierarchical genetic algorithm,” Microw. Opt. Technol. Lett. 39(3), 226–230 (2003).
[CrossRef]

Majewski, M. L.

Man, K. F.

Y. Yuan, C. H. Chan, K. F. Man, and K. M. Luk, “Meta-material surface design using the hierarchical genetic algorithm,” Microw. Opt. Technol. Lett. 39(3), 226–230 (2003).
[CrossRef]

Martí, J.

Martínez, A.

Mayer, T. S.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[CrossRef]

Milanovic, V.

J. Radovanović, V. Milanović, Z. Ikonić, and D. Indjin, “Application of the genetic algorithm to the optimized design of semimagnetic semiconductor-based spin-filters,” J. Phys. D Appl. Phys. 40(17), 5066–5070 (2007).
[CrossRef]

Monorchio, A.

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8–17 (2005).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Ni, W. X.

Ortuño, R.

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Podolskiy, V. A.

Radovanovic, J.

J. Radovanović, V. Milanović, Z. Ikonić, and D. Indjin, “Application of the genetic algorithm to the optimized design of semimagnetic semiconductor-based spin-filters,” J. Phys. D Appl. Phys. 40(17), 5066–5070 (2007).
[CrossRef]

Rakic, A. D.

Salvador, R.

Sarychev, A. K.

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Smith, J. A.

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[CrossRef]

Soukoulis, C. M.

Tang, Y.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[CrossRef]

Tsai, J. H.

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Volakis, J. L.

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag. 47(5), 843–850 (1999).
[CrossRef]

Wang, H.

Wegener, M.

Weir, W. B.

W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE 62(1), 33–36 (1974).
[CrossRef]

Werner, D. H.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

D.-H. Kwon, L. Li, J. A. Bossard, M. G. Bray, and D. H. Werner, “Zero index metamaterials with checkerboard structure,” Elec. Lett. 43(6), 319–320 (2007).
[CrossRef]

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[CrossRef]

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8–17 (2005).
[CrossRef]

D. J. Kern, D. H. Werner, and M. Lisovich, “Metaferrites: Using electromagnetic bandgap structures to synthesize metamaterial ferrites,” IEEE Trans. Antenn. Propag. 53(4), 1382–1389 (2005).
[CrossRef]

M. A. Gingrich and D. H. Werner, “Synthesis of low/zero index of refraction metamaterials from frequency selective surfaces using genetic algorithms,” IEE Electron. Lett. 41(23), 1266–1267 (2005).
[CrossRef]

D. J. Kern and D. H. Werner, “A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers,” Microw. Opt. Technol. Lett. 38(1), 61–64 (2003).
[CrossRef]

D. J. Kern, D. H. Werner, M. J. Wilhelm, and K. H. Church, “Genetically engineered multiband high-impedance frequency selective surfaces,” Microw. Opt. Technol. Lett. 38(5), 400–403 (2003).
[CrossRef]

Wilhelm, M.

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8–17 (2005).
[CrossRef]

Wilhelm, M. J.

D. J. Kern, D. H. Werner, M. J. Wilhelm, and K. H. Church, “Genetically engineered multiband high-impedance frequency selective surfaces,” Microw. Opt. Technol. Lett. 38(5), 400–403 (2003).
[CrossRef]

Wilton, D. R.

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag. 47(5), 843–850 (1999).
[CrossRef]

Yuan, H.-K.

Yuan, Y.

Y. Yuan, C. H. Chan, K. F. Man, and K. M. Luk, “Meta-material surface design using the hierarchical genetic algorithm,” Microw. Opt. Technol. Lett. 39(3), 226–230 (2003).
[CrossRef]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

Elec. Lett.

D.-H. Kwon, L. Li, J. A. Bossard, M. G. Bray, and D. H. Werner, “Zero index metamaterials with checkerboard structure,” Elec. Lett. 43(6), 319–320 (2007).
[CrossRef]

IEE Electron. Lett.

M. A. Gingrich and D. H. Werner, “Synthesis of low/zero index of refraction metamaterials from frequency selective surfaces using genetic algorithms,” IEE Electron. Lett. 41(23), 1266–1267 (2005).
[CrossRef]

IEEE Trans. Antenn. Propag.

D. J. Kern, D. H. Werner, and M. Lisovich, “Metaferrites: Using electromagnetic bandgap structures to synthesize metamaterial ferrites,” IEEE Trans. Antenn. Propag. 53(4), 1382–1389 (2005).
[CrossRef]

J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. Tang, R. P. Drupp, and L. Li, “The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications,” IEEE Trans. Antenn. Propag. 54(4), 1265–1276 (2006).
[CrossRef]

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag. 47(5), 843–850 (1999).
[CrossRef]

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antenn. Propag. 53(1), 8–17 (2005).
[CrossRef]

J. Phys. D Appl. Phys.

J. Radovanović, V. Milanović, Z. Ikonić, and D. Indjin, “Application of the genetic algorithm to the optimized design of semimagnetic semiconductor-based spin-filters,” J. Phys. D Appl. Phys. 40(17), 5066–5070 (2007).
[CrossRef]

Microw. Opt. Technol. Lett.

D. J. Kern, D. H. Werner, M. J. Wilhelm, and K. H. Church, “Genetically engineered multiband high-impedance frequency selective surfaces,” Microw. Opt. Technol. Lett. 38(5), 400–403 (2003).
[CrossRef]

Y. Yuan, C. H. Chan, K. F. Man, and K. M. Luk, “Meta-material surface design using the hierarchical genetic algorithm,” Microw. Opt. Technol. Lett. 39(3), 226–230 (2003).
[CrossRef]

D. J. Kern and D. H. Werner, “A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers,” Microw. Opt. Technol. Lett. 38(1), 61–64 (2003).
[CrossRef]

Nature

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[CrossRef] [PubMed]

Proc. IEEE

W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE 62(1), 33–36 (1974).
[CrossRef]

Science

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Other

R. L. Haupt, and D. H. Werner, Genetic Algorithms in Electromagnetics (Wiley, Hoboken, NJ, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Flowchart showing the genetic algorithm synthesis procedure used to generate low-loss NIM stack designs.

Fig. 2
Fig. 2

13 x 13 pixel geometry for a negative index metamaterial with two metal screens separated by an insulator. The pixel size, Ag thickness, and polyimide thickness for this design are 107 nm, 75 nm, and 115 nm, respectively. (a) The top and side views of the unit cell, which is periodic in two dimensions. (b) 3D isometric view of the metamaterial.

Fig. 3
Fig. 3

Effective and scattering parameters for the NIM design shown in Fig. 2: (a) Refractive index n and impedance normalized to free space Z. The optimization range (gray box) and optimum wavelength (vertical dashed line) are highlighted. (b) Reflection R, transmission T, and absorption A.

Fig. 4
Fig. 4

13 x 13 pixel geometry for a NIM stack with five metal layers. The pixel size, Ag thickness, and polyimide thickness for this design are 138 nm, 75 nm, and 36 nm, respectively. (a) Top and cross-section views of the structure. (b) 3D isometric view of the metamaterial.

Fig. 5
Fig. 5

Effective and scattering parameters for the NIM in Fig. 4: (a) Refractive index n and normalized impedance Z. The optimization range (gray box) and optimum wavelength (vertical dashed line) are highlighted. (b) Reflection R, transmission T, and absorption A from a normally incident wave.

Fig. 6
Fig. 6

Metamaterial cross-section and refractive index when adding a third metallic screen to the design in Fig. 2: (a) Cross-section view of structure. (b) Refractive index n for two (blue curves) and three (green curves) metal screens.

Fig. 7
Fig. 7

Metamaterial structure and refractive index when adding an additional metal screen to the design in Fig. 4: (a) Cross-section view showing the device with five and six metal layers. (b) Refractive index n for the device with five (blue curves) and six (green curves) metal screens. The performance of this design does not change significantly when another metal screen is added.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FOMn=|n'n"|,FOMZ=1|Z1|,
Cost=MINfreqs[|nntarget|2+|ZZtarget|2]

Metrics