Abstract

Colouration in butterfly wings is due to the interaction of light with a covering of scales on both wing surfaces. A combination of nanostructure in the scales, which reflect or scatter light, and absorption from chemical pigments in the scales and wing substrate create the final colour appearance. We compared the wing scale morphology of the pierid butterfly Pieris rapae (Small White) to the reflectance spectra from its wings. Its wing scales contain a dense array of pterin pigment beads. A positive correlation between bead-array density and wing reflectance, at wavelengths where the pigment does not absorb, was identified and characterised. We observed, however, that light scatter from these beads does not account for all of the broadband light scatter observed from the wings. The rest of the scale structure plays an important role in achieving high light scatter. Furthermore, combining the underlying scattering and absorption mechanisms within the butterfly scales enabled us to quantify the optical characteristics of the samples using CIELab colour theory.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Fox, Animal biochromes and structural colours: physical, chemical, distributional and physiological features of coloured bodies in the animal world (University of California Press, Berkley, CA., 1976)
  2. H. Ghiradella, “Hairs, bristles and scales” in Microscopic anatomy of invertebrates vol. 11A, M. Locke, ed. (Wiley-Liss: New York, 1998).
  3. P. Vukusic, J. R. Sambles, and H. Ghiradella, “Optical classification of microstructure in butterfly wing-scales,” Phot. Science News 6, 61–66 (2000).
  4. H. Ghiradella, “Structure of butterfly scales: patterning in an insect cuticle,” Microsc. Res. Tech. 27(5), 429–438 (1994).
    [CrossRef] [PubMed]
  5. C. W. Mason, “Structural colours in insects II,” J. Phys. Chem. 31(3), 321–354 (1927).
    [CrossRef]
  6. M. A. Giraldo, S. Yoshioka, and D. G. Stavenga, “Far field scattering pattern of differently structured butterfly scales,” J. Comp. Physiol. [A] 194(3), 201–207 (2008).
    [CrossRef]
  7. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 266, 1403–1411 (1999).
    [CrossRef]
  8. S. Kinoshita, S. Yoshioka, and K. Kawagoe, “2002 “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. Lond. B. Biol. Sci. 269(1499), 1417–1421 (2002).
    [CrossRef]
  9. R. B. Morris, “Iridescence from diffraction structures in the wing scales of Callophrys rubi, the Green Hairstreak,” J. Entomol. Ser. A 49, 149–154 (1975).
    [CrossRef]
  10. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [CrossRef] [PubMed]
  11. K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2 Pt 1), 021922 (2006).
    [CrossRef] [PubMed]
  12. R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(Pt 4), 748–765 (2006).
    [CrossRef] [PubMed]
  13. H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178(4066), 1214–1217 (1972).
    [CrossRef] [PubMed]
  14. F. E. Lutz, “Invisible colors of flowers and butterflies,” J. Am. Mus. Nat. Hist. 33, 565–576 (1933).
  15. K. Makino, K. Satoh, M. Koike, and N. Ueno, “Sex in Pieris rapae L. and the pteridin content of their wings,” Nature 170(4335), 933–934 (1952).
    [CrossRef] [PubMed]
  16. B. Wijnen, H. L. Leertouwer, and D. G. Stavenga, “Colors and pterin pigmentation of pierid butterfly wings,” J. Insect Physiol. 53(12), 1206–1217 (2007).
    [CrossRef] [PubMed]
  17. J. M. Kolyer and A. Reimschuessel, “Scanning electron microscopy on wing scales of Colias eurytheme,” J. Res. Lepidoptera 8, 1–15 (1970).
  18. N. Yagi, “Note of electron microscope research on pterin pigmentation in pierid butterflies,” Annot. Zool. Jpn. 27, 113–114 (1954).
  19. N. I. Morehouse, P. Vukusic, and R. L. Rutowski, “Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies,” Proc. R. Soc. Lond. B. Biol. Sci. 274(1608), 359–366 (2007).
    [CrossRef]
  20. R. L. Rutowski, J. M. Macedonia, N. I. Morehouse, and L. Taylor-Taft, “Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme,” Proc. R. Soc. Lond. B. Biol. Sci. 272(1578), 2329–2335 (2005).
    [CrossRef]
  21. D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil, and K. Arikawa, “Butterfly wing colours: scale beads make white pierid wings brighter,” Proc. R. Soc. Lond. B. Biol. Sci. 271(1548), 1577–1584 (2004).
    [CrossRef]
  22. D. J. Kemp, P. Vukusic, and R. L. Rutowski, “Stress-mediated covariance between nano-structural architecture and ultraviolet butterfly coloration,” Funct. Ecol. 20(2), 282–289 (2006).
    [CrossRef]
  23. Y. Obara and T. Hidaki, “Recognition of the female by the male, on the basis of ultra-violet reflection, in the white cabbage butterfly, Pieris rapae crucivora Boisduval,” Proc. Jpn. Acad. 44, 829–832 (1968).
  24. Y. Obara and M. E. N. Majerus, “Initial mate recognition in the British cabbage butterfly, Pieris rapae rapae,” Zoolog. Sci. 17(6), 725–730 (2000).
    [CrossRef]
  25. P. Vukusic, B. Hallam, and J. A. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315(5810), 348 (2007).
    [CrossRef] [PubMed]
  26. S. Yoshioka and S. Kinoshita, “Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly,” Proc Biol Sci 273(1583), 129–134 (2006).
    [CrossRef] [PubMed]
  27. P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys 12, 593–601 (1931).
  28. N. Pauler, Paper Optics (AB Lorentzen & Wettre, Kista, Sweden, 1998).
  29. J. A. Endler, “On the measurement and classification of colour in studies of animal colour patterns,” Biol. J. Linn. Soc. Lond. 41(4), 315–352 (1990).
    [CrossRef]
  30. M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol. 24, 75–106 (1972).
    [CrossRef] [PubMed]
  31. J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express 15(7), 4351–4358 (2007).
    [CrossRef] [PubMed]
  32. P. Lewicki, and T. Hill, “Statistics methods and application” (StatSoft, Tulsa, OK., 2007) http://www.statsoft.com/textbook/stathome.html .
  33. M. A. Giraldo and D. G. Stavenga, “Sexual dichroism and pigment localization in the wing scales of Pieris rapae butterflies,” Proc. R. Soc. Lond. B. Biol. Sci. 274(1606), 97–102 (2007).
    [CrossRef]
  34. M. A. Giraldo and D. G. Stavenga, “Wing coloration and pigment gradients in scales of pierid butterflies,” Arthropod Struct. Dev. 37(2), 118–128 (2008).
    [CrossRef]
  35. M. Gates, “The Chemistry of the Pteridines,” Chem. Rev. 41(1), 63–95 (1947).
    [CrossRef] [PubMed]
  36. W. B. Watt, “Pteridine components of wing pigmentation in the butterfly Colias eurytheme,” Nature 201(4926), 1326–1327 (1964).
    [CrossRef] [PubMed]
  37. D. G. Stavenga, M. A. Giraldo, and B. J. Hoenders, “Reflectance and transmittance of light scattering scales stacked on the wings of pierid butterflies,” Opt. Express 14(11), 4880–4890 (2006).
    [CrossRef] [PubMed]
  38. S. Yoshioka and S. Kinoshita, “Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance,” J. Opt. Soc. Am. A 23(1), 134–141 (2006).
    [CrossRef]
  39. ISO2470, 1999.
  40. Y. Obara, “Studies on the mating behavior of the white cabbage butterfly, Pieris rapae crucivora Boisduval. III. Near-ultraviolet reflection as the signal of intraspecific communication,” Z. Vgl. Physiol. 69(1), 99–116 (1970).
    [CrossRef]
  41. R. L. Rutowski, “The use of visual cues in sexual and species discrimination by males of the small sulphur butterfly Eurema lisa (Lepidoptera, Pieridae),” J. Comp. Physiol. 115(1), 61–74 (1977).
    [CrossRef]
  42. P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 271(0suppl.), S237–S239 (2004).
    [CrossRef]

2008

M. A. Giraldo, S. Yoshioka, and D. G. Stavenga, “Far field scattering pattern of differently structured butterfly scales,” J. Comp. Physiol. [A] 194(3), 201–207 (2008).
[CrossRef]

M. A. Giraldo and D. G. Stavenga, “Wing coloration and pigment gradients in scales of pierid butterflies,” Arthropod Struct. Dev. 37(2), 118–128 (2008).
[CrossRef]

2007

P. Vukusic, B. Hallam, and J. A. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315(5810), 348 (2007).
[CrossRef] [PubMed]

M. A. Giraldo and D. G. Stavenga, “Sexual dichroism and pigment localization in the wing scales of Pieris rapae butterflies,” Proc. R. Soc. Lond. B. Biol. Sci. 274(1606), 97–102 (2007).
[CrossRef]

B. Wijnen, H. L. Leertouwer, and D. G. Stavenga, “Colors and pterin pigmentation of pierid butterfly wings,” J. Insect Physiol. 53(12), 1206–1217 (2007).
[CrossRef] [PubMed]

N. I. Morehouse, P. Vukusic, and R. L. Rutowski, “Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies,” Proc. R. Soc. Lond. B. Biol. Sci. 274(1608), 359–366 (2007).
[CrossRef]

J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express 15(7), 4351–4358 (2007).
[CrossRef] [PubMed]

2006

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2 Pt 1), 021922 (2006).
[CrossRef] [PubMed]

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(Pt 4), 748–765 (2006).
[CrossRef] [PubMed]

S. Yoshioka and S. Kinoshita, “Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly,” Proc Biol Sci 273(1583), 129–134 (2006).
[CrossRef] [PubMed]

D. J. Kemp, P. Vukusic, and R. L. Rutowski, “Stress-mediated covariance between nano-structural architecture and ultraviolet butterfly coloration,” Funct. Ecol. 20(2), 282–289 (2006).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance,” J. Opt. Soc. Am. A 23(1), 134–141 (2006).
[CrossRef]

D. G. Stavenga, M. A. Giraldo, and B. J. Hoenders, “Reflectance and transmittance of light scattering scales stacked on the wings of pierid butterflies,” Opt. Express 14(11), 4880–4890 (2006).
[CrossRef] [PubMed]

2005

R. L. Rutowski, J. M. Macedonia, N. I. Morehouse, and L. Taylor-Taft, “Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme,” Proc. R. Soc. Lond. B. Biol. Sci. 272(1578), 2329–2335 (2005).
[CrossRef]

2004

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil, and K. Arikawa, “Butterfly wing colours: scale beads make white pierid wings brighter,” Proc. R. Soc. Lond. B. Biol. Sci. 271(1548), 1577–1584 (2004).
[CrossRef]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 271(0suppl.), S237–S239 (2004).
[CrossRef]

2003

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

2002

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “2002 “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. Lond. B. Biol. Sci. 269(1499), 1417–1421 (2002).
[CrossRef]

2000

P. Vukusic, J. R. Sambles, and H. Ghiradella, “Optical classification of microstructure in butterfly wing-scales,” Phot. Science News 6, 61–66 (2000).

Y. Obara and M. E. N. Majerus, “Initial mate recognition in the British cabbage butterfly, Pieris rapae rapae,” Zoolog. Sci. 17(6), 725–730 (2000).
[CrossRef]

1999

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 266, 1403–1411 (1999).
[CrossRef]

1994

H. Ghiradella, “Structure of butterfly scales: patterning in an insect cuticle,” Microsc. Res. Tech. 27(5), 429–438 (1994).
[CrossRef] [PubMed]

1990

J. A. Endler, “On the measurement and classification of colour in studies of animal colour patterns,” Biol. J. Linn. Soc. Lond. 41(4), 315–352 (1990).
[CrossRef]

1977

R. L. Rutowski, “The use of visual cues in sexual and species discrimination by males of the small sulphur butterfly Eurema lisa (Lepidoptera, Pieridae),” J. Comp. Physiol. 115(1), 61–74 (1977).
[CrossRef]

1975

R. B. Morris, “Iridescence from diffraction structures in the wing scales of Callophrys rubi, the Green Hairstreak,” J. Entomol. Ser. A 49, 149–154 (1975).
[CrossRef]

1972

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178(4066), 1214–1217 (1972).
[CrossRef] [PubMed]

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol. 24, 75–106 (1972).
[CrossRef] [PubMed]

1970

Y. Obara, “Studies on the mating behavior of the white cabbage butterfly, Pieris rapae crucivora Boisduval. III. Near-ultraviolet reflection as the signal of intraspecific communication,” Z. Vgl. Physiol. 69(1), 99–116 (1970).
[CrossRef]

J. M. Kolyer and A. Reimschuessel, “Scanning electron microscopy on wing scales of Colias eurytheme,” J. Res. Lepidoptera 8, 1–15 (1970).

1968

Y. Obara and T. Hidaki, “Recognition of the female by the male, on the basis of ultra-violet reflection, in the white cabbage butterfly, Pieris rapae crucivora Boisduval,” Proc. Jpn. Acad. 44, 829–832 (1968).

1964

W. B. Watt, “Pteridine components of wing pigmentation in the butterfly Colias eurytheme,” Nature 201(4926), 1326–1327 (1964).
[CrossRef] [PubMed]

1954

N. Yagi, “Note of electron microscope research on pterin pigmentation in pierid butterflies,” Annot. Zool. Jpn. 27, 113–114 (1954).

1952

K. Makino, K. Satoh, M. Koike, and N. Ueno, “Sex in Pieris rapae L. and the pteridin content of their wings,” Nature 170(4335), 933–934 (1952).
[CrossRef] [PubMed]

1947

M. Gates, “The Chemistry of the Pteridines,” Chem. Rev. 41(1), 63–95 (1947).
[CrossRef] [PubMed]

1933

F. E. Lutz, “Invisible colors of flowers and butterflies,” J. Am. Mus. Nat. Hist. 33, 565–576 (1933).

1931

P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys 12, 593–601 (1931).

1927

C. W. Mason, “Structural colours in insects II,” J. Phys. Chem. 31(3), 321–354 (1927).
[CrossRef]

Aneshansley, D.

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178(4066), 1214–1217 (1972).
[CrossRef] [PubMed]

Arikawa, K.

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil, and K. Arikawa, “Butterfly wing colours: scale beads make white pierid wings brighter,” Proc. R. Soc. Lond. B. Biol. Sci. 271(1548), 1577–1584 (2004).
[CrossRef]

Bálint, Z.

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2 Pt 1), 021922 (2006).
[CrossRef] [PubMed]

Biró, L. P.

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2 Pt 1), 021922 (2006).
[CrossRef] [PubMed]

Eisner, T.

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178(4066), 1214–1217 (1972).
[CrossRef] [PubMed]

Endler, J. A.

J. A. Endler, “On the measurement and classification of colour in studies of animal colour patterns,” Biol. J. Linn. Soc. Lond. 41(4), 315–352 (1990).
[CrossRef]

Gates, M.

M. Gates, “The Chemistry of the Pteridines,” Chem. Rev. 41(1), 63–95 (1947).
[CrossRef] [PubMed]

Ghiradella, H.

P. Vukusic, J. R. Sambles, and H. Ghiradella, “Optical classification of microstructure in butterfly wing-scales,” Phot. Science News 6, 61–66 (2000).

H. Ghiradella, “Structure of butterfly scales: patterning in an insect cuticle,” Microsc. Res. Tech. 27(5), 429–438 (1994).
[CrossRef] [PubMed]

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178(4066), 1214–1217 (1972).
[CrossRef] [PubMed]

Giraldo, M. A.

M. A. Giraldo and D. G. Stavenga, “Wing coloration and pigment gradients in scales of pierid butterflies,” Arthropod Struct. Dev. 37(2), 118–128 (2008).
[CrossRef]

M. A. Giraldo, S. Yoshioka, and D. G. Stavenga, “Far field scattering pattern of differently structured butterfly scales,” J. Comp. Physiol. [A] 194(3), 201–207 (2008).
[CrossRef]

M. A. Giraldo and D. G. Stavenga, “Sexual dichroism and pigment localization in the wing scales of Pieris rapae butterflies,” Proc. R. Soc. Lond. B. Biol. Sci. 274(1606), 97–102 (2007).
[CrossRef]

D. G. Stavenga, M. A. Giraldo, and B. J. Hoenders, “Reflectance and transmittance of light scattering scales stacked on the wings of pierid butterflies,” Opt. Express 14(11), 4880–4890 (2006).
[CrossRef] [PubMed]

Hallam, B.

P. Vukusic, B. Hallam, and J. A. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315(5810), 348 (2007).
[CrossRef] [PubMed]

Hidaki, T.

Y. Obara and T. Hidaki, “Recognition of the female by the male, on the basis of ultra-violet reflection, in the white cabbage butterfly, Pieris rapae crucivora Boisduval,” Proc. Jpn. Acad. 44, 829–832 (1968).

Hinton, H. E.

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178(4066), 1214–1217 (1972).
[CrossRef] [PubMed]

Hoenders, B. J.

Hooper, I. R.

Kawagoe, K.

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “2002 “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. Lond. B. Biol. Sci. 269(1499), 1417–1421 (2002).
[CrossRef]

Kemp, D. J.

D. J. Kemp, P. Vukusic, and R. L. Rutowski, “Stress-mediated covariance between nano-structural architecture and ultraviolet butterfly coloration,” Funct. Ecol. 20(2), 282–289 (2006).
[CrossRef]

Kertész, K.

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2 Pt 1), 021922 (2006).
[CrossRef] [PubMed]

Kinoshita, S.

S. Yoshioka and S. Kinoshita, “Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly,” Proc Biol Sci 273(1583), 129–134 (2006).
[CrossRef] [PubMed]

S. Yoshioka and S. Kinoshita, “Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance,” J. Opt. Soc. Am. A 23(1), 134–141 (2006).
[CrossRef]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “2002 “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. Lond. B. Biol. Sci. 269(1499), 1417–1421 (2002).
[CrossRef]

Koike, M.

K. Makino, K. Satoh, M. Koike, and N. Ueno, “Sex in Pieris rapae L. and the pteridin content of their wings,” Nature 170(4335), 933–934 (1952).
[CrossRef] [PubMed]

Kolyer, J. M.

J. M. Kolyer and A. Reimschuessel, “Scanning electron microscopy on wing scales of Colias eurytheme,” J. Res. Lepidoptera 8, 1–15 (1970).

Kubelka, P.

P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys 12, 593–601 (1931).

Land, M. F.

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol. 24, 75–106 (1972).
[CrossRef] [PubMed]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 271(0suppl.), S237–S239 (2004).
[CrossRef]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 266, 1403–1411 (1999).
[CrossRef]

Leertouwer, H. L.

B. Wijnen, H. L. Leertouwer, and D. G. Stavenga, “Colors and pterin pigmentation of pierid butterfly wings,” J. Insect Physiol. 53(12), 1206–1217 (2007).
[CrossRef] [PubMed]

Lousse, V.

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2 Pt 1), 021922 (2006).
[CrossRef] [PubMed]

Lutz, F. E.

F. E. Lutz, “Invisible colors of flowers and butterflies,” J. Am. Mus. Nat. Hist. 33, 565–576 (1933).

Macedonia, J. M.

R. L. Rutowski, J. M. Macedonia, N. I. Morehouse, and L. Taylor-Taft, “Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme,” Proc. R. Soc. Lond. B. Biol. Sci. 272(1578), 2329–2335 (2005).
[CrossRef]

Majerus, M. E. N.

Y. Obara and M. E. N. Majerus, “Initial mate recognition in the British cabbage butterfly, Pieris rapae rapae,” Zoolog. Sci. 17(6), 725–730 (2000).
[CrossRef]

Makino, K.

K. Makino, K. Satoh, M. Koike, and N. Ueno, “Sex in Pieris rapae L. and the pteridin content of their wings,” Nature 170(4335), 933–934 (1952).
[CrossRef] [PubMed]

Márk, G. I.

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2 Pt 1), 021922 (2006).
[CrossRef] [PubMed]

Mason, C. W.

C. W. Mason, “Structural colours in insects II,” J. Phys. Chem. 31(3), 321–354 (1927).
[CrossRef]

Morehouse, N. I.

N. I. Morehouse, P. Vukusic, and R. L. Rutowski, “Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies,” Proc. R. Soc. Lond. B. Biol. Sci. 274(1608), 359–366 (2007).
[CrossRef]

R. L. Rutowski, J. M. Macedonia, N. I. Morehouse, and L. Taylor-Taft, “Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme,” Proc. R. Soc. Lond. B. Biol. Sci. 272(1578), 2329–2335 (2005).
[CrossRef]

Morris, R. B.

R. B. Morris, “Iridescence from diffraction structures in the wing scales of Callophrys rubi, the Green Hairstreak,” J. Entomol. Ser. A 49, 149–154 (1975).
[CrossRef]

Munk, F.

P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys 12, 593–601 (1931).

Noyes, J. A.

Obara, Y.

Y. Obara and M. E. N. Majerus, “Initial mate recognition in the British cabbage butterfly, Pieris rapae rapae,” Zoolog. Sci. 17(6), 725–730 (2000).
[CrossRef]

Y. Obara, “Studies on the mating behavior of the white cabbage butterfly, Pieris rapae crucivora Boisduval. III. Near-ultraviolet reflection as the signal of intraspecific communication,” Z. Vgl. Physiol. 69(1), 99–116 (1970).
[CrossRef]

Y. Obara and T. Hidaki, “Recognition of the female by the male, on the basis of ultra-violet reflection, in the white cabbage butterfly, Pieris rapae crucivora Boisduval,” Proc. Jpn. Acad. 44, 829–832 (1968).

Prum, R. O.

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(Pt 4), 748–765 (2006).
[CrossRef] [PubMed]

Quinn, T.

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(Pt 4), 748–765 (2006).
[CrossRef] [PubMed]

Rassart, M.

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2 Pt 1), 021922 (2006).
[CrossRef] [PubMed]

Reimschuessel, A.

J. M. Kolyer and A. Reimschuessel, “Scanning electron microscopy on wing scales of Colias eurytheme,” J. Res. Lepidoptera 8, 1–15 (1970).

Rutowski, R. L.

N. I. Morehouse, P. Vukusic, and R. L. Rutowski, “Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies,” Proc. R. Soc. Lond. B. Biol. Sci. 274(1608), 359–366 (2007).
[CrossRef]

D. J. Kemp, P. Vukusic, and R. L. Rutowski, “Stress-mediated covariance between nano-structural architecture and ultraviolet butterfly coloration,” Funct. Ecol. 20(2), 282–289 (2006).
[CrossRef]

R. L. Rutowski, J. M. Macedonia, N. I. Morehouse, and L. Taylor-Taft, “Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme,” Proc. R. Soc. Lond. B. Biol. Sci. 272(1578), 2329–2335 (2005).
[CrossRef]

R. L. Rutowski, “The use of visual cues in sexual and species discrimination by males of the small sulphur butterfly Eurema lisa (Lepidoptera, Pieridae),” J. Comp. Physiol. 115(1), 61–74 (1977).
[CrossRef]

Sambles, J. R.

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 271(0suppl.), S237–S239 (2004).
[CrossRef]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, and H. Ghiradella, “Optical classification of microstructure in butterfly wing-scales,” Phot. Science News 6, 61–66 (2000).

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 266, 1403–1411 (1999).
[CrossRef]

Satoh, K.

K. Makino, K. Satoh, M. Koike, and N. Ueno, “Sex in Pieris rapae L. and the pteridin content of their wings,” Nature 170(4335), 933–934 (1952).
[CrossRef] [PubMed]

Siebke, K.

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil, and K. Arikawa, “Butterfly wing colours: scale beads make white pierid wings brighter,” Proc. R. Soc. Lond. B. Biol. Sci. 271(1548), 1577–1584 (2004).
[CrossRef]

Silberglied, R. E.

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178(4066), 1214–1217 (1972).
[CrossRef] [PubMed]

Stavenga, D. G.

M. A. Giraldo, S. Yoshioka, and D. G. Stavenga, “Far field scattering pattern of differently structured butterfly scales,” J. Comp. Physiol. [A] 194(3), 201–207 (2008).
[CrossRef]

M. A. Giraldo and D. G. Stavenga, “Wing coloration and pigment gradients in scales of pierid butterflies,” Arthropod Struct. Dev. 37(2), 118–128 (2008).
[CrossRef]

B. Wijnen, H. L. Leertouwer, and D. G. Stavenga, “Colors and pterin pigmentation of pierid butterfly wings,” J. Insect Physiol. 53(12), 1206–1217 (2007).
[CrossRef] [PubMed]

M. A. Giraldo and D. G. Stavenga, “Sexual dichroism and pigment localization in the wing scales of Pieris rapae butterflies,” Proc. R. Soc. Lond. B. Biol. Sci. 274(1606), 97–102 (2007).
[CrossRef]

D. G. Stavenga, M. A. Giraldo, and B. J. Hoenders, “Reflectance and transmittance of light scattering scales stacked on the wings of pierid butterflies,” Opt. Express 14(11), 4880–4890 (2006).
[CrossRef] [PubMed]

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil, and K. Arikawa, “Butterfly wing colours: scale beads make white pierid wings brighter,” Proc. R. Soc. Lond. B. Biol. Sci. 271(1548), 1577–1584 (2004).
[CrossRef]

Stowe, S.

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil, and K. Arikawa, “Butterfly wing colours: scale beads make white pierid wings brighter,” Proc. R. Soc. Lond. B. Biol. Sci. 271(1548), 1577–1584 (2004).
[CrossRef]

Taylor-Taft, L.

R. L. Rutowski, J. M. Macedonia, N. I. Morehouse, and L. Taylor-Taft, “Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme,” Proc. R. Soc. Lond. B. Biol. Sci. 272(1578), 2329–2335 (2005).
[CrossRef]

Torres, R. H.

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(Pt 4), 748–765 (2006).
[CrossRef] [PubMed]

Ueno, N.

K. Makino, K. Satoh, M. Koike, and N. Ueno, “Sex in Pieris rapae L. and the pteridin content of their wings,” Nature 170(4335), 933–934 (1952).
[CrossRef] [PubMed]

Vértesy, Z.

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2 Pt 1), 021922 (2006).
[CrossRef] [PubMed]

Vigneron, J. P.

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2 Pt 1), 021922 (2006).
[CrossRef] [PubMed]

Vukusic, P.

P. Vukusic, B. Hallam, and J. A. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315(5810), 348 (2007).
[CrossRef] [PubMed]

N. I. Morehouse, P. Vukusic, and R. L. Rutowski, “Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies,” Proc. R. Soc. Lond. B. Biol. Sci. 274(1608), 359–366 (2007).
[CrossRef]

J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express 15(7), 4351–4358 (2007).
[CrossRef] [PubMed]

D. J. Kemp, P. Vukusic, and R. L. Rutowski, “Stress-mediated covariance between nano-structural architecture and ultraviolet butterfly coloration,” Funct. Ecol. 20(2), 282–289 (2006).
[CrossRef]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 271(0suppl.), S237–S239 (2004).
[CrossRef]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, and H. Ghiradella, “Optical classification of microstructure in butterfly wing-scales,” Phot. Science News 6, 61–66 (2000).

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 266, 1403–1411 (1999).
[CrossRef]

Watt, W. B.

W. B. Watt, “Pteridine components of wing pigmentation in the butterfly Colias eurytheme,” Nature 201(4926), 1326–1327 (1964).
[CrossRef] [PubMed]

Wijnen, B.

B. Wijnen, H. L. Leertouwer, and D. G. Stavenga, “Colors and pterin pigmentation of pierid butterfly wings,” J. Insect Physiol. 53(12), 1206–1217 (2007).
[CrossRef] [PubMed]

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 266, 1403–1411 (1999).
[CrossRef]

Yagi, N.

N. Yagi, “Note of electron microscope research on pterin pigmentation in pierid butterflies,” Annot. Zool. Jpn. 27, 113–114 (1954).

Yoshioka, S.

M. A. Giraldo, S. Yoshioka, and D. G. Stavenga, “Far field scattering pattern of differently structured butterfly scales,” J. Comp. Physiol. [A] 194(3), 201–207 (2008).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance,” J. Opt. Soc. Am. A 23(1), 134–141 (2006).
[CrossRef]

S. Yoshioka and S. Kinoshita, “Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly,” Proc Biol Sci 273(1583), 129–134 (2006).
[CrossRef] [PubMed]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “2002 “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. Lond. B. Biol. Sci. 269(1499), 1417–1421 (2002).
[CrossRef]

Zeil, J.

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil, and K. Arikawa, “Butterfly wing colours: scale beads make white pierid wings brighter,” Proc. R. Soc. Lond. B. Biol. Sci. 271(1548), 1577–1584 (2004).
[CrossRef]

Annot. Zool. Jpn.

N. Yagi, “Note of electron microscope research on pterin pigmentation in pierid butterflies,” Annot. Zool. Jpn. 27, 113–114 (1954).

Arthropod Struct. Dev.

M. A. Giraldo and D. G. Stavenga, “Wing coloration and pigment gradients in scales of pierid butterflies,” Arthropod Struct. Dev. 37(2), 118–128 (2008).
[CrossRef]

Biol. J. Linn. Soc. Lond.

J. A. Endler, “On the measurement and classification of colour in studies of animal colour patterns,” Biol. J. Linn. Soc. Lond. 41(4), 315–352 (1990).
[CrossRef]

Chem. Rev.

M. Gates, “The Chemistry of the Pteridines,” Chem. Rev. 41(1), 63–95 (1947).
[CrossRef] [PubMed]

Funct. Ecol.

D. J. Kemp, P. Vukusic, and R. L. Rutowski, “Stress-mediated covariance between nano-structural architecture and ultraviolet butterfly coloration,” Funct. Ecol. 20(2), 282–289 (2006).
[CrossRef]

J. Am. Mus. Nat. Hist.

F. E. Lutz, “Invisible colors of flowers and butterflies,” J. Am. Mus. Nat. Hist. 33, 565–576 (1933).

J. Comp. Physiol.

R. L. Rutowski, “The use of visual cues in sexual and species discrimination by males of the small sulphur butterfly Eurema lisa (Lepidoptera, Pieridae),” J. Comp. Physiol. 115(1), 61–74 (1977).
[CrossRef]

J. Comp. Physiol. [A]

M. A. Giraldo, S. Yoshioka, and D. G. Stavenga, “Far field scattering pattern of differently structured butterfly scales,” J. Comp. Physiol. [A] 194(3), 201–207 (2008).
[CrossRef]

J. Entomol. Ser. A

R. B. Morris, “Iridescence from diffraction structures in the wing scales of Callophrys rubi, the Green Hairstreak,” J. Entomol. Ser. A 49, 149–154 (1975).
[CrossRef]

J. Exp. Biol.

R. O. Prum, T. Quinn, and R. H. Torres, “Anatomically diverse butterfly scales all produce structural colours by coherent scattering,” J. Exp. Biol. 209(Pt 4), 748–765 (2006).
[CrossRef] [PubMed]

J. Insect Physiol.

B. Wijnen, H. L. Leertouwer, and D. G. Stavenga, “Colors and pterin pigmentation of pierid butterfly wings,” J. Insect Physiol. 53(12), 1206–1217 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Phys. Chem.

C. W. Mason, “Structural colours in insects II,” J. Phys. Chem. 31(3), 321–354 (1927).
[CrossRef]

J. Res. Lepidoptera

J. M. Kolyer and A. Reimschuessel, “Scanning electron microscopy on wing scales of Colias eurytheme,” J. Res. Lepidoptera 8, 1–15 (1970).

Microsc. Res. Tech.

H. Ghiradella, “Structure of butterfly scales: patterning in an insect cuticle,” Microsc. Res. Tech. 27(5), 429–438 (1994).
[CrossRef] [PubMed]

Nature

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

K. Makino, K. Satoh, M. Koike, and N. Ueno, “Sex in Pieris rapae L. and the pteridin content of their wings,” Nature 170(4335), 933–934 (1952).
[CrossRef] [PubMed]

W. B. Watt, “Pteridine components of wing pigmentation in the butterfly Colias eurytheme,” Nature 201(4926), 1326–1327 (1964).
[CrossRef] [PubMed]

Opt. Express

Phot. Science News

P. Vukusic, J. R. Sambles, and H. Ghiradella, “Optical classification of microstructure in butterfly wing-scales,” Phot. Science News 6, 61–66 (2000).

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

K. Kertész, Z. Bálint, Z. Vértesy, G. I. Márk, V. Lousse, J. P. Vigneron, M. Rassart, and L. P. Biró, “Gleaming and dull surface textures from photonic-crystal-type nanostructures in the butterfly Cyanophrys remus,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(2 Pt 1), 021922 (2006).
[CrossRef] [PubMed]

Proc Biol Sci

S. Yoshioka and S. Kinoshita, “Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly,” Proc Biol Sci 273(1583), 129–134 (2006).
[CrossRef] [PubMed]

Proc. Jpn. Acad.

Y. Obara and T. Hidaki, “Recognition of the female by the male, on the basis of ultra-violet reflection, in the white cabbage butterfly, Pieris rapae crucivora Boisduval,” Proc. Jpn. Acad. 44, 829–832 (1968).

Proc. R. Soc. Lond. B. Biol. Sci.

M. A. Giraldo and D. G. Stavenga, “Sexual dichroism and pigment localization in the wing scales of Pieris rapae butterflies,” Proc. R. Soc. Lond. B. Biol. Sci. 274(1606), 97–102 (2007).
[CrossRef]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 266, 1403–1411 (1999).
[CrossRef]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “2002 “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. Lond. B. Biol. Sci. 269(1499), 1417–1421 (2002).
[CrossRef]

N. I. Morehouse, P. Vukusic, and R. L. Rutowski, “Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies,” Proc. R. Soc. Lond. B. Biol. Sci. 274(1608), 359–366 (2007).
[CrossRef]

R. L. Rutowski, J. M. Macedonia, N. I. Morehouse, and L. Taylor-Taft, “Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme,” Proc. R. Soc. Lond. B. Biol. Sci. 272(1578), 2329–2335 (2005).
[CrossRef]

D. G. Stavenga, S. Stowe, K. Siebke, J. Zeil, and K. Arikawa, “Butterfly wing colours: scale beads make white pierid wings brighter,” Proc. R. Soc. Lond. B. Biol. Sci. 271(1548), 1577–1584 (2004).
[CrossRef]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 271(0suppl.), S237–S239 (2004).
[CrossRef]

Prog. Biophys. Mol. Biol.

M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol. 24, 75–106 (1972).
[CrossRef] [PubMed]

Science

P. Vukusic, B. Hallam, and J. A. Noyes, “Brilliant whiteness in ultrathin beetle scales,” Science 315(5810), 348 (2007).
[CrossRef] [PubMed]

H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178(4066), 1214–1217 (1972).
[CrossRef] [PubMed]

Z. Tech. Phys

P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys 12, 593–601 (1931).

Z. Vgl. Physiol.

Y. Obara, “Studies on the mating behavior of the white cabbage butterfly, Pieris rapae crucivora Boisduval. III. Near-ultraviolet reflection as the signal of intraspecific communication,” Z. Vgl. Physiol. 69(1), 99–116 (1970).
[CrossRef]

Zoolog. Sci.

Y. Obara and M. E. N. Majerus, “Initial mate recognition in the British cabbage butterfly, Pieris rapae rapae,” Zoolog. Sci. 17(6), 725–730 (2000).
[CrossRef]

Other

N. Pauler, Paper Optics (AB Lorentzen & Wettre, Kista, Sweden, 1998).

P. Lewicki, and T. Hill, “Statistics methods and application” (StatSoft, Tulsa, OK., 2007) http://www.statsoft.com/textbook/stathome.html .

ISO2470, 1999.

D. L. Fox, Animal biochromes and structural colours: physical, chemical, distributional and physiological features of coloured bodies in the animal world (University of California Press, Berkley, CA., 1976)

H. Ghiradella, “Hairs, bristles and scales” in Microscopic anatomy of invertebrates vol. 11A, M. Locke, ed. (Wiley-Liss: New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 3
Fig. 3

(a) SEM image of the 2 μm × 2 μm P. rapae intra-scale region used to generate finite element model geometries. Analysing the position and size of each bead along the ten white dotted lines created ten model scale sections. The power density back scattered into the dorsal hemisphere from each of the ten sections was calculated from the models and a mean average found. The mean scattered power density is plotted in (b) – (f). Initial modelling, (b) and (c), used a single angle of incident at 90° to the scale surface. (b) Scattered power density from a single elliptical bead with a 520 nm long axis and a 170 nm short axis with the long axis parallel to the incident radiation. (c) Scattered power plot when a 95 nm thick substrate is added 800nm below the centre of the single bead described above. This represents the lower substrate of the wing scale. More advance modelling, (d) – (f), used multiple angles of incidence to mimic diffuse illumination (d) Mean back scattered power density plot for the bead array models based described in Fig. 3(a), modelled with no base substrate. (e) Mean back scattered power density plot for the same bead-array models but including the 95 nm thick substrate situated 800 nm below the centre line of the beads. (f) Mean back scattered power density plot for the bead-array models including the base substrate and the UV absorption associated with the pterin pigmentation. Note. (b)-(c) and (d)-(f) are presented with different colour scales.

Fig. 1
Fig. 1

(a) A male Small White, Pieris rapae, butterfly. (b) Scales on the wings of the P. rapae. The scales have scalloped ends and are positioned in overlapping rows. (c-f) SEM images of dorsal wing scales from a male P. rapae after exposure to increasing immersion times in 1% ammonium hydroxide (NH4OH). (c) Untreated scale, (d) 10 seconds immersion, (e) 30 seconds immersion and (f) 1-minute immersion. Scale bars: (a) 1 cm, (b) 50 μm and (c-f) 1 μm.

Fig. 2
Fig. 2

(a) Pterin bead-array density decreases linearly with immersion time; increasing the NH4OH concentration increases the bead removal rate. (b) Reflectance for male dorsal P. rapae wings. (c) At 400 nm the reflectance increases as pterin beads are removed. (d) At 430 nm pterin absorption offsets scattering from the beads and results in no discernable change in reflectance. (e) Wing reflectance at 550 nm; at longer wavelengths, reflectance decreases as scattering centres (pterin granules) are removed. (f) Light scattering coefficient (S); as pterin beads are removed, the amount of light scattered from the wing decreases.

Fig. 4
Fig. 4

Colour parameter plots for male P. rapae dorsal wings. (a) CIELab whiteness and yellowness as a function of pterin granule density. Reduced UV / blue absorption leads to an increase in whiteness and a reduction in yellowness. (b) Brightness and luminosity (L*) of male P. rapae wings. Both brightness and luminosity drop as the scattering centres (pterin granules) are removed. (c) CIELab a* and b* colour coordinates. As pterin granule density decreases, both a* and b* tend towards zero, in line with the increase in whiteness.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L*=116(YYn)1316,
a*=500((XXn)13(YYn)13),
b*=200((YYn)13(ZZn)13),
κ=(0.3326.41×104)1+exp((λ410.6×109)/10.20×109)+6.41×104.

Metrics