Abstract

An accurate and simple optical triangulation method is proposed for determining the distance and the tilt angle between the window and the SQUID sensor in a scanning SQUID microscope (SSM) system. The surface of window near the sensor plane is roughened with Alumina powder so that the incident and reflected traces of the laser beam passing the window surface become visible and can be measured precisely with a normal optical microscope. Using the proposed approach, the distance between the sensor and the sample can be reproducibly adjusted to 30 μm or less. This method can also be applied to photolithography apparatus to detect the relative positions of the mask and the wafer.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Clarke and A. I. Braginski, “The SQUID handbook,” Vol. 2, 391–440 (2004).
  2. D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, and J. Clarke, “High-transition-temperature superconducting quantum interference devices,” Rev. Mod. Phys. 71(3), 631–686 (1999).
    [CrossRef]
  3. Z. Chenggang, W. Yingnan, C. Yuhang, and H. Wenhao, “Alignment measurement of two-dimensional zero-reference marks,” Precis. Eng. 30(2), 238–241 (2006).
    [CrossRef]
  4. Y. Uchida, S. Hattori, and T. Nomura, “An automatic mask alignment technique using moire interference,” J. Vac. Sci. Technol. B 5(1), 244–247 (1987).
    [CrossRef]
  5. K. Sata and T. Ishida, “Development of high-Tc SQUID microscope,” Physica B 329–333, 1502–1503 (2003).
    [CrossRef]
  6. K. Sata, M. Tsuji, S. Nakata, and T. Ishida, “Observation of square array of nickel dots by using high-Tc SQUID microscope,” Physica C 392–396, 1406–1410 (2003).
    [CrossRef]
  7. F. Baudenbacher, N. T. Peters, and J. P. Wikswo., “High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields of samples at room temperatures,” Rev. Sci. Instrum. 73(3), 1247–1254 (2002).
    [CrossRef]
  8. L. E. Fong, J. R. Holzer, K. K. McBride, E. A. Lima, F. Baudenbachera, and M. Radparvar, “High-resolution room-temperature sample scanning superconducting quantum interference device microscope configurable for geological and biomagnetic applications,” Rev. Sci. Instrum. 76, 053703–1-9 (2005).

2006 (1)

Z. Chenggang, W. Yingnan, C. Yuhang, and H. Wenhao, “Alignment measurement of two-dimensional zero-reference marks,” Precis. Eng. 30(2), 238–241 (2006).
[CrossRef]

2003 (2)

K. Sata and T. Ishida, “Development of high-Tc SQUID microscope,” Physica B 329–333, 1502–1503 (2003).
[CrossRef]

K. Sata, M. Tsuji, S. Nakata, and T. Ishida, “Observation of square array of nickel dots by using high-Tc SQUID microscope,” Physica C 392–396, 1406–1410 (2003).
[CrossRef]

2002 (1)

F. Baudenbacher, N. T. Peters, and J. P. Wikswo., “High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields of samples at room temperatures,” Rev. Sci. Instrum. 73(3), 1247–1254 (2002).
[CrossRef]

1999 (1)

D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, and J. Clarke, “High-transition-temperature superconducting quantum interference devices,” Rev. Mod. Phys. 71(3), 631–686 (1999).
[CrossRef]

1987 (1)

Y. Uchida, S. Hattori, and T. Nomura, “An automatic mask alignment technique using moire interference,” J. Vac. Sci. Technol. B 5(1), 244–247 (1987).
[CrossRef]

Baudenbacher, F.

F. Baudenbacher, N. T. Peters, and J. P. Wikswo., “High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields of samples at room temperatures,” Rev. Sci. Instrum. 73(3), 1247–1254 (2002).
[CrossRef]

Chenggang, Z.

Z. Chenggang, W. Yingnan, C. Yuhang, and H. Wenhao, “Alignment measurement of two-dimensional zero-reference marks,” Precis. Eng. 30(2), 238–241 (2006).
[CrossRef]

Clarke, J.

D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, and J. Clarke, “High-transition-temperature superconducting quantum interference devices,” Rev. Mod. Phys. 71(3), 631–686 (1999).
[CrossRef]

Dantsker, E.

D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, and J. Clarke, “High-transition-temperature superconducting quantum interference devices,” Rev. Mod. Phys. 71(3), 631–686 (1999).
[CrossRef]

Hattori, S.

Y. Uchida, S. Hattori, and T. Nomura, “An automatic mask alignment technique using moire interference,” J. Vac. Sci. Technol. B 5(1), 244–247 (1987).
[CrossRef]

Ishida, T.

K. Sata and T. Ishida, “Development of high-Tc SQUID microscope,” Physica B 329–333, 1502–1503 (2003).
[CrossRef]

K. Sata, M. Tsuji, S. Nakata, and T. Ishida, “Observation of square array of nickel dots by using high-Tc SQUID microscope,” Physica C 392–396, 1406–1410 (2003).
[CrossRef]

Kleiner, R.

D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, and J. Clarke, “High-transition-temperature superconducting quantum interference devices,” Rev. Mod. Phys. 71(3), 631–686 (1999).
[CrossRef]

Koelle, D.

D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, and J. Clarke, “High-transition-temperature superconducting quantum interference devices,” Rev. Mod. Phys. 71(3), 631–686 (1999).
[CrossRef]

Ludwig, F.

D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, and J. Clarke, “High-transition-temperature superconducting quantum interference devices,” Rev. Mod. Phys. 71(3), 631–686 (1999).
[CrossRef]

Nakata, S.

K. Sata, M. Tsuji, S. Nakata, and T. Ishida, “Observation of square array of nickel dots by using high-Tc SQUID microscope,” Physica C 392–396, 1406–1410 (2003).
[CrossRef]

Nomura, T.

Y. Uchida, S. Hattori, and T. Nomura, “An automatic mask alignment technique using moire interference,” J. Vac. Sci. Technol. B 5(1), 244–247 (1987).
[CrossRef]

Peters, N. T.

F. Baudenbacher, N. T. Peters, and J. P. Wikswo., “High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields of samples at room temperatures,” Rev. Sci. Instrum. 73(3), 1247–1254 (2002).
[CrossRef]

Sata, K.

K. Sata and T. Ishida, “Development of high-Tc SQUID microscope,” Physica B 329–333, 1502–1503 (2003).
[CrossRef]

K. Sata, M. Tsuji, S. Nakata, and T. Ishida, “Observation of square array of nickel dots by using high-Tc SQUID microscope,” Physica C 392–396, 1406–1410 (2003).
[CrossRef]

Tsuji, M.

K. Sata, M. Tsuji, S. Nakata, and T. Ishida, “Observation of square array of nickel dots by using high-Tc SQUID microscope,” Physica C 392–396, 1406–1410 (2003).
[CrossRef]

Uchida, Y.

Y. Uchida, S. Hattori, and T. Nomura, “An automatic mask alignment technique using moire interference,” J. Vac. Sci. Technol. B 5(1), 244–247 (1987).
[CrossRef]

Wenhao, H.

Z. Chenggang, W. Yingnan, C. Yuhang, and H. Wenhao, “Alignment measurement of two-dimensional zero-reference marks,” Precis. Eng. 30(2), 238–241 (2006).
[CrossRef]

Wikswo, J. P.

F. Baudenbacher, N. T. Peters, and J. P. Wikswo., “High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields of samples at room temperatures,” Rev. Sci. Instrum. 73(3), 1247–1254 (2002).
[CrossRef]

Yingnan, W.

Z. Chenggang, W. Yingnan, C. Yuhang, and H. Wenhao, “Alignment measurement of two-dimensional zero-reference marks,” Precis. Eng. 30(2), 238–241 (2006).
[CrossRef]

Yuhang, C.

Z. Chenggang, W. Yingnan, C. Yuhang, and H. Wenhao, “Alignment measurement of two-dimensional zero-reference marks,” Precis. Eng. 30(2), 238–241 (2006).
[CrossRef]

J. Vac. Sci. Technol. B (1)

Y. Uchida, S. Hattori, and T. Nomura, “An automatic mask alignment technique using moire interference,” J. Vac. Sci. Technol. B 5(1), 244–247 (1987).
[CrossRef]

Physica B (1)

K. Sata and T. Ishida, “Development of high-Tc SQUID microscope,” Physica B 329–333, 1502–1503 (2003).
[CrossRef]

Physica C (1)

K. Sata, M. Tsuji, S. Nakata, and T. Ishida, “Observation of square array of nickel dots by using high-Tc SQUID microscope,” Physica C 392–396, 1406–1410 (2003).
[CrossRef]

Precis. Eng. (1)

Z. Chenggang, W. Yingnan, C. Yuhang, and H. Wenhao, “Alignment measurement of two-dimensional zero-reference marks,” Precis. Eng. 30(2), 238–241 (2006).
[CrossRef]

Rev. Mod. Phys. (1)

D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, and J. Clarke, “High-transition-temperature superconducting quantum interference devices,” Rev. Mod. Phys. 71(3), 631–686 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

F. Baudenbacher, N. T. Peters, and J. P. Wikswo., “High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields of samples at room temperatures,” Rev. Sci. Instrum. 73(3), 1247–1254 (2002).
[CrossRef]

Other (2)

L. E. Fong, J. R. Holzer, K. K. McBride, E. A. Lima, F. Baudenbachera, and M. Radparvar, “High-resolution room-temperature sample scanning superconducting quantum interference device microscope configurable for geological and biomagnetic applications,” Rev. Sci. Instrum. 76, 053703–1-9 (2005).

J. Clarke and A. I. Braginski, “The SQUID handbook,” Vol. 2, 391–440 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The schematics of the system including the SQUID, the window and the laser beams.

Fig. 2
Fig. 2

(a) and (c) present lateral views that correspond to Fig. 1 at z and z’. (b) and (d) are the front views that correspond to (a) and (c).

Fig. 3
Fig. 3

The images taken by CCD in different distance z.

Fig. 4
Fig. 4

(a) The schematic of the window and sensor at a tilt angle ϕx . (b) Δx and Δy can be measured from an image captured using a CCD camera. The tilt angle ϕ can obtain from Eq. (3).

Fig. 5
Fig. 5

The window was move interval Δz toward the sensor then. (a)-(f) and (g)-(l) were taken after the window moving at intervals of Δz, 400 μm and 100 μm, respectively.

Fig. 6
Fig. 6

The angle ϕ was adjusted. The incident rays and the reflected rays gradually became parallel as the tilt angle decreased. These tilt angles ϕ in (a)-(e) were 9.14, 6.67, 4.72, 2.28 and 0 degrees.

Fig. 7
Fig. 7

The tilt angles in relation to the x and y axes. The tilted window can be adjusted until it is parallel to a sensor, by observing the bright lines in the images.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

tanθ=xz
tanθ=ΔxΔz=Δ2x/2Δz
tanϕ=tanφtanθ=Δx/Δytanθ

Metrics