Abstract

Homogeneous polymeric thin layers have been used as functionalizing agents on silica microspherical resonators in view of the implementation of an immunosensor. We have characterized the microspheres functionalised with poly-L-lactic acid and Eudragit® L100, as an alternative to the commonly used 3-Aminopropyltrimethoxysilane. It is shown that polymeric functionalization does not affect the high quality factor (Q greater than 107) of the silica microspheres, and that the Q factor is about 3x105 after chemical activation and covalent binding of immunogammaglobulin (IgG). This functionalizing process of the microresonator constitutes a promising step towards the achievement of an ultra sensitive immunosensor.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
    [CrossRef]
  2. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
    [CrossRef]
  3. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [CrossRef] [PubMed]
  4. V. S. Ilchenko and A. B. Matsko, “Optical Resonators with Whispering-Gallery-Modes-Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
    [CrossRef]
  5. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
    [CrossRef] [PubMed]
  6. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007), doi:.
    [CrossRef] [PubMed]
  7. F. Baldini, A. Carloni, A. Giannetti, G. Porro, and C. Trono, “A new optical platform for biosensing based on fluorescence anisotropy,” Anal. Bioanal. Chem. 391(5), 1837–1844 (2008).
    [CrossRef] [PubMed]
  8. J. R. Schwesyg, T. Beckmann, A. S. Zimmermann, K. Buse, D. Haertle, K. Buse, and D. Haertle, “Fabrication and characterisation of whispering-gallery-mode resonators made of polymers,” Opt. Express 17(4), 2573–2578 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-4-2573 .
    [CrossRef] [PubMed]
  9. J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
    [CrossRef]
  10. F. Baldini and S. Bracci, “Optical-fiber sensors by silylation techniques,” Sens. Actuators B Chem. 11(1-3), 353–360 (1993).
    [CrossRef]
  11. O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhanced sensitivity of a whispering gallery mode biosensor with subwavelength confinement,” Appl. Phys. Lett. 89(22), 223901 (2006).
    [CrossRef]
  12. A. T. Rosenberg, E. B. Dale, D. Ganta, and J. P. Rezac, "Investigating properties of surfaces and thin films using microsphere whispering-gallery modes," Proc. SPIE 6872, 68720U–1-68720U–9 (2008).
  13. M. Brenci, R. Calzolai, F. Cosi, G. Nunzi Conti, S. Pelli, and G. C. Righini, “Microspherical resonators for biophotonic sensors” Proc. SPIE 6158, 61580S1–61580S9 (2006).
  14. J. Kobayashi, T. Asahi, M. Ichiki, A. Oikawa, H. Suzuki, T. Watanabe, E. Fukada, and Y. Shikinami, “Structural and optical properties of poly lactic acids,” J. Appl. Phys. 77(7), 2957–2973 (1995).
    [CrossRef]
  15. Y. Lin, V. Ilchenko, J. Nadeau, and L. Maleki, "Biochemical detection with optical whispering-gallery resonators," Proc. SPIE 6452, 64520U1–64520U8 (2007).
  16. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
    [CrossRef] [PubMed]
  17. N. Hanumegowda, I. M. White, H. Oveys, and X. Fan, “Label-free protease sensors based on optical microsphere resonators,” Sensor Lett. 3(4), 315 (2005).
    [CrossRef]
  18. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
    [CrossRef] [PubMed]

2009

2008

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[CrossRef] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

F. Baldini, A. Carloni, A. Giannetti, G. Porro, and C. Trono, “A new optical platform for biosensing based on fluorescence anisotropy,” Anal. Bioanal. Chem. 391(5), 1837–1844 (2008).
[CrossRef] [PubMed]

2007

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007), doi:.
[CrossRef] [PubMed]

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
[CrossRef]

2006

V. S. Ilchenko and A. B. Matsko, “Optical Resonators with Whispering-Gallery-Modes-Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[CrossRef]

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhanced sensitivity of a whispering gallery mode biosensor with subwavelength confinement,” Appl. Phys. Lett. 89(22), 223901 (2006).
[CrossRef]

2005

N. Hanumegowda, I. M. White, H. Oveys, and X. Fan, “Label-free protease sensors based on optical microsphere resonators,” Sensor Lett. 3(4), 315 (2005).
[CrossRef]

2003

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[CrossRef] [PubMed]

2002

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

1995

J. Kobayashi, T. Asahi, M. Ichiki, A. Oikawa, H. Suzuki, T. Watanabe, E. Fukada, and Y. Shikinami, “Structural and optical properties of poly lactic acids,” J. Appl. Phys. 77(7), 2957–2973 (1995).
[CrossRef]

1993

F. Baldini and S. Bracci, “Optical-fiber sensors by silylation techniques,” Sens. Actuators B Chem. 11(1-3), 353–360 (1993).
[CrossRef]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007), doi:.
[CrossRef] [PubMed]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[CrossRef] [PubMed]

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhanced sensitivity of a whispering gallery mode biosensor with subwavelength confinement,” Appl. Phys. Lett. 89(22), 223901 (2006).
[CrossRef]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Asahi, T.

J. Kobayashi, T. Asahi, M. Ichiki, A. Oikawa, H. Suzuki, T. Watanabe, E. Fukada, and Y. Shikinami, “Structural and optical properties of poly lactic acids,” J. Appl. Phys. 77(7), 2957–2973 (1995).
[CrossRef]

Baldini, F.

F. Baldini, A. Carloni, A. Giannetti, G. Porro, and C. Trono, “A new optical platform for biosensing based on fluorescence anisotropy,” Anal. Bioanal. Chem. 391(5), 1837–1844 (2008).
[CrossRef] [PubMed]

F. Baldini and S. Bracci, “Optical-fiber sensors by silylation techniques,” Sens. Actuators B Chem. 11(1-3), 353–360 (1993).
[CrossRef]

Baro, A. M.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Bearman, G. H.

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[CrossRef]

Beckmann, T.

Borri, P.

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
[CrossRef]

Bracci, S.

F. Baldini and S. Bracci, “Optical-fiber sensors by silylation techniques,” Sens. Actuators B Chem. 11(1-3), 353–360 (1993).
[CrossRef]

Braun, D.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Buse, K.

Carloni, A.

F. Baldini, A. Carloni, A. Giannetti, G. Porro, and C. Trono, “A new optical platform for biosensing based on fluorescence anisotropy,” Anal. Bioanal. Chem. 391(5), 1837–1844 (2008).
[CrossRef] [PubMed]

Colchero, J.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Culic-Viskota, J.

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhanced sensitivity of a whispering gallery mode biosensor with subwavelength confinement,” Appl. Phys. Lett. 89(22), 223901 (2006).
[CrossRef]

Fan, X.

N. Hanumegowda, I. M. White, H. Oveys, and X. Fan, “Label-free protease sensors based on optical microsphere resonators,” Sensor Lett. 3(4), 315 (2005).
[CrossRef]

Fernández, R.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007), doi:.
[CrossRef] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007), doi:.
[CrossRef] [PubMed]

Fukada, E.

J. Kobayashi, T. Asahi, M. Ichiki, A. Oikawa, H. Suzuki, T. Watanabe, E. Fukada, and Y. Shikinami, “Structural and optical properties of poly lactic acids,” J. Appl. Phys. 77(7), 2957–2973 (1995).
[CrossRef]

Gaathon, O.

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhanced sensitivity of a whispering gallery mode biosensor with subwavelength confinement,” Appl. Phys. Lett. 89(22), 223901 (2006).
[CrossRef]

Giannetti, A.

F. Baldini, A. Carloni, A. Giannetti, G. Porro, and C. Trono, “A new optical platform for biosensing based on fluorescence anisotropy,” Anal. Bioanal. Chem. 391(5), 1837–1844 (2008).
[CrossRef] [PubMed]

Gómez-Herrero, J.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Gómez-Rodríguez, J. M.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Haertle, D.

Hanumegowda, N.

N. Hanumegowda, I. M. White, H. Oveys, and X. Fan, “Label-free protease sensors based on optical microsphere resonators,” Sensor Lett. 3(4), 315 (2005).
[CrossRef]

Horcas, I.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Ichiki, M.

J. Kobayashi, T. Asahi, M. Ichiki, A. Oikawa, H. Suzuki, T. Watanabe, E. Fukada, and Y. Shikinami, “Structural and optical properties of poly lactic acids,” J. Appl. Phys. 77(7), 2957–2973 (1995).
[CrossRef]

Ilchenko, V. S.

V. S. Ilchenko and A. B. Matsko, “Optical Resonators with Whispering-Gallery-Modes-Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[CrossRef]

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[CrossRef]

Keng, D.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[CrossRef] [PubMed]

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Kobayashi, J.

J. Kobayashi, T. Asahi, M. Ichiki, A. Oikawa, H. Suzuki, T. Watanabe, E. Fukada, and Y. Shikinami, “Structural and optical properties of poly lactic acids,” J. Appl. Phys. 77(7), 2957–2973 (1995).
[CrossRef]

Kossakovski, D.

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[CrossRef]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007), doi:.
[CrossRef] [PubMed]

Langbein, W.

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
[CrossRef]

Libchaber, A.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Lutti, J.

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
[CrossRef]

Maleki, L.

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[CrossRef]

Matsko, A. B.

V. S. Ilchenko and A. B. Matsko, “Optical Resonators with Whispering-Gallery-Modes-Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[CrossRef]

Mihnev, M.

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhanced sensitivity of a whispering gallery mode biosensor with subwavelength confinement,” Appl. Phys. Lett. 89(22), 223901 (2006).
[CrossRef]

Nadeau, J. L.

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[CrossRef]

Oikawa, A.

J. Kobayashi, T. Asahi, M. Ichiki, A. Oikawa, H. Suzuki, T. Watanabe, E. Fukada, and Y. Shikinami, “Structural and optical properties of poly lactic acids,” J. Appl. Phys. 77(7), 2957–2973 (1995).
[CrossRef]

Oveys, H.

N. Hanumegowda, I. M. White, H. Oveys, and X. Fan, “Label-free protease sensors based on optical microsphere resonators,” Sensor Lett. 3(4), 315 (2005).
[CrossRef]

Porro, G.

F. Baldini, A. Carloni, A. Giannetti, G. Porro, and C. Trono, “A new optical platform for biosensing based on fluorescence anisotropy,” Anal. Bioanal. Chem. 391(5), 1837–1844 (2008).
[CrossRef] [PubMed]

Schwesyg, J. R.

Shikinami, Y.

J. Kobayashi, T. Asahi, M. Ichiki, A. Oikawa, H. Suzuki, T. Watanabe, E. Fukada, and Y. Shikinami, “Structural and optical properties of poly lactic acids,” J. Appl. Phys. 77(7), 2957–2973 (1995).
[CrossRef]

Suzuki, H.

J. Kobayashi, T. Asahi, M. Ichiki, A. Oikawa, H. Suzuki, T. Watanabe, E. Fukada, and Y. Shikinami, “Structural and optical properties of poly lactic acids,” J. Appl. Phys. 77(7), 2957–2973 (1995).
[CrossRef]

Teraoka, I.

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhanced sensitivity of a whispering gallery mode biosensor with subwavelength confinement,” Appl. Phys. Lett. 89(22), 223901 (2006).
[CrossRef]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Trono, C.

F. Baldini, A. Carloni, A. Giannetti, G. Porro, and C. Trono, “A new optical platform for biosensing based on fluorescence anisotropy,” Anal. Bioanal. Chem. 391(5), 1837–1844 (2008).
[CrossRef] [PubMed]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007), doi:.
[CrossRef] [PubMed]

Vollmer, F.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[CrossRef] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Watanabe, T.

J. Kobayashi, T. Asahi, M. Ichiki, A. Oikawa, H. Suzuki, T. Watanabe, E. Fukada, and Y. Shikinami, “Structural and optical properties of poly lactic acids,” J. Appl. Phys. 77(7), 2957–2973 (1995).
[CrossRef]

White, I. M.

N. Hanumegowda, I. M. White, H. Oveys, and X. Fan, “Label-free protease sensors based on optical microsphere resonators,” Sensor Lett. 3(4), 315 (2005).
[CrossRef]

Zimmermann, A. S.

Anal. Bioanal. Chem.

F. Baldini, A. Carloni, A. Giannetti, G. Porro, and C. Trono, “A new optical platform for biosensing based on fluorescence anisotropy,” Anal. Bioanal. Chem. 391(5), 1837–1844 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(14), 141116 (2007).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhanced sensitivity of a whispering gallery mode biosensor with subwavelength confinement,” Appl. Phys. Lett. 89(22), 223901 (2006).
[CrossRef]

Biophys. J.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85(3), 1974–1979 (2003).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

V. S. Ilchenko and A. B. Matsko, “Optical Resonators with Whispering-Gallery-Modes-Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006).
[CrossRef]

J. Appl. Phys.

J. Kobayashi, T. Asahi, M. Ichiki, A. Oikawa, H. Suzuki, T. Watanabe, E. Fukada, and Y. Shikinami, “Structural and optical properties of poly lactic acids,” J. Appl. Phys. 77(7), 2957–2973 (1995).
[CrossRef]

Nat. Methods

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

Opt. Express

Proc. Natl. Acad. Sci. U.S.A.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008).
[CrossRef] [PubMed]

Proc. SPIE

J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
[CrossRef]

Rev. Sci. Instrum.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[CrossRef] [PubMed]

Science

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007), doi:.
[CrossRef] [PubMed]

Sens. Actuators B Chem.

F. Baldini and S. Bracci, “Optical-fiber sensors by silylation techniques,” Sens. Actuators B Chem. 11(1-3), 353–360 (1993).
[CrossRef]

Sensor Lett.

N. Hanumegowda, I. M. White, H. Oveys, and X. Fan, “Label-free protease sensors based on optical microsphere resonators,” Sensor Lett. 3(4), 315 (2005).
[CrossRef]

Other

Y. Lin, V. Ilchenko, J. Nadeau, and L. Maleki, "Biochemical detection with optical whispering-gallery resonators," Proc. SPIE 6452, 64520U1–64520U8 (2007).

A. T. Rosenberg, E. B. Dale, D. Ganta, and J. P. Rezac, "Investigating properties of surfaces and thin films using microsphere whispering-gallery modes," Proc. SPIE 6872, 68720U–1-68720U–9 (2008).

M. Brenci, R. Calzolai, F. Cosi, G. Nunzi Conti, S. Pelli, and G. C. Righini, “Microspherical resonators for biophotonic sensors” Proc. SPIE 6158, 61580S1–61580S9 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A schematic diagram of the experimental arrangement.

Fig. 2
Fig. 2

AFM profile of the edge of the scratched area of a microsphere functionalised with Eudragit® L100 (10 mM). The blue lines are guides to the eye and mark an average value: 42 ± 2 nm for the upper one and 6 ± 2 nm for the lower line.

Fig. 3
Fig. 3

a) AFM image of a portion of a silica microsphere functionalised with Eudragit® L100 (10 mM); b) Vertical profile (black), waviness (red) and the corresponding RMS (green).

Fig. 4
Fig. 4

a) Fluorescent image of a silica microsphere functionalised with Eudragit® L100 (10 mM) and fluorescein (1 mM); b) Q factor of the microsphere shown in Fig. 4a, measured in air. The red line is the Lorentzian fit of the resonance. The measurement was done in air.

Fig. 5
Fig. 5

Measured Q factor of the Eudragit coated microsphere after chemical activation with EDC-NHS and covalent binding of fluorescent labelled IgG. The measurement was done in liquid environment (PBS).

Tables (2)

Tables Icon

Table 1 Comparison of the Q factor measured in air or in liquid environment (PBS)

Tables Icon

Table 2 Q factor measured in liquid environment.

Metrics