Abstract

We demonstrate high-power high-efficiency cavity-enhanced second harmonic generation of an in-house built ultra-high spectral density (SBS-suppressed) 1178nm narrowband Raman fibre amplifier. Up to 14.5W 589nm CW emission is achieved with linewidth Δν 589<7MHz in a diffraction-limited beam, with peak external conversion efficiency of 86%. The inherently high spectral and spatial qualities of the 589nm source are particularly suited to both spectroscopic and Laser Guide Star applications, given the seed laser can be easily frequency-locked to the Na D2a emission line. Further, we expect the technology to be extendable, at similar or higher powers, to wavelengths limited only by the seed-pump-pair availability.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of tuneable 589nm radiation as a Na guide star source using an optical parametric amplifier

Malte Duering, Vesselin Kolev, and Barry Luther-Davies
Opt. Express 17(2) 437-446 (2009)

50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers

Luke R. Taylor, Yan Feng, and Domenico Bonaccini Calia
Opt. Express 18(8) 8540-8555 (2010)

References

  • View by:
  • |
  • |
  • |

  1. N. Ageorges and C. Dainty, Eds. Laser Guide Star Adaptive Optics for Astronom Kluwer (Academic Publishers, ISBN 0-7923-6381-7, 2000).
  2. C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW Single Frequency 589-nm FASOR,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, Eds., 98, OSA Trends in Optics and Photonics (Optical Society of America), paper 698 (2005).
  3. C. Denman, P. Hillman, G. Moore, J. Telle, J. Drummond, S. Novotny, M. Eickhoff, and R. Fugate, “Two-Frequency Sodium Guidestar Excitation at the Starfire Optical Range,” presentation at the Center for Adaptive Optics Fall Retreat (2006).
  4. D. M. Pennington, J. W. Dawson, A. Drobshoff, S. Payne, D. Bonaccini, W. Hackenberg, and L. Taylor, “Compact fibre laser for 589nm laser guide star generation,” Conference on Lasers and Electro-optics Europe, Cleo/Europe, 10.1109/CLEOE.2005.1568310, 532 (2005).
  5. A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fibre laser with 6.4W output for direct frequency doubling,” Opt. Express 15, 9, 5473–5476 (2007).
    [Crossref] [PubMed]
  6. S. Sinha, C. Langrock, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150nm ytterbium fibre oscillator,” Opt. Lett. 31(3), 347–349 (2006).
    [Crossref]
  7. A. Shirakawa, H. Murayama, K. Ueda, C. B. Olausson, J. K. Lyngsø, B. J. Mangan, and J. Broeng, “High-power Yb-doped solid-core photonic bandgap fibre amplifier at 1150–1200nm,” presented at Photonics West, SPIE, Fiber Lasers VI: Technology, Systems, and Applications (2009).
  8. S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F Digonnet, M. M. Fejer, and R. L. Byer, “Room-Temperature Stable Generation of 19 Watts of Single-Frequency 532-nm Radiation in a Periodically Poled Lithium Tantalate Crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
    [Crossref]
  9. T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fibre amplifier,” Opt. Express 16(3), 1546–1551 (2008).
    [Crossref]
  10. L. J. Nilsson, Y. Jeong, and P. Dupriez, “Fibre-based 589nm Laser for Sodium Guide Star,” Southampton University report note, Guide star final report SPC FA8655-04-1-3065 (2006).
  11. Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm Light Source based on Raman Fiber Laser,” Jpn. J. Appl. Phys. 43(6A), L722–L724 (2004).
    [Crossref]
  12. L. B. Sharma, “1.52W Frequency Doubled Fibre-Based Continuous Wave Orange Laser Radiation at 590nm,” Rev. Laser Eng. 33(2), 130–131(2005).
  13. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fibre laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
    [Crossref]
  14. L. Taylor, Y. Feng, D. Bonaccini Calia, and W. Hackenberg, “Multi-watt 589-nm Na D2-line generation via frequency doubling of a Raman fibre amplifier: a source for LGS-assisted AO,” Proc. SPIE 6272, 627249 (2006).
    [Crossref]
  15. D. Bonaccini Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fibre Raman laser for laser guide star adaptive optics,” Proc. SPIE 6272, 62721M (2006).
    [Crossref]
  16. Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fibre Raman amplifiers,” Opt. Express,  16(15), 10927–10932 (2008).
    [Crossref]
  17. Y. Feng, L. Taylor, and D. Bonaccini Calia, “20W CW, 4MHz linewidth Raman fibre amplifier with SHG to 589nm,” Proc. SPIE, Fiber Lasers VI: Technology, Systems, and Applications, D. V. Gapontsev, D. A. Kliner, J. W. Dawson, and K. Tankala Eds.,  7195, xvii-xviii (2009).
  18. Y. Feng, L. Taylor, and D. Bonaccini Calia, “80W-class 1120nm Raman fibre oscillator,” in preparation
  19. R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [Crossref]
  20. http://www.toptica.de/
  21. http://www.phasics.fr
  22. S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2(2), 71–76 (2005).
    [Crossref]
  23. R. Holzlöhner, L. Taylor, Y. Feng, D. B. Calia, and W. Hackenberg, “Modeling of spectral broadening in second-harmonic generation,” in CLEO/Europe and IQEC 2007 Conference Digest, Optical Society of America, paper CD_25 (2007).
  24. K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
    [Crossref]
  25. E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, “Large atom number Bose-Einstein condensation machines,” Rev. Sci. Instr. 77(2), 023106-023106-13 (2006).
    [Crossref]

2009 (1)

Y. Feng, L. Taylor, and D. Bonaccini Calia, “20W CW, 4MHz linewidth Raman fibre amplifier with SHG to 589nm,” Proc. SPIE, Fiber Lasers VI: Technology, Systems, and Applications, D. V. Gapontsev, D. A. Kliner, J. W. Dawson, and K. Tankala Eds.,  7195, xvii-xviii (2009).

2008 (3)

Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fibre Raman amplifiers,” Opt. Express,  16(15), 10927–10932 (2008).
[Crossref]

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F Digonnet, M. M. Fejer, and R. L. Byer, “Room-Temperature Stable Generation of 19 Watts of Single-Frequency 532-nm Radiation in a Periodically Poled Lithium Tantalate Crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
[Crossref]

T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fibre amplifier,” Opt. Express 16(3), 1546–1551 (2008).
[Crossref]

2007 (1)

2006 (4)

S. Sinha, C. Langrock, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150nm ytterbium fibre oscillator,” Opt. Lett. 31(3), 347–349 (2006).
[Crossref]

L. Taylor, Y. Feng, D. Bonaccini Calia, and W. Hackenberg, “Multi-watt 589-nm Na D2-line generation via frequency doubling of a Raman fibre amplifier: a source for LGS-assisted AO,” Proc. SPIE 6272, 627249 (2006).
[Crossref]

D. Bonaccini Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fibre Raman laser for laser guide star adaptive optics,” Proc. SPIE 6272, 62721M (2006).
[Crossref]

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, “Large atom number Bose-Einstein condensation machines,” Rev. Sci. Instr. 77(2), 023106-023106-13 (2006).
[Crossref]

2005 (3)

S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2(2), 71–76 (2005).
[Crossref]

L. B. Sharma, “1.52W Frequency Doubled Fibre-Based Continuous Wave Orange Laser Radiation at 590nm,” Rev. Laser Eng. 33(2), 130–131(2005).

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fibre laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
[Crossref]

2004 (1)

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm Light Source based on Raman Fiber Laser,” Jpn. J. Appl. Phys. 43(6A), L722–L724 (2004).
[Crossref]

1995 (1)

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref]

1983 (1)

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Andrews, M. R.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref]

Bigot, L.

Bonaccini, D.

D. M. Pennington, J. W. Dawson, A. Drobshoff, S. Payne, D. Bonaccini, W. Hackenberg, and L. Taylor, “Compact fibre laser for 589nm laser guide star generation,” Conference on Lasers and Electro-optics Europe, Cleo/Europe, 10.1109/CLEOE.2005.1568310, 532 (2005).

Bonaccini Calia, D.

Y. Feng, L. Taylor, and D. Bonaccini Calia, “20W CW, 4MHz linewidth Raman fibre amplifier with SHG to 589nm,” Proc. SPIE, Fiber Lasers VI: Technology, Systems, and Applications, D. V. Gapontsev, D. A. Kliner, J. W. Dawson, and K. Tankala Eds.,  7195, xvii-xviii (2009).

Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fibre Raman amplifiers,” Opt. Express,  16(15), 10927–10932 (2008).
[Crossref]

L. Taylor, Y. Feng, D. Bonaccini Calia, and W. Hackenberg, “Multi-watt 589-nm Na D2-line generation via frequency doubling of a Raman fibre amplifier: a source for LGS-assisted AO,” Proc. SPIE 6272, 627249 (2006).
[Crossref]

D. Bonaccini Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fibre Raman laser for laser guide star adaptive optics,” Proc. SPIE 6272, 62721M (2006).
[Crossref]

Y. Feng, L. Taylor, and D. Bonaccini Calia, “80W-class 1120nm Raman fibre oscillator,” in preparation

Bouwmans, G.

Boyd, M.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, “Large atom number Bose-Einstein condensation machines,” Rev. Sci. Instr. 77(2), 023106-023106-13 (2006).
[Crossref]

Broeng, J.

A. Shirakawa, H. Murayama, K. Ueda, C. B. Olausson, J. K. Lyngsø, B. J. Mangan, and J. Broeng, “High-power Yb-doped solid-core photonic bandgap fibre amplifier at 1150–1200nm,” presented at Photonics West, SPIE, Fiber Lasers VI: Technology, Systems, and Applications (2009).

Byer, R. L.

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F Digonnet, M. M. Fejer, and R. L. Byer, “Room-Temperature Stable Generation of 19 Watts of Single-Frequency 532-nm Radiation in a Periodically Poled Lithium Tantalate Crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
[Crossref]

S. Sinha, C. Langrock, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150nm ytterbium fibre oscillator,” Opt. Lett. 31(3), 347–349 (2006).
[Crossref]

Calia, D. B.

R. Holzlöhner, L. Taylor, Y. Feng, D. B. Calia, and W. Hackenberg, “Modeling of spectral broadening in second-harmonic generation,” in CLEO/Europe and IQEC 2007 Conference Digest, Optical Society of America, paper CD_25 (2007).

Campbell, G.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, “Large atom number Bose-Einstein condensation machines,” Rev. Sci. Instr. 77(2), 023106-023106-13 (2006).
[Crossref]

Chernikov, S.

D. Bonaccini Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fibre Raman laser for laser guide star adaptive optics,” Proc. SPIE 6272, 62721M (2006).
[Crossref]

Chikkatur, A.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, “Large atom number Bose-Einstein condensation machines,” Rev. Sci. Instr. 77(2), 023106-023106-13 (2006).
[Crossref]

Davis, K. B.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref]

Dawson, J. W.

D. M. Pennington, J. W. Dawson, A. Drobshoff, S. Payne, D. Bonaccini, W. Hackenberg, and L. Taylor, “Compact fibre laser for 589nm laser guide star generation,” Conference on Lasers and Electro-optics Europe, Cleo/Europe, 10.1109/CLEOE.2005.1568310, 532 (2005).

Deninger, A.

S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2(2), 71–76 (2005).
[Crossref]

Denman, C.

C. Denman, P. Hillman, G. Moore, J. Telle, J. Drummond, S. Novotny, M. Eickhoff, and R. Fugate, “Two-Frequency Sodium Guidestar Excitation at the Starfire Optical Range,” presentation at the Center for Adaptive Optics Fall Retreat (2006).

Denman, C. A.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW Single Frequency 589-nm FASOR,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, Eds., 98, OSA Trends in Optics and Photonics (Optical Society of America), paper 698 (2005).

Digonnet, M. J. F

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F Digonnet, M. M. Fejer, and R. L. Byer, “Room-Temperature Stable Generation of 19 Watts of Single-Frequency 532-nm Radiation in a Periodically Poled Lithium Tantalate Crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
[Crossref]

Digonnet, M. J. F.

S. Sinha, C. Langrock, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150nm ytterbium fibre oscillator,” Opt. Lett. 31(3), 347–349 (2006).
[Crossref]

Drever, R. W.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Drobshoff, A.

D. M. Pennington, J. W. Dawson, A. Drobshoff, S. Payne, D. Bonaccini, W. Hackenberg, and L. Taylor, “Compact fibre laser for 589nm laser guide star generation,” Conference on Lasers and Electro-optics Europe, Cleo/Europe, 10.1109/CLEOE.2005.1568310, 532 (2005).

Dronov, A. G.

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fibre laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
[Crossref]

Drummond, J.

C. Denman, P. Hillman, G. Moore, J. Telle, J. Drummond, S. Novotny, M. Eickhoff, and R. Fugate, “Two-Frequency Sodium Guidestar Excitation at the Starfire Optical Range,” presentation at the Center for Adaptive Optics Fall Retreat (2006).

Drummond, J. D.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW Single Frequency 589-nm FASOR,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, Eds., 98, OSA Trends in Optics and Photonics (Optical Society of America), paper 698 (2005).

Dupriez, P.

L. J. Nilsson, Y. Jeong, and P. Dupriez, “Fibre-based 589nm Laser for Sodium Guide Star,” Southampton University report note, Guide star final report SPC FA8655-04-1-3065 (2006).

Durfee, D. S.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref]

Eguchi, N.

T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fibre amplifier,” Opt. Express 16(3), 1546–1551 (2008).
[Crossref]

Eickhoff, M.

C. Denman, P. Hillman, G. Moore, J. Telle, J. Drummond, S. Novotny, M. Eickhoff, and R. Fugate, “Two-Frequency Sodium Guidestar Excitation at the Starfire Optical Range,” presentation at the Center for Adaptive Optics Fall Retreat (2006).

Fejer, M. M.

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F Digonnet, M. M. Fejer, and R. L. Byer, “Room-Temperature Stable Generation of 19 Watts of Single-Frequency 532-nm Radiation in a Periodically Poled Lithium Tantalate Crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
[Crossref]

S. Sinha, C. Langrock, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150nm ytterbium fibre oscillator,” Opt. Lett. 31(3), 347–349 (2006).
[Crossref]

Feng, Y.

Y. Feng, L. Taylor, and D. Bonaccini Calia, “20W CW, 4MHz linewidth Raman fibre amplifier with SHG to 589nm,” Proc. SPIE, Fiber Lasers VI: Technology, Systems, and Applications, D. V. Gapontsev, D. A. Kliner, J. W. Dawson, and K. Tankala Eds.,  7195, xvii-xviii (2009).

Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fibre Raman amplifiers,” Opt. Express,  16(15), 10927–10932 (2008).
[Crossref]

D. Bonaccini Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fibre Raman laser for laser guide star adaptive optics,” Proc. SPIE 6272, 62721M (2006).
[Crossref]

L. Taylor, Y. Feng, D. Bonaccini Calia, and W. Hackenberg, “Multi-watt 589-nm Na D2-line generation via frequency doubling of a Raman fibre amplifier: a source for LGS-assisted AO,” Proc. SPIE 6272, 627249 (2006).
[Crossref]

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm Light Source based on Raman Fiber Laser,” Jpn. J. Appl. Phys. 43(6A), L722–L724 (2004).
[Crossref]

Y. Feng, L. Taylor, and D. Bonaccini Calia, “80W-class 1120nm Raman fibre oscillator,” in preparation

R. Holzlöhner, L. Taylor, Y. Feng, D. B. Calia, and W. Hackenberg, “Modeling of spectral broadening in second-harmonic generation,” in CLEO/Europe and IQEC 2007 Conference Digest, Optical Society of America, paper CD_25 (2007).

Ferin, A. A.

Ford, G. M.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Fortágh, J.

S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2(2), 71–76 (2005).
[Crossref]

Fugate, R.

C. Denman, P. Hillman, G. Moore, J. Telle, J. Drummond, S. Novotny, M. Eickhoff, and R. Fugate, “Two-Frequency Sodium Guidestar Excitation at the Starfire Optical Range,” presentation at the Center for Adaptive Optics Fall Retreat (2006).

Fugate, R. Q.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW Single Frequency 589-nm FASOR,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, Eds., 98, OSA Trends in Optics and Photonics (Optical Society of America), paper 698 (2005).

Gapontsev, V. P.

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fibre laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
[Crossref]

Georgiev, D.

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fibre laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
[Crossref]

Gustavson, T.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, “Large atom number Bose-Einstein condensation machines,” Rev. Sci. Instr. 77(2), 023106-023106-13 (2006).
[Crossref]

Hackenberg, W.

D. Bonaccini Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fibre Raman laser for laser guide star adaptive optics,” Proc. SPIE 6272, 62721M (2006).
[Crossref]

L. Taylor, Y. Feng, D. Bonaccini Calia, and W. Hackenberg, “Multi-watt 589-nm Na D2-line generation via frequency doubling of a Raman fibre amplifier: a source for LGS-assisted AO,” Proc. SPIE 6272, 627249 (2006).
[Crossref]

R. Holzlöhner, L. Taylor, Y. Feng, D. B. Calia, and W. Hackenberg, “Modeling of spectral broadening in second-harmonic generation,” in CLEO/Europe and IQEC 2007 Conference Digest, Optical Society of America, paper CD_25 (2007).

D. M. Pennington, J. W. Dawson, A. Drobshoff, S. Payne, D. Bonaccini, W. Hackenberg, and L. Taylor, “Compact fibre laser for 589nm laser guide star generation,” Conference on Lasers and Electro-optics Europe, Cleo/Europe, 10.1109/CLEOE.2005.1568310, 532 (2005).

Hall, J. L.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Hillman, P.

C. Denman, P. Hillman, G. Moore, J. Telle, J. Drummond, S. Novotny, M. Eickhoff, and R. Fugate, “Two-Frequency Sodium Guidestar Excitation at the Starfire Optical Range,” presentation at the Center for Adaptive Optics Fall Retreat (2006).

Hillman, P. D.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW Single Frequency 589-nm FASOR,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, Eds., 98, OSA Trends in Optics and Photonics (Optical Society of America), paper 698 (2005).

Holzlöhner, R.

R. Holzlöhner, L. Taylor, Y. Feng, D. B. Calia, and W. Hackenberg, “Modeling of spectral broadening in second-harmonic generation,” in CLEO/Europe and IQEC 2007 Conference Digest, Optical Society of America, paper CD_25 (2007).

Hough, J.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Huang, S.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm Light Source based on Raman Fiber Laser,” Jpn. J. Appl. Phys. 43(6A), L722–L724 (2004).
[Crossref]

Hum, D. S.

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F Digonnet, M. M. Fejer, and R. L. Byer, “Room-Temperature Stable Generation of 19 Watts of Single-Frequency 532-nm Radiation in a Periodically Poled Lithium Tantalate Crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
[Crossref]

Imai, Y.

T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fibre amplifier,” Opt. Express 16(3), 1546–1551 (2008).
[Crossref]

Jeong, Y.

L. J. Nilsson, Y. Jeong, and P. Dupriez, “Fibre-based 589nm Laser for Sodium Guide Star,” Southampton University report note, Guide star final report SPC FA8655-04-1-3065 (2006).

Ketterle, W.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, “Large atom number Bose-Einstein condensation machines,” Rev. Sci. Instr. 77(2), 023106-023106-13 (2006).
[Crossref]

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref]

Kowalski, F. V.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Kraft, S.

S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2(2), 71–76 (2005).
[Crossref]

Kubota, S.

T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fibre amplifier,” Opt. Express 16(3), 1546–1551 (2008).
[Crossref]

Kurn, D. M.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref]

Langrock, C.

S. Sinha, C. Langrock, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150nm ytterbium fibre oscillator,” Opt. Lett. 31(3), 347–349 (2006).
[Crossref]

Lee, Y.

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F Digonnet, M. M. Fejer, and R. L. Byer, “Room-Temperature Stable Generation of 19 Watts of Single-Frequency 532-nm Radiation in a Periodically Poled Lithium Tantalate Crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
[Crossref]

Lison, F.

S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2(2), 71–76 (2005).
[Crossref]

Lyngsø, J. K.

A. Shirakawa, H. Murayama, K. Ueda, C. B. Olausson, J. K. Lyngsø, B. J. Mangan, and J. Broeng, “High-power Yb-doped solid-core photonic bandgap fibre amplifier at 1150–1200nm,” presented at Photonics West, SPIE, Fiber Lasers VI: Technology, Systems, and Applications (2009).

Mangan, B. J.

A. Shirakawa, H. Murayama, K. Ueda, C. B. Olausson, J. K. Lyngsø, B. J. Mangan, and J. Broeng, “High-power Yb-doped solid-core photonic bandgap fibre amplifier at 1150–1200nm,” presented at Photonics West, SPIE, Fiber Lasers VI: Technology, Systems, and Applications (2009).

Masuda, H.

T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fibre amplifier,” Opt. Express 16(3), 1546–1551 (2008).
[Crossref]

Mewes, M. O.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref]

Moore, G.

C. Denman, P. Hillman, G. Moore, J. Telle, J. Drummond, S. Novotny, M. Eickhoff, and R. Fugate, “Two-Frequency Sodium Guidestar Excitation at the Starfire Optical Range,” presentation at the Center for Adaptive Optics Fall Retreat (2006).

Moore, G. T.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW Single Frequency 589-nm FASOR,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, Eds., 98, OSA Trends in Optics and Photonics (Optical Society of America), paper 698 (2005).

Munley, A. J.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Murayama, H.

A. Shirakawa, H. Murayama, K. Ueda, C. B. Olausson, J. K. Lyngsø, B. J. Mangan, and J. Broeng, “High-power Yb-doped solid-core photonic bandgap fibre amplifier at 1150–1200nm,” presented at Photonics West, SPIE, Fiber Lasers VI: Technology, Systems, and Applications (2009).

Nilsson, L. J.

L. J. Nilsson, Y. Jeong, and P. Dupriez, “Fibre-based 589nm Laser for Sodium Guide Star,” Southampton University report note, Guide star final report SPC FA8655-04-1-3065 (2006).

Novotny, S.

C. Denman, P. Hillman, G. Moore, J. Telle, J. Drummond, S. Novotny, M. Eickhoff, and R. Fugate, “Two-Frequency Sodium Guidestar Excitation at the Starfire Optical Range,” presentation at the Center for Adaptive Optics Fall Retreat (2006).

Olausson, C. B.

A. Shirakawa, H. Murayama, K. Ueda, C. B. Olausson, J. K. Lyngsø, B. J. Mangan, and J. Broeng, “High-power Yb-doped solid-core photonic bandgap fibre amplifier at 1150–1200nm,” presented at Photonics West, SPIE, Fiber Lasers VI: Technology, Systems, and Applications (2009).

Payne, S.

D. M. Pennington, J. W. Dawson, A. Drobshoff, S. Payne, D. Bonaccini, W. Hackenberg, and L. Taylor, “Compact fibre laser for 589nm laser guide star generation,” Conference on Lasers and Electro-optics Europe, Cleo/Europe, 10.1109/CLEOE.2005.1568310, 532 (2005).

Pennington, D. M.

D. M. Pennington, J. W. Dawson, A. Drobshoff, S. Payne, D. Bonaccini, W. Hackenberg, and L. Taylor, “Compact fibre laser for 589nm laser guide star generation,” Conference on Lasers and Electro-optics Europe, Cleo/Europe, 10.1109/CLEOE.2005.1568310, 532 (2005).

Popov, S. V.

A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fibre laser with 6.4W output for direct frequency doubling,” Opt. Express 15, 9, 5473–5476 (2007).
[Crossref] [PubMed]

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fibre laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
[Crossref]

Preston, J. E.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW Single Frequency 589-nm FASOR,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, Eds., 98, OSA Trends in Optics and Photonics (Optical Society of America), paper 698 (2005).

Pritchard, D.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, “Large atom number Bose-Einstein condensation machines,” Rev. Sci. Instr. 77(2), 023106-023106-13 (2006).
[Crossref]

Razdobreev, I.

Rulkov, A. B.

A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fibre laser with 6.4W output for direct frequency doubling,” Opt. Express 15, 9, 5473–5476 (2007).
[Crossref] [PubMed]

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fibre laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
[Crossref]

Saito, M.

T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fibre amplifier,” Opt. Express 16(3), 1546–1551 (2008).
[Crossref]

Schneble, D.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, “Large atom number Bose-Einstein condensation machines,” Rev. Sci. Instr. 77(2), 023106-023106-13 (2006).
[Crossref]

Sharma, L. B.

L. B. Sharma, “1.52W Frequency Doubled Fibre-Based Continuous Wave Orange Laser Radiation at 590nm,” Rev. Laser Eng. 33(2), 130–131(2005).

Shirakawa, A.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm Light Source based on Raman Fiber Laser,” Jpn. J. Appl. Phys. 43(6A), L722–L724 (2004).
[Crossref]

A. Shirakawa, H. Murayama, K. Ueda, C. B. Olausson, J. K. Lyngsø, B. J. Mangan, and J. Broeng, “High-power Yb-doped solid-core photonic bandgap fibre amplifier at 1150–1200nm,” presented at Photonics West, SPIE, Fiber Lasers VI: Technology, Systems, and Applications (2009).

Sinha, S.

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F Digonnet, M. M. Fejer, and R. L. Byer, “Room-Temperature Stable Generation of 19 Watts of Single-Frequency 532-nm Radiation in a Periodically Poled Lithium Tantalate Crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
[Crossref]

S. Sinha, C. Langrock, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150nm ytterbium fibre oscillator,” Opt. Lett. 31(3), 347–349 (2006).
[Crossref]

Streed, E.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, “Large atom number Bose-Einstein condensation machines,” Rev. Sci. Instr. 77(2), 023106-023106-13 (2006).
[Crossref]

Südmeyer, T.

T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fibre amplifier,” Opt. Express 16(3), 1546–1551 (2008).
[Crossref]

Taylor, J. R.

A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fibre laser with 6.4W output for direct frequency doubling,” Opt. Express 15, 9, 5473–5476 (2007).
[Crossref] [PubMed]

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fibre laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
[Crossref]

Taylor, L.

Y. Feng, L. Taylor, and D. Bonaccini Calia, “20W CW, 4MHz linewidth Raman fibre amplifier with SHG to 589nm,” Proc. SPIE, Fiber Lasers VI: Technology, Systems, and Applications, D. V. Gapontsev, D. A. Kliner, J. W. Dawson, and K. Tankala Eds.,  7195, xvii-xviii (2009).

Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fibre Raman amplifiers,” Opt. Express,  16(15), 10927–10932 (2008).
[Crossref]

D. Bonaccini Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fibre Raman laser for laser guide star adaptive optics,” Proc. SPIE 6272, 62721M (2006).
[Crossref]

L. Taylor, Y. Feng, D. Bonaccini Calia, and W. Hackenberg, “Multi-watt 589-nm Na D2-line generation via frequency doubling of a Raman fibre amplifier: a source for LGS-assisted AO,” Proc. SPIE 6272, 627249 (2006).
[Crossref]

Y. Feng, L. Taylor, and D. Bonaccini Calia, “80W-class 1120nm Raman fibre oscillator,” in preparation

D. M. Pennington, J. W. Dawson, A. Drobshoff, S. Payne, D. Bonaccini, W. Hackenberg, and L. Taylor, “Compact fibre laser for 589nm laser guide star generation,” Conference on Lasers and Electro-optics Europe, Cleo/Europe, 10.1109/CLEOE.2005.1568310, 532 (2005).

R. Holzlöhner, L. Taylor, Y. Feng, D. B. Calia, and W. Hackenberg, “Modeling of spectral broadening in second-harmonic generation,” in CLEO/Europe and IQEC 2007 Conference Digest, Optical Society of America, paper CD_25 (2007).

Telle, J.

C. Denman, P. Hillman, G. Moore, J. Telle, J. Drummond, S. Novotny, M. Eickhoff, and R. Fugate, “Two-Frequency Sodium Guidestar Excitation at the Starfire Optical Range,” presentation at the Center for Adaptive Optics Fall Retreat (2006).

Telle, J. M.

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW Single Frequency 589-nm FASOR,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, Eds., 98, OSA Trends in Optics and Photonics (Optical Society of America), paper 698 (2005).

Torii, Y.

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, “Large atom number Bose-Einstein condensation machines,” Rev. Sci. Instr. 77(2), 023106-023106-13 (2006).
[Crossref]

Trück, C.

S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2(2), 71–76 (2005).
[Crossref]

Ueda, K.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm Light Source based on Raman Fiber Laser,” Jpn. J. Appl. Phys. 43(6A), L722–L724 (2004).
[Crossref]

A. Shirakawa, H. Murayama, K. Ueda, C. B. Olausson, J. K. Lyngsø, B. J. Mangan, and J. Broeng, “High-power Yb-doped solid-core photonic bandgap fibre amplifier at 1150–1200nm,” presented at Photonics West, SPIE, Fiber Lasers VI: Technology, Systems, and Applications (2009).

Urbanek, K. E.

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F Digonnet, M. M. Fejer, and R. L. Byer, “Room-Temperature Stable Generation of 19 Watts of Single-Frequency 532-nm Radiation in a Periodically Poled Lithium Tantalate Crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
[Crossref]

van Druten, N. J.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref]

Vyatkin, M. Y.

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fibre laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
[Crossref]

Ward, H.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Zimmermann, C.

S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2(2), 71–76 (2005).
[Crossref]

Appl. Phys. B (1)

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

J. Lightwave Technol. (1)

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F Digonnet, M. M. Fejer, and R. L. Byer, “Room-Temperature Stable Generation of 19 Watts of Single-Frequency 532-nm Radiation in a Periodically Poled Lithium Tantalate Crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm Light Source based on Raman Fiber Laser,” Jpn. J. Appl. Phys. 43(6A), L722–L724 (2004).
[Crossref]

Laser Phys. Lett. (1)

S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, and C. Zimmermann, “Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode,” Laser Phys. Lett. 2(2), 71–76 (2005).
[Crossref]

Opt. Express (4)

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fibre laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
[Crossref]

Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fibre Raman amplifiers,” Opt. Express,  16(15), 10927–10932 (2008).
[Crossref]

T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fibre amplifier,” Opt. Express 16(3), 1546–1551 (2008).
[Crossref]

A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fibre laser with 6.4W output for direct frequency doubling,” Opt. Express 15, 9, 5473–5476 (2007).
[Crossref] [PubMed]

Opt. Lett. (1)

S. Sinha, C. Langrock, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150nm ytterbium fibre oscillator,” Opt. Lett. 31(3), 347–349 (2006).
[Crossref]

Phys. Rev. Lett. (1)

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75(22), 3969–3973 (1995).
[Crossref]

Proc. SPIE (3)

Y. Feng, L. Taylor, and D. Bonaccini Calia, “20W CW, 4MHz linewidth Raman fibre amplifier with SHG to 589nm,” Proc. SPIE, Fiber Lasers VI: Technology, Systems, and Applications, D. V. Gapontsev, D. A. Kliner, J. W. Dawson, and K. Tankala Eds.,  7195, xvii-xviii (2009).

L. Taylor, Y. Feng, D. Bonaccini Calia, and W. Hackenberg, “Multi-watt 589-nm Na D2-line generation via frequency doubling of a Raman fibre amplifier: a source for LGS-assisted AO,” Proc. SPIE 6272, 627249 (2006).
[Crossref]

D. Bonaccini Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fibre Raman laser for laser guide star adaptive optics,” Proc. SPIE 6272, 62721M (2006).
[Crossref]

Rev. Laser Eng. (1)

L. B. Sharma, “1.52W Frequency Doubled Fibre-Based Continuous Wave Orange Laser Radiation at 590nm,” Rev. Laser Eng. 33(2), 130–131(2005).

Rev. Sci. Instr. (1)

E. Streed, A. Chikkatur, T. Gustavson, M. Boyd, Y. Torii, D. Schneble, G. Campbell, D. Pritchard, and W. Ketterle, “Large atom number Bose-Einstein condensation machines,” Rev. Sci. Instr. 77(2), 023106-023106-13 (2006).
[Crossref]

Other (10)

R. Holzlöhner, L. Taylor, Y. Feng, D. B. Calia, and W. Hackenberg, “Modeling of spectral broadening in second-harmonic generation,” in CLEO/Europe and IQEC 2007 Conference Digest, Optical Society of America, paper CD_25 (2007).

Y. Feng, L. Taylor, and D. Bonaccini Calia, “80W-class 1120nm Raman fibre oscillator,” in preparation

http://www.toptica.de/

http://www.phasics.fr

A. Shirakawa, H. Murayama, K. Ueda, C. B. Olausson, J. K. Lyngsø, B. J. Mangan, and J. Broeng, “High-power Yb-doped solid-core photonic bandgap fibre amplifier at 1150–1200nm,” presented at Photonics West, SPIE, Fiber Lasers VI: Technology, Systems, and Applications (2009).

L. J. Nilsson, Y. Jeong, and P. Dupriez, “Fibre-based 589nm Laser for Sodium Guide Star,” Southampton University report note, Guide star final report SPC FA8655-04-1-3065 (2006).

N. Ageorges and C. Dainty, Eds. Laser Guide Star Adaptive Optics for Astronom Kluwer (Academic Publishers, ISBN 0-7923-6381-7, 2000).

C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW Single Frequency 589-nm FASOR,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, Eds., 98, OSA Trends in Optics and Photonics (Optical Society of America), paper 698 (2005).

C. Denman, P. Hillman, G. Moore, J. Telle, J. Drummond, S. Novotny, M. Eickhoff, and R. Fugate, “Two-Frequency Sodium Guidestar Excitation at the Starfire Optical Range,” presentation at the Center for Adaptive Optics Fall Retreat (2006).

D. M. Pennington, J. W. Dawson, A. Drobshoff, S. Payne, D. Bonaccini, W. Hackenberg, and L. Taylor, “Compact fibre laser for 589nm laser guide star generation,” Conference on Lasers and Electro-optics Europe, Cleo/Europe, 10.1109/CLEOE.2005.1568310, 532 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the experimental configuration

Fig. 2.
Fig. 2.

(a). (left) Visible power vs. incident IR power (inset: 589nm spatial profile taken at 10W); Fig. 2. (b). (right) External conversion efficiency to 589nm, for various input coupler reflectivities

Fig. 3.
Fig. 3.

Fourier-transform of the fast variations of the visible output, based on a 1ms period sampled at 200Ms.s-1.

Fig. 4.
Fig. 4.

(a) (left) IR spectrum scanned at vsc~15MHz.ms-1, and Fig. 4. (b) (right) Visible spectrum scanned at vsc~7.8MHz.ms-1. Both plane-plane scanning Fabry-Pérot Optical Spectrum Analysers have a FSR~1GHz, and their finesse is f>500. The inserted graphs show the OSA scanning range, proving the IR output is spectrally clean.

Metrics