Abstract

We report the development of a counter-propagating, broadband vibrational sum-frequency generation spectrometer based on a Ti:sapphire regenerative amplifier. We present simple procedures for aligning the spectrometer and for setting the timing of the IR and visible pulses. We demonstrate that the use of this geometry offers a number of important advantages over a co-propagating geometry, including a high dynamic range, reduced nonresonant background signal at buried interfaces, and minimal beam deviation upon changing samples.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. B. Eisenthal, "Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy," Chem. Rev. 96, 1343-1360 (1996).
    [CrossRef] [PubMed]
  2. Z. Chen, Y. R. Shen, and G. A. Somorjai, "Studies of polymer surfaces by sum frequency generation vibrational spectroscopy," Annu. Rev. Phys. Chem. 53, 437-465 (2002).
    [CrossRef] [PubMed]
  3. G. L. Richmond, "Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy," Chem. Rev. 102, 2693-2724 (2002).
    [CrossRef] [PubMed]
  4. F. Vidal and A. Tadjeddine, "Sum-frequency generation spectroscopy of interfaces," Rep. Prog. Phys. 68, 1095-1127 (2005).
    [CrossRef]
  5. H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, "Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)," Int. Rev. Phys. Chem. 24, 191-256 (2005).
    [CrossRef]
  6. L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, "Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses," Opt. Lett. 23, 1594-1596 (1998).
    [CrossRef]
  7. Q1. E. W. M. vanderHam, Q. H. F. Vrehen, and E. R. Eliel, "Self-dispersive sum-frequency generation at interfaces," Opt. Lett. 21, 1448-1450 (1996).
    [CrossRef]
  8. X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, "Mapping molecular orientation and conformation at interfaces by surface nonlinear optics," Phys. Rev. B 59, 12632-12640 (1999).
    [CrossRef]
  9. R. Lu, W. Gan, B. H. Wu, H. Chen, and H. F. Wang, "Vibrational polarization spectroscopy of CH stretching modes of the methylene group at the vapor/liquid interfaces with sum frequency generation," J. Phys. Chem. B 108, 7297-7306 (2004).
    [CrossRef]
  10. W. Gan, D. Wu, Z. Zhang, R. R. Feng, and H. F. Wang, "Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface," J. Chem. Phys. 124, 114705 (2006).
    [CrossRef] [PubMed]
  11. H. C. Allen, D. E. Gragson, and G. L. Richmond, "Molecular structure and adsorption of dimethyl sulfoxide at the surface of aqueous solutions," J. Phys. Chem. B 103, 660-666 (1999).
    [CrossRef]
  12. J. T. Fourkas, R. A. Walker, S. Z. Can, and E. Gershgoren, "Effects of reorientation in vibrational sum-frequency spectroscopy," J. Phys. Chem. C 111, 8902-8915 (2007).
    [CrossRef]

2007 (1)

J. T. Fourkas, R. A. Walker, S. Z. Can, and E. Gershgoren, "Effects of reorientation in vibrational sum-frequency spectroscopy," J. Phys. Chem. C 111, 8902-8915 (2007).
[CrossRef]

2006 (1)

W. Gan, D. Wu, Z. Zhang, R. R. Feng, and H. F. Wang, "Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface," J. Chem. Phys. 124, 114705 (2006).
[CrossRef] [PubMed]

2005 (2)

F. Vidal and A. Tadjeddine, "Sum-frequency generation spectroscopy of interfaces," Rep. Prog. Phys. 68, 1095-1127 (2005).
[CrossRef]

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, "Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)," Int. Rev. Phys. Chem. 24, 191-256 (2005).
[CrossRef]

2004 (1)

R. Lu, W. Gan, B. H. Wu, H. Chen, and H. F. Wang, "Vibrational polarization spectroscopy of CH stretching modes of the methylene group at the vapor/liquid interfaces with sum frequency generation," J. Phys. Chem. B 108, 7297-7306 (2004).
[CrossRef]

2002 (2)

Z. Chen, Y. R. Shen, and G. A. Somorjai, "Studies of polymer surfaces by sum frequency generation vibrational spectroscopy," Annu. Rev. Phys. Chem. 53, 437-465 (2002).
[CrossRef] [PubMed]

G. L. Richmond, "Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy," Chem. Rev. 102, 2693-2724 (2002).
[CrossRef] [PubMed]

1999 (2)

X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, "Mapping molecular orientation and conformation at interfaces by surface nonlinear optics," Phys. Rev. B 59, 12632-12640 (1999).
[CrossRef]

H. C. Allen, D. E. Gragson, and G. L. Richmond, "Molecular structure and adsorption of dimethyl sulfoxide at the surface of aqueous solutions," J. Phys. Chem. B 103, 660-666 (1999).
[CrossRef]

1998 (1)

1996 (2)

Q1. E. W. M. vanderHam, Q. H. F. Vrehen, and E. R. Eliel, "Self-dispersive sum-frequency generation at interfaces," Opt. Lett. 21, 1448-1450 (1996).
[CrossRef]

K. B. Eisenthal, "Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy," Chem. Rev. 96, 1343-1360 (1996).
[CrossRef] [PubMed]

Allen, H. C.

H. C. Allen, D. E. Gragson, and G. L. Richmond, "Molecular structure and adsorption of dimethyl sulfoxide at the surface of aqueous solutions," J. Phys. Chem. B 103, 660-666 (1999).
[CrossRef]

Can, S. Z.

J. T. Fourkas, R. A. Walker, S. Z. Can, and E. Gershgoren, "Effects of reorientation in vibrational sum-frequency spectroscopy," J. Phys. Chem. C 111, 8902-8915 (2007).
[CrossRef]

Chen, H.

R. Lu, W. Gan, B. H. Wu, H. Chen, and H. F. Wang, "Vibrational polarization spectroscopy of CH stretching modes of the methylene group at the vapor/liquid interfaces with sum frequency generation," J. Phys. Chem. B 108, 7297-7306 (2004).
[CrossRef]

Chen, Z.

Z. Chen, Y. R. Shen, and G. A. Somorjai, "Studies of polymer surfaces by sum frequency generation vibrational spectroscopy," Annu. Rev. Phys. Chem. 53, 437-465 (2002).
[CrossRef] [PubMed]

Eisenthal, K. B.

K. B. Eisenthal, "Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy," Chem. Rev. 96, 1343-1360 (1996).
[CrossRef] [PubMed]

Feng, R. R.

W. Gan, D. Wu, Z. Zhang, R. R. Feng, and H. F. Wang, "Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface," J. Chem. Phys. 124, 114705 (2006).
[CrossRef] [PubMed]

Fourkas, J. T.

J. T. Fourkas, R. A. Walker, S. Z. Can, and E. Gershgoren, "Effects of reorientation in vibrational sum-frequency spectroscopy," J. Phys. Chem. C 111, 8902-8915 (2007).
[CrossRef]

Gan, W.

W. Gan, D. Wu, Z. Zhang, R. R. Feng, and H. F. Wang, "Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface," J. Chem. Phys. 124, 114705 (2006).
[CrossRef] [PubMed]

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, "Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)," Int. Rev. Phys. Chem. 24, 191-256 (2005).
[CrossRef]

R. Lu, W. Gan, B. H. Wu, H. Chen, and H. F. Wang, "Vibrational polarization spectroscopy of CH stretching modes of the methylene group at the vapor/liquid interfaces with sum frequency generation," J. Phys. Chem. B 108, 7297-7306 (2004).
[CrossRef]

Gershgoren, E.

J. T. Fourkas, R. A. Walker, S. Z. Can, and E. Gershgoren, "Effects of reorientation in vibrational sum-frequency spectroscopy," J. Phys. Chem. C 111, 8902-8915 (2007).
[CrossRef]

Gragson, D. E.

H. C. Allen, D. E. Gragson, and G. L. Richmond, "Molecular structure and adsorption of dimethyl sulfoxide at the surface of aqueous solutions," J. Phys. Chem. B 103, 660-666 (1999).
[CrossRef]

Kim, D.

X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, "Mapping molecular orientation and conformation at interfaces by surface nonlinear optics," Phys. Rev. B 59, 12632-12640 (1999).
[CrossRef]

Lu, R.

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, "Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)," Int. Rev. Phys. Chem. 24, 191-256 (2005).
[CrossRef]

R. Lu, W. Gan, B. H. Wu, H. Chen, and H. F. Wang, "Vibrational polarization spectroscopy of CH stretching modes of the methylene group at the vapor/liquid interfaces with sum frequency generation," J. Phys. Chem. B 108, 7297-7306 (2004).
[CrossRef]

Miranda, P. B.

X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, "Mapping molecular orientation and conformation at interfaces by surface nonlinear optics," Phys. Rev. B 59, 12632-12640 (1999).
[CrossRef]

Petralli-Mallow, T. P.

Rao, Y.

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, "Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)," Int. Rev. Phys. Chem. 24, 191-256 (2005).
[CrossRef]

Richmond, G. L.

G. L. Richmond, "Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy," Chem. Rev. 102, 2693-2724 (2002).
[CrossRef] [PubMed]

H. C. Allen, D. E. Gragson, and G. L. Richmond, "Molecular structure and adsorption of dimethyl sulfoxide at the surface of aqueous solutions," J. Phys. Chem. B 103, 660-666 (1999).
[CrossRef]

Richter, L. J.

Shen, Y. R.

Z. Chen, Y. R. Shen, and G. A. Somorjai, "Studies of polymer surfaces by sum frequency generation vibrational spectroscopy," Annu. Rev. Phys. Chem. 53, 437-465 (2002).
[CrossRef] [PubMed]

X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, "Mapping molecular orientation and conformation at interfaces by surface nonlinear optics," Phys. Rev. B 59, 12632-12640 (1999).
[CrossRef]

Somorjai, G. A.

Z. Chen, Y. R. Shen, and G. A. Somorjai, "Studies of polymer surfaces by sum frequency generation vibrational spectroscopy," Annu. Rev. Phys. Chem. 53, 437-465 (2002).
[CrossRef] [PubMed]

Stephenson, J. C.

Tadjeddine, A.

F. Vidal and A. Tadjeddine, "Sum-frequency generation spectroscopy of interfaces," Rep. Prog. Phys. 68, 1095-1127 (2005).
[CrossRef]

Vidal, F.

F. Vidal and A. Tadjeddine, "Sum-frequency generation spectroscopy of interfaces," Rep. Prog. Phys. 68, 1095-1127 (2005).
[CrossRef]

Walker, R. A.

J. T. Fourkas, R. A. Walker, S. Z. Can, and E. Gershgoren, "Effects of reorientation in vibrational sum-frequency spectroscopy," J. Phys. Chem. C 111, 8902-8915 (2007).
[CrossRef]

Wang, H. F.

W. Gan, D. Wu, Z. Zhang, R. R. Feng, and H. F. Wang, "Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface," J. Chem. Phys. 124, 114705 (2006).
[CrossRef] [PubMed]

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, "Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)," Int. Rev. Phys. Chem. 24, 191-256 (2005).
[CrossRef]

R. Lu, W. Gan, B. H. Wu, H. Chen, and H. F. Wang, "Vibrational polarization spectroscopy of CH stretching modes of the methylene group at the vapor/liquid interfaces with sum frequency generation," J. Phys. Chem. B 108, 7297-7306 (2004).
[CrossRef]

Wu, B. H.

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, "Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)," Int. Rev. Phys. Chem. 24, 191-256 (2005).
[CrossRef]

R. Lu, W. Gan, B. H. Wu, H. Chen, and H. F. Wang, "Vibrational polarization spectroscopy of CH stretching modes of the methylene group at the vapor/liquid interfaces with sum frequency generation," J. Phys. Chem. B 108, 7297-7306 (2004).
[CrossRef]

Wu, D.

W. Gan, D. Wu, Z. Zhang, R. R. Feng, and H. F. Wang, "Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface," J. Chem. Phys. 124, 114705 (2006).
[CrossRef] [PubMed]

Zhang, Z.

W. Gan, D. Wu, Z. Zhang, R. R. Feng, and H. F. Wang, "Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface," J. Chem. Phys. 124, 114705 (2006).
[CrossRef] [PubMed]

Zhuang, X.

X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, "Mapping molecular orientation and conformation at interfaces by surface nonlinear optics," Phys. Rev. B 59, 12632-12640 (1999).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

Z. Chen, Y. R. Shen, and G. A. Somorjai, "Studies of polymer surfaces by sum frequency generation vibrational spectroscopy," Annu. Rev. Phys. Chem. 53, 437-465 (2002).
[CrossRef] [PubMed]

Chem. Rev. (2)

G. L. Richmond, "Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy," Chem. Rev. 102, 2693-2724 (2002).
[CrossRef] [PubMed]

K. B. Eisenthal, "Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy," Chem. Rev. 96, 1343-1360 (1996).
[CrossRef] [PubMed]

Int. Rev. Phys. Chem. (1)

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, "Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)," Int. Rev. Phys. Chem. 24, 191-256 (2005).
[CrossRef]

J. Chem. Phys. (1)

W. Gan, D. Wu, Z. Zhang, R. R. Feng, and H. F. Wang, "Polarization and experimental configuration analyses of sum frequency generation vibrational spectra, structure, and orientational motion of the air/water interface," J. Chem. Phys. 124, 114705 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

H. C. Allen, D. E. Gragson, and G. L. Richmond, "Molecular structure and adsorption of dimethyl sulfoxide at the surface of aqueous solutions," J. Phys. Chem. B 103, 660-666 (1999).
[CrossRef]

R. Lu, W. Gan, B. H. Wu, H. Chen, and H. F. Wang, "Vibrational polarization spectroscopy of CH stretching modes of the methylene group at the vapor/liquid interfaces with sum frequency generation," J. Phys. Chem. B 108, 7297-7306 (2004).
[CrossRef]

J. Phys. Chem. C (1)

J. T. Fourkas, R. A. Walker, S. Z. Can, and E. Gershgoren, "Effects of reorientation in vibrational sum-frequency spectroscopy," J. Phys. Chem. C 111, 8902-8915 (2007).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (1)

X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, "Mapping molecular orientation and conformation at interfaces by surface nonlinear optics," Phys. Rev. B 59, 12632-12640 (1999).
[CrossRef]

Rep. Prog. Phys. (1)

F. Vidal and A. Tadjeddine, "Sum-frequency generation spectroscopy of interfaces," Rep. Prog. Phys. 68, 1095-1127 (2005).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (3796 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic layouts of the co-propagating geometry for VSFG (a) and the counter-propagating geometry for VSFG (b). Angles β to the left of the surface normal are taken as negative and those to the right of the surface normal are taken as positive.

Fig. 2.
Fig. 2.

Schematic experimental layout for the counter-propagating VSFG spectrometer. OPA=optical parametric amplifier, nDFG=noncollinear difference-frequency generation module, pol=polarizer, HWP=half-wave plate, CCD=charge-coupled device camera.

Fig. 3.
Fig. 3.

SFG signal (black) and change in 800-nm transmission (red) for a ZnSe substrate as a function of the delay time between the IR pulse and the 800-nm pulse.

Fig. 4.
Fig. 4.

Displacement of the signal beam due to refraction in going from a liquid/vapor or solid/vapor interface (dotted lines, interface not shown) to an interface below a window (solid lines) for the co-propagating VSFG geometry (a) and the counter-propagating VSFG geometry (b). The signal displacement in the latter geometry is considerably smaller than that in the former geometry.

Fig. 5.
Fig. 5.

Real-time PPP VSFG signals (with an integration time of 1 second) from the silica/vapor interfaces of (a) DMSO and (b) acetonitrile. The time elapsed in switching from the DMSO sample to the acetonitrile sample and regaining signal was less than 17 seconds (Media 1).

Fig. 6.
Fig. 6.

VSFG spectra of DMSO under SSP polarization conditions at the silica/vapor (black), silica/liquid (red) and liquid/vapor (green) interfaces. The intensities in this and the following figures are all in the same units and can be compared directly.

Fig. 7.
Fig. 7.

VSFG spectra of DMSO under SPS polarization conditions at the silica/vapor (black), silica/liquid (red) and liquid/vapor (green) interfaces.

Fig. 8.
Fig. 8.

VSFG spectra of DMSO under PPP polarization conditions at the silica/vapor (black), silica/liquid (red) and liquid/vapor (green) interfaces.

Fig. 9.
Fig. 9.

Counter-propagating (black) and co-propagating (red) VSFG spectra of DMSO and the silica/vapor interface. The bandwidth of the visible light used for the co-propagating spectrum was narrower than that for the counter-propagating spectrum. The nonresonant background is considerably smaller in the counter-propagating spectrum.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Isig=8π2ωsig2sec2(βsig)c03nsignvisnIR χeff(2)2 Ivis IIR .
ωsigsinβsig=ωIRsinβIR+ωvissinβvis
χeff,SSP(2)=Lyy(ωsig)Lyy(ωvis)Lzz(ωIR)sinβIRχyyz(2)
χeff,SPS(2)=Lyy(ωsig)Lzz(ωvis)Lyy(ωIR)sinβvisχyzy(2)
χeff,PSS(2)=Lzz(ωsig)Lyy(ωvis)Lyy(ωIR)sinβsigχzyy(2)
χeff,PPP(2)=Lxx(ωsig)Lxx(ωvis)Lzz(ωIR)cosβsigcosβvissinβIRχxxz(2)
+Lxx(ωsig)Lzz(ωvis)Lxx(ωIR)cosβsigsinβviscosβIRχxzx(2)
+Lzz(ωsig)Lxx(ωvis)Lxx(ωIR)sinβsigcosβviscosβIRχzxx(2)
+Lzz(ωsig)Lzz(ωvis)Lzz(ωIR)sinβsigsinβvissinβIRχzzz(2) ,

Metrics