Abstract

Athermal silicon ring resonators are experimentally demonstrated by overlaying a polymer cladding on narrowed silicon wires. The ideal width to achieve athermal condition for the TE mode of 220nm-height SOI waveguides is found to be around 350nm. After overlaying a polymer layer, the wavelength temperature dependence of the silicon ring resonator is reduced to less than 5 pm/°C, almost eleven times less than that of normal silicon waveguides. The optical loss of a 350-nm bent waveguide (with a radius of 15µm) is extracted from the ring transmission spectrum. The scattering loss is reduced to an acceptable level of about 50dB/cm after overlaying a polymer cladding.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Maru and Y. Abe, “Low-loss, flat-passband and athermal arrayed-waveguide grating multi/demultiplexer,” Opt. Express  15, 18351–18356 (2007).
    [CrossRef] [PubMed]
  2. Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55 mu m wavelength using a silica-based athermal waveguide,” Electron. Lett  34, 367–369 (1998).
    [CrossRef]
  3. H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, and Y. Yoshikuni, “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photon. Technol. Lett.  10, 235–237 (1998).
    [CrossRef]
  4. K. Eun-Seok, K. Woo-Soo, K. Duk-Jun, and B. Byeong-Soo, “Reducing the thermal dependence of silica-based arrayed-waveguide grating using inorganic-organic hybrid materials,” IEEE Photon. Technol. Lett.  16, 2625–2627 (2004).
    [CrossRef]
  5. J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, and G. Kim, “Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer,” J. Lightwave Technol.  25, 2236–2243 (2007).
    [CrossRef]
  6. J. M. Lee, D. J. Kim, G. H. Kim, O. K. Kwon, K. J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express  16, 1645–1652 (2008).
    [CrossRef] [PubMed]
  7. W. N. Ye, R. Sun, J. Michel, L. Eldada, D. Pant, and L. C. Kimerling, “Thermo-optical Compensation in High-index-contrast Waveguides,” 2008 5th Ieee International Conference on Group Iv Photonics, 401–403 (2008).
    [CrossRef]
  8. Linjie Zhou, Kashiwagi Ken, Katsunari Okamoto, R. P. Scott, N. K. Fontaine, Dan Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation” Appl. Phys. A  95, 1101–1109 (2009).
    [CrossRef]
  9. M. Uenuma and T. Moooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett.  34, 599–601 (2009).
    [CrossRef] [PubMed]
  10. Y. Kokubun, N. Funato, and M. Takizawa, “Athermal Wave-Guides for Temperature-Independent Lightwave Devices,” IEEE Photon. Technol. Lett.  5, 1297–1300 (1993).
    [CrossRef]
  11. Y. Kokubun, S. Yoneda, and H. Tanaka, “Temperature-independent narrowband optical filter at 1.31 mu m wavelength by an athermal waveguide,” Electron. Lett.  32, 1998–2000 (1996).
    [CrossRef]
  12. M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S. Rabinovich, “Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities,” Opt. Express 15, 7557–7563 (2007).
    [CrossRef] [PubMed]
  13. I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett.  18, 364–366 (2006).
    [CrossRef]
  14. H. B. Zhang, J. Y. Wang, L. K. Li, Y. Song, M. S. Zhao, and X. G. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films  517, 857–862 (2008).
    [CrossRef]
  15. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.  23, 401–412 (2005).
    [CrossRef]
  16. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in silicon-on-insulator,” Opt. Express 12(2004).
    [CrossRef] [PubMed]
  17. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn.J.Appl.Phys. Part 1-Regular Papers Brief Communications & Review Papers 45, 6071–6077 (2006).
  18. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett.  16, 1328–1330 (2004).
    [CrossRef]
  19. S. K. Selvaraja, P. Jaenen, S. Beckx, W. Bogaert, P. Dumon, D. Van Thourout, and R. Bates, “Silicon nanophotonic wire structures fabricated by 193nm optical lithography,” 2007 IEEE Leos Annual Meeting Conference Proceedings, Vols  1 and 2, 48–49 (2007).
    [CrossRef]

2009 (2)

Linjie Zhou, Kashiwagi Ken, Katsunari Okamoto, R. P. Scott, N. K. Fontaine, Dan Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation” Appl. Phys. A  95, 1101–1109 (2009).
[CrossRef]

M. Uenuma and T. Moooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett.  34, 599–601 (2009).
[CrossRef] [PubMed]

2008 (2)

J. M. Lee, D. J. Kim, G. H. Kim, O. K. Kwon, K. J. Kim, and G. Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express  16, 1645–1652 (2008).
[CrossRef] [PubMed]

H. B. Zhang, J. Y. Wang, L. K. Li, Y. Song, M. S. Zhao, and X. G. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films  517, 857–862 (2008).
[CrossRef]

2007 (4)

2006 (2)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn.J.Appl.Phys. Part 1-Regular Papers Brief Communications & Review Papers 45, 6071–6077 (2006).

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett.  18, 364–366 (2006).
[CrossRef]

2005 (1)

2004 (2)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett.  16, 1328–1330 (2004).
[CrossRef]

K. Eun-Seok, K. Woo-Soo, K. Duk-Jun, and B. Byeong-Soo, “Reducing the thermal dependence of silica-based arrayed-waveguide grating using inorganic-organic hybrid materials,” IEEE Photon. Technol. Lett.  16, 2625–2627 (2004).
[CrossRef]

1998 (2)

Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55 mu m wavelength using a silica-based athermal waveguide,” Electron. Lett  34, 367–369 (1998).
[CrossRef]

H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, and Y. Yoshikuni, “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photon. Technol. Lett.  10, 235–237 (1998).
[CrossRef]

1996 (1)

Y. Kokubun, S. Yoneda, and H. Tanaka, “Temperature-independent narrowband optical filter at 1.31 mu m wavelength by an athermal waveguide,” Electron. Lett.  32, 1998–2000 (1996).
[CrossRef]

1993 (1)

Y. Kokubun, N. Funato, and M. Takizawa, “Athermal Wave-Guides for Temperature-Independent Lightwave Devices,” IEEE Photon. Technol. Lett.  5, 1297–1300 (1993).
[CrossRef]

Abe, Y.

Ahn, H.

Akella, V.

Linjie Zhou, Kashiwagi Ken, Katsunari Okamoto, R. P. Scott, N. K. Fontaine, Dan Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation” Appl. Phys. A  95, 1101–1109 (2009).
[CrossRef]

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett.  18, 364–366 (2006).
[CrossRef]

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn.J.Appl.Phys. Part 1-Regular Papers Brief Communications & Review Papers 45, 6071–6077 (2006).

Baets, R.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn.J.Appl.Phys. Part 1-Regular Papers Brief Communications & Review Papers 45, 6071–6077 (2006).

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.  23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett.  16, 1328–1330 (2004).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in silicon-on-insulator,” Opt. Express 12(2004).
[CrossRef] [PubMed]

Bates, R.

S. K. Selvaraja, P. Jaenen, S. Beckx, W. Bogaert, P. Dumon, D. Van Thourout, and R. Bates, “Silicon nanophotonic wire structures fabricated by 193nm optical lithography,” 2007 IEEE Leos Annual Meeting Conference Proceedings, Vols  1 and 2, 48–49 (2007).
[CrossRef]

Beckx, S.

S. K. Selvaraja, P. Jaenen, S. Beckx, W. Bogaert, P. Dumon, D. Van Thourout, and R. Bates, “Silicon nanophotonic wire structures fabricated by 193nm optical lithography,” 2007 IEEE Leos Annual Meeting Conference Proceedings, Vols  1 and 2, 48–49 (2007).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.  23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett.  16, 1328–1330 (2004).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in silicon-on-insulator,” Opt. Express 12(2004).
[CrossRef] [PubMed]

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn.J.Appl.Phys. Part 1-Regular Papers Brief Communications & Review Papers 45, 6071–6077 (2006).

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.  23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett.  16, 1328–1330 (2004).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in silicon-on-insulator,” Opt. Express 12(2004).
[CrossRef] [PubMed]

Bogaert, W.

S. K. Selvaraja, P. Jaenen, S. Beckx, W. Bogaert, P. Dumon, D. Van Thourout, and R. Bates, “Silicon nanophotonic wire structures fabricated by 193nm optical lithography,” 2007 IEEE Leos Annual Meeting Conference Proceedings, Vols  1 and 2, 48–49 (2007).
[CrossRef]

Bogaerts, W.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn.J.Appl.Phys. Part 1-Regular Papers Brief Communications & Review Papers 45, 6071–6077 (2006).

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.  23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett.  16, 1328–1330 (2004).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in silicon-on-insulator,” Opt. Express 12(2004).
[CrossRef] [PubMed]

Byeong-Soo, B.

K. Eun-Seok, K. Woo-Soo, K. Duk-Jun, and B. Byeong-Soo, “Reducing the thermal dependence of silica-based arrayed-waveguide grating using inorganic-organic hybrid materials,” IEEE Photon. Technol. Lett.  16, 2625–2627 (2004).
[CrossRef]

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett.  18, 364–366 (2006).
[CrossRef]

Ding, Dan

Linjie Zhou, Kashiwagi Ken, Katsunari Okamoto, R. P. Scott, N. K. Fontaine, Dan Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation” Appl. Phys. A  95, 1101–1109 (2009).
[CrossRef]

Duk-Jun, K.

K. Eun-Seok, K. Woo-Soo, K. Duk-Jun, and B. Byeong-Soo, “Reducing the thermal dependence of silica-based arrayed-waveguide grating using inorganic-organic hybrid materials,” IEEE Photon. Technol. Lett.  16, 2625–2627 (2004).
[CrossRef]

Dumon, P.

S. K. Selvaraja, P. Jaenen, S. Beckx, W. Bogaert, P. Dumon, D. Van Thourout, and R. Bates, “Silicon nanophotonic wire structures fabricated by 193nm optical lithography,” 2007 IEEE Leos Annual Meeting Conference Proceedings, Vols  1 and 2, 48–49 (2007).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.  23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett.  16, 1328–1330 (2004).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in silicon-on-insulator,” Opt. Express 12(2004).
[CrossRef] [PubMed]

Eldada, L.

W. N. Ye, R. Sun, J. Michel, L. Eldada, D. Pant, and L. C. Kimerling, “Thermo-optical Compensation in High-index-contrast Waveguides,” 2008 5th Ieee International Conference on Group Iv Photonics, 401–403 (2008).
[CrossRef]

Eun-Seok, K.

K. Eun-Seok, K. Woo-Soo, K. Duk-Jun, and B. Byeong-Soo, “Reducing the thermal dependence of silica-based arrayed-waveguide grating using inorganic-organic hybrid materials,” IEEE Photon. Technol. Lett.  16, 2625–2627 (2004).
[CrossRef]

Ferraro, M. S.

Fontaine, N. K.

Linjie Zhou, Kashiwagi Ken, Katsunari Okamoto, R. P. Scott, N. K. Fontaine, Dan Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation” Appl. Phys. A  95, 1101–1109 (2009).
[CrossRef]

Funato, N.

Y. Kokubun, N. Funato, and M. Takizawa, “Athermal Wave-Guides for Temperature-Independent Lightwave Devices,” IEEE Photon. Technol. Lett.  5, 1297–1300 (1993).
[CrossRef]

Jaenen, P.

S. K. Selvaraja, P. Jaenen, S. Beckx, W. Bogaert, P. Dumon, D. Van Thourout, and R. Bates, “Silicon nanophotonic wire structures fabricated by 193nm optical lithography,” 2007 IEEE Leos Annual Meeting Conference Proceedings, Vols  1 and 2, 48–49 (2007).
[CrossRef]

Jian, X. G.

H. B. Zhang, J. Y. Wang, L. K. Li, Y. Song, M. S. Zhao, and X. G. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films  517, 857–862 (2008).
[CrossRef]

Kadota, Y.

H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, and Y. Yoshikuni, “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photon. Technol. Lett.  10, 235–237 (1998).
[CrossRef]

Ken, Kashiwagi

Linjie Zhou, Kashiwagi Ken, Katsunari Okamoto, R. P. Scott, N. K. Fontaine, Dan Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation” Appl. Phys. A  95, 1101–1109 (2009).
[CrossRef]

Kim, D. J.

Kim, G.

Kim, G. H.

Kim, K. J.

Kimerling, L. C.

W. N. Ye, R. Sun, J. Michel, L. Eldada, D. Pant, and L. C. Kimerling, “Thermo-optical Compensation in High-index-contrast Waveguides,” 2008 5th Ieee International Conference on Group Iv Photonics, 401–403 (2008).
[CrossRef]

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett.  18, 364–366 (2006).
[CrossRef]

Kokubun, Y.

Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55 mu m wavelength using a silica-based athermal waveguide,” Electron. Lett  34, 367–369 (1998).
[CrossRef]

Y. Kokubun, S. Yoneda, and H. Tanaka, “Temperature-independent narrowband optical filter at 1.31 mu m wavelength by an athermal waveguide,” Electron. Lett.  32, 1998–2000 (1996).
[CrossRef]

Y. Kokubun, N. Funato, and M. Takizawa, “Athermal Wave-Guides for Temperature-Independent Lightwave Devices,” IEEE Photon. Technol. Lett.  5, 1297–1300 (1993).
[CrossRef]

Kondo, Y.

H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, and Y. Yoshikuni, “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photon. Technol. Lett.  10, 235–237 (1998).
[CrossRef]

Kwon, O. K.

Lee, J. M.

Li, L. K.

H. B. Zhang, J. Y. Wang, L. K. Li, Y. Song, M. S. Zhao, and X. G. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films  517, 857–862 (2008).
[CrossRef]

Luyssaert, B.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.  23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett.  16, 1328–1330 (2004).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in silicon-on-insulator,” Opt. Express 12(2004).
[CrossRef] [PubMed]

Maru, K.

Matsuura, S.

Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55 mu m wavelength using a silica-based athermal waveguide,” Electron. Lett  34, 367–369 (1998).
[CrossRef]

Michel, J.

W. N. Ye, R. Sun, J. Michel, L. Eldada, D. Pant, and L. C. Kimerling, “Thermo-optical Compensation in High-index-contrast Waveguides,” 2008 5th Ieee International Conference on Group Iv Photonics, 401–403 (2008).
[CrossRef]

Moooka, T.

Okamoto, K.

H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, and Y. Yoshikuni, “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photon. Technol. Lett.  10, 235–237 (1998).
[CrossRef]

Okamoto, Katsunari

Linjie Zhou, Kashiwagi Ken, Katsunari Okamoto, R. P. Scott, N. K. Fontaine, Dan Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation” Appl. Phys. A  95, 1101–1109 (2009).
[CrossRef]

Pant, D.

W. N. Ye, R. Sun, J. Michel, L. Eldada, D. Pant, and L. C. Kimerling, “Thermo-optical Compensation in High-index-contrast Waveguides,” 2008 5th Ieee International Conference on Group Iv Photonics, 401–403 (2008).
[CrossRef]

Park, S. H.

Pruessner, M. W.

Rabinovich, W. S.

Scott, R. P.

Linjie Zhou, Kashiwagi Ken, Katsunari Okamoto, R. P. Scott, N. K. Fontaine, Dan Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation” Appl. Phys. A  95, 1101–1109 (2009).
[CrossRef]

Selvaraja, S. K.

S. K. Selvaraja, P. Jaenen, S. Beckx, W. Bogaert, P. Dumon, D. Van Thourout, and R. Bates, “Silicon nanophotonic wire structures fabricated by 193nm optical lithography,” 2007 IEEE Leos Annual Meeting Conference Proceedings, Vols  1 and 2, 48–49 (2007).
[CrossRef]

Song, Y.

H. B. Zhang, J. Y. Wang, L. K. Li, Y. Song, M. S. Zhao, and X. G. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films  517, 857–862 (2008).
[CrossRef]

Stievater, T. H.

Sun, R.

W. N. Ye, R. Sun, J. Michel, L. Eldada, D. Pant, and L. C. Kimerling, “Thermo-optical Compensation in High-index-contrast Waveguides,” 2008 5th Ieee International Conference on Group Iv Photonics, 401–403 (2008).
[CrossRef]

Taillaert, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn.J.Appl.Phys. Part 1-Regular Papers Brief Communications & Review Papers 45, 6071–6077 (2006).

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.  23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett.  16, 1328–1330 (2004).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in silicon-on-insulator,” Opt. Express 12(2004).
[CrossRef] [PubMed]

Takizawa, M.

Y. Kokubun, N. Funato, and M. Takizawa, “Athermal Wave-Guides for Temperature-Independent Lightwave Devices,” IEEE Photon. Technol. Lett.  5, 1297–1300 (1993).
[CrossRef]

Tanaka, H.

Y. Kokubun, S. Yoneda, and H. Tanaka, “Temperature-independent narrowband optical filter at 1.31 mu m wavelength by an athermal waveguide,” Electron. Lett.  32, 1998–2000 (1996).
[CrossRef]

Tanobe, H.

H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, and Y. Yoshikuni, “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photon. Technol. Lett.  10, 235–237 (1998).
[CrossRef]

Uenuma, M.

Van Campenhout, J.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.  23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett.  16, 1328–1330 (2004).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in silicon-on-insulator,” Opt. Express 12(2004).
[CrossRef] [PubMed]

Van Laere, F.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn.J.Appl.Phys. Part 1-Regular Papers Brief Communications & Review Papers 45, 6071–6077 (2006).

Van Thourhout, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn.J.Appl.Phys. Part 1-Regular Papers Brief Communications & Review Papers 45, 6071–6077 (2006).

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.  23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett.  16, 1328–1330 (2004).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in silicon-on-insulator,” Opt. Express 12(2004).
[CrossRef] [PubMed]

Van Thourout, D.

S. K. Selvaraja, P. Jaenen, S. Beckx, W. Bogaert, P. Dumon, D. Van Thourout, and R. Bates, “Silicon nanophotonic wire structures fabricated by 193nm optical lithography,” 2007 IEEE Leos Annual Meeting Conference Proceedings, Vols  1 and 2, 48–49 (2007).
[CrossRef]

Wang, J. Y.

H. B. Zhang, J. Y. Wang, L. K. Li, Y. Song, M. S. Zhao, and X. G. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films  517, 857–862 (2008).
[CrossRef]

Wiaux, V.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.  23, 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett.  16, 1328–1330 (2004).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in silicon-on-insulator,” Opt. Express 12(2004).
[CrossRef] [PubMed]

Woo-Soo, K.

K. Eun-Seok, K. Woo-Soo, K. Duk-Jun, and B. Byeong-Soo, “Reducing the thermal dependence of silica-based arrayed-waveguide grating using inorganic-organic hybrid materials,” IEEE Photon. Technol. Lett.  16, 2625–2627 (2004).
[CrossRef]

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett.  16, 1328–1330 (2004).
[CrossRef]

Ye, W. N.

W. N. Ye, R. Sun, J. Michel, L. Eldada, D. Pant, and L. C. Kimerling, “Thermo-optical Compensation in High-index-contrast Waveguides,” 2008 5th Ieee International Conference on Group Iv Photonics, 401–403 (2008).
[CrossRef]

Yoneda, S.

Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55 mu m wavelength using a silica-based athermal waveguide,” Electron. Lett  34, 367–369 (1998).
[CrossRef]

Y. Kokubun, S. Yoneda, and H. Tanaka, “Temperature-independent narrowband optical filter at 1.31 mu m wavelength by an athermal waveguide,” Electron. Lett.  32, 1998–2000 (1996).
[CrossRef]

Yoo, S. J. B.

Linjie Zhou, Kashiwagi Ken, Katsunari Okamoto, R. P. Scott, N. K. Fontaine, Dan Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation” Appl. Phys. A  95, 1101–1109 (2009).
[CrossRef]

Yoshikuni, Y.

H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, and Y. Yoshikuni, “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photon. Technol. Lett.  10, 235–237 (1998).
[CrossRef]

Zhang, H. B.

H. B. Zhang, J. Y. Wang, L. K. Li, Y. Song, M. S. Zhao, and X. G. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films  517, 857–862 (2008).
[CrossRef]

Zhao, M. S.

H. B. Zhang, J. Y. Wang, L. K. Li, Y. Song, M. S. Zhao, and X. G. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films  517, 857–862 (2008).
[CrossRef]

Zhou, Linjie

Linjie Zhou, Kashiwagi Ken, Katsunari Okamoto, R. P. Scott, N. K. Fontaine, Dan Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation” Appl. Phys. A  95, 1101–1109 (2009).
[CrossRef]

2007 IEEE Leos Annual Meeting Conference Proceedings (1)

S. K. Selvaraja, P. Jaenen, S. Beckx, W. Bogaert, P. Dumon, D. Van Thourout, and R. Bates, “Silicon nanophotonic wire structures fabricated by 193nm optical lithography,” 2007 IEEE Leos Annual Meeting Conference Proceedings, Vols  1 and 2, 48–49 (2007).
[CrossRef]

Appl. Phys. A (1)

Linjie Zhou, Kashiwagi Ken, Katsunari Okamoto, R. P. Scott, N. K. Fontaine, Dan Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-interconnected computing system using slotted silicon microring resonators and RF-photonic comb generation” Appl. Phys. A  95, 1101–1109 (2009).
[CrossRef]

Electron. Lett (1)

Y. Kokubun, S. Yoneda, and S. Matsuura, “Temperature-independent optical filter at 1.55 mu m wavelength using a silica-based athermal waveguide,” Electron. Lett  34, 367–369 (1998).
[CrossRef]

Electron. Lett. (1)

Y. Kokubun, S. Yoneda, and H. Tanaka, “Temperature-independent narrowband optical filter at 1.31 mu m wavelength by an athermal waveguide,” Electron. Lett.  32, 1998–2000 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett.  18, 364–366 (2006).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett.  16, 1328–1330 (2004).
[CrossRef]

H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, and Y. Yoshikuni, “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photon. Technol. Lett.  10, 235–237 (1998).
[CrossRef]

K. Eun-Seok, K. Woo-Soo, K. Duk-Jun, and B. Byeong-Soo, “Reducing the thermal dependence of silica-based arrayed-waveguide grating using inorganic-organic hybrid materials,” IEEE Photon. Technol. Lett.  16, 2625–2627 (2004).
[CrossRef]

Y. Kokubun, N. Funato, and M. Takizawa, “Athermal Wave-Guides for Temperature-Independent Lightwave Devices,” IEEE Photon. Technol. Lett.  5, 1297–1300 (1993).
[CrossRef]

J. Lightwave Technol. (2)

Jpn.J.Appl.Phys. Part 1-Regular Papers Brief Communications & Review Papers (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn.J.Appl.Phys. Part 1-Regular Papers Brief Communications & Review Papers 45, 6071–6077 (2006).

Opt. Express (3)

Opt. Lett. (1)

Thin Solid Films (1)

H. B. Zhang, J. Y. Wang, L. K. Li, Y. Song, M. S. Zhao, and X. G. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films  517, 857–862 (2008).
[CrossRef]

Other (2)

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in silicon-on-insulator,” Opt. Express 12(2004).
[CrossRef] [PubMed]

W. N. Ye, R. Sun, J. Michel, L. Eldada, D. Pant, and L. C. Kimerling, “Thermo-optical Compensation in High-index-contrast Waveguides,” 2008 5th Ieee International Conference on Group Iv Photonics, 401–403 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

SOI waveguide cross-section structure

Fig. 2.
Fig. 2.

Calculated wavelength temperature dependence of TE mode for SOI waveguides with a polymer overlay as a function of waveguide widths

Fig. 3.
Fig. 3.

SEM pictures of fabricated ring resonators with a width of 350nm (a) the whole ring (b) the coupling region

Fig. 4.
Fig. 4.

(a) Transmission spectrum of a ring resonator with width of 350nm at different temperatures before overlaying a polymer cladding (b) Linear fit of the wavelength versus temperatures (c) Transmission spectrum of a ring resonator with width of 350nm at different temperatures after overlaying a polymer cladding (d) Linear fit of the wavelengths versus temperatures (Width=350nm, Gap=180nm, L=2µm, R=15µm)

Fig. 5.
Fig. 5.

Transmission spectrum of ring resonator with width of 350nm at room temperature (a) Before overlaying a polymer cladding (b) After overlaying a polymer cladding (With a black line for the Through port and red line for the Drop port, Ring resonator parameters: Width=350nm, Gap=180nm, L=2µm, R=15µm)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

dλmdT=(1L·dSdT)λmneff=(neff·αsub+dneffdT)λmng

Metrics