Abstract

Absorption and reduced scattering coefficients of in-vivo human skin provide critical information on non-invasive skin diagnoses for aesthetic and clinical purposes. To date, very few in-vivo skin optical properties have been reported. Previously, we reported absorption and scattering properties of in-vivo skin in the wavelength range from 650 to 1000nm using the diffusing probe in the “modified two-layer geometry”. In this study, we determine the spectra of skin optical properties continuously in the range from 500 to 1000nm. It was found that the concentration of chromophores, such as oxy-hemoglobin, deoxy-hemoglobin, and melanin, calculated based on the absorption spectra of eighteen subjects at wavelengths above and below 600nm were distinct because of the inherent difference in the interrogation region. The scattering power, which is related to the average scatterer’s size, demonstrates a clear contrast between skin phototypes, skin sites, and wavelengths. We also applied venous occlusion on forearms and found that the concentrations of oxy- and deoxy-hemoglobin as assessed at wavelengths above and below 600nm were different. Our results suggest that diffuse reflectance techniques with the visible and near infrared light sources can be employed to investigate the hemodynamics and optical properties of upper dermis and lower dermis.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Nishidate, Y. Aizu, and H. Mishina, "Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation," J. Biomed. Opt. 9, 700-710 (2004).
    [CrossRef] [PubMed]
  2. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004).
    [CrossRef] [PubMed]
  3. K. M. Kelly, B. Choi, S. McFarlane, A. Motosue, B. J. Jung, M. H. Khan, J. C. Ramirez-San-Juan, and J. S. Nelson, "Description and analysis of treatments for port-wine stain birthmarks," Arch. Facial Plast. Surg. 7, 287-294 (2005).
    [CrossRef] [PubMed]
  4. B. J. Tromberg, L. O. Svaasand, M. K. Fehr, S. J. Madsen, P. Wyss, B. Sansone, and Y. Tadir, "A mathematical model for light dosimetry in photodynamic destruction of human endometrium," Phys. Med. Biol. 41, 223-237 (1996).
    [CrossRef] [PubMed]
  5. T. L. Troy and S. N. Thennadil, "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm," J. Biomed. Opt. 6, 167-176 (2001).
    [CrossRef] [PubMed]
  6. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
    [CrossRef] [PubMed]
  7. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," J. Phys. D 38, 2543-2555 (2005).
    [CrossRef]
  8. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, "Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range," J. Biomed. Opt. 11, 064026 (2006).
    [CrossRef]
  9. S. H. Tseng, C. Hayakawa, B. J. Tromberg, J. Spanier, and A. J. Durkin, "Quantitative spectroscopy of superficial turbid media," Opt. Lett. 30, 3165-3167 (2005).
    [CrossRef] [PubMed]
  10. K. M. Yoo, F. Liu, and R. R. Alfano, "When Does the Diffusion-Approximation Fail to Describe Photon Transport in Random-Media," Phys. Rev. Lett. 64, 2647-2650 (1990).
    [CrossRef] [PubMed]
  11. R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand, G. Aguilar, and J. S. Nelson, "Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms," J. Biomed. Opt. 10, 024030 (2005).
    [CrossRef] [PubMed]
  12. G. Zonios and A. Dimou, "Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties," Opt. Express 14, 8661-8674 (2006).
    [CrossRef] [PubMed]
  13. S. H. Tseng, A. Grant, and A. J. Durkin, "In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy," J. Biomed. Opt. 13, 014016 (2008).
    [CrossRef] [PubMed]
  14. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
    [CrossRef] [PubMed]
  15. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, "Noninvasive determination of the optical properties of two-layered turbid media," Appl. Opt. 37, 779-791 (1998).
    [CrossRef]
  16. L. H. Wang, S. L. Jacques, and L. Q. Zheng, "Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
    [CrossRef] [PubMed]
  17. S. Prahl, "Hemoglobin absorption coefficient," (1999), http://omlc.ogi.edu/spectra/hemoglobin/index.html.
  18. S. L. Jacques, "Melanosome absorption coefficient," (1998), http://omlc.ogi.edu/spectra/melanin/mua.html.
  19. N. Kollias, and A. Baqer, "Spectroscopic characteristics of human melanin in vivo," J. Invest. Dermatol. 85, 38-42 (1985).
    [CrossRef] [PubMed]
  20. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, "Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms," Appl. Opt. 36, 949-957 (1997).
    [CrossRef] [PubMed]
  21. I. M. Braverman, "Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states," J. Invest. Dermatol. 93, 2S-9S (1989).
    [CrossRef] [PubMed]
  22. S. Jacques, R. Glickman, and J. Schwartz, "Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium," SPIE Proc. 2681, 468-477 (1996).
    [CrossRef]
  23. P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-129 (2003).
    [CrossRef] [PubMed]
  24. R. F. Reinoso, B. A. Telfer, and M. Rowland, "Tissue water content in rats measured by desiccation," J. Pharmacol. Toxicol. Methods 38, 87-92 (1997).
    [CrossRef] [PubMed]
  25. R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, and W. G. Zijlstra, "Optical properties of human dermis in vitro and in vivo," Appl. Opt. 32, 435 (1993).
    [CrossRef] [PubMed]
  26. N. Kollias, R. Gillies, M. Moran, I. E. Kochevar, and R. R. Anderson, "Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging," J. Invest. Dermatol. 111, 776-780 (1998).
    [CrossRef] [PubMed]
  27. Y. Miyamae, Y. Yamakawa, M. Kawabata, and Y. Ozaki, "A noninvasive method for assessing interior skin damage caused by chronological aging and photoaging based on near-infrared diffuse reflection spectroscopy," Appl. Spectrosc. 62, 677-681 (2008).
    [CrossRef] [PubMed]
  28. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
    [CrossRef] [PubMed]
  29. M. Brenner, and V. J. Hearing, "The Protective Role of Melanin Against UV Damage in Human Skin," Photochem. Photobiol. 84, 539-549 (2008).
    [CrossRef] [PubMed]
  30. G. N. Stamatas, and N. Kollias, "Blood stasis contributions to the perception of skin pigmentation," J. Biomed. Opt. 9, 315-322 (2004).
    [CrossRef] [PubMed]
  31. U. Wolf, M. Wolf, J. H. Choi, M. Levi, D. Choudhury, S. Hull, D. Coussirat, L. A. Paunescu, L. P. Safonova, A. Michalos, W. W. Mantulin, and E. Gratton, "Localized irregularities in hemoglobin flow and oxygenation in calf muscle in patients with peripheral vascular disease detected with near-infrared spectrophotometry," J. Vasc. Surg. 37, 1017-1026 (2003).
    [CrossRef] [PubMed]

2008

S. H. Tseng, A. Grant, and A. J. Durkin, "In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy," J. Biomed. Opt. 13, 014016 (2008).
[CrossRef] [PubMed]

M. Brenner, and V. J. Hearing, "The Protective Role of Melanin Against UV Damage in Human Skin," Photochem. Photobiol. 84, 539-549 (2008).
[CrossRef] [PubMed]

Y. Miyamae, Y. Yamakawa, M. Kawabata, and Y. Ozaki, "A noninvasive method for assessing interior skin damage caused by chronological aging and photoaging based on near-infrared diffuse reflection spectroscopy," Appl. Spectrosc. 62, 677-681 (2008).
[CrossRef] [PubMed]

2006

G. Zonios and A. Dimou, "Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties," Opt. Express 14, 8661-8674 (2006).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, "Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range," J. Biomed. Opt. 11, 064026 (2006).
[CrossRef]

2005

K. M. Kelly, B. Choi, S. McFarlane, A. Motosue, B. J. Jung, M. H. Khan, J. C. Ramirez-San-Juan, and J. S. Nelson, "Description and analysis of treatments for port-wine stain birthmarks," Arch. Facial Plast. Surg. 7, 287-294 (2005).
[CrossRef] [PubMed]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," J. Phys. D 38, 2543-2555 (2005).
[CrossRef]

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand, G. Aguilar, and J. S. Nelson, "Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms," J. Biomed. Opt. 10, 024030 (2005).
[CrossRef] [PubMed]

S. H. Tseng, C. Hayakawa, B. J. Tromberg, J. Spanier, and A. J. Durkin, "Quantitative spectroscopy of superficial turbid media," Opt. Lett. 30, 3165-3167 (2005).
[CrossRef] [PubMed]

2004

G. N. Stamatas, and N. Kollias, "Blood stasis contributions to the perception of skin pigmentation," J. Biomed. Opt. 9, 315-322 (2004).
[CrossRef] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, "Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation," J. Biomed. Opt. 9, 700-710 (2004).
[CrossRef] [PubMed]

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004).
[CrossRef] [PubMed]

2003

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-129 (2003).
[CrossRef] [PubMed]

U. Wolf, M. Wolf, J. H. Choi, M. Levi, D. Choudhury, S. Hull, D. Coussirat, L. A. Paunescu, L. P. Safonova, A. Michalos, W. W. Mantulin, and E. Gratton, "Localized irregularities in hemoglobin flow and oxygenation in calf muscle in patients with peripheral vascular disease detected with near-infrared spectrophotometry," J. Vasc. Surg. 37, 1017-1026 (2003).
[CrossRef] [PubMed]

2001

T. L. Troy and S. N. Thennadil, "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm," J. Biomed. Opt. 6, 167-176 (2001).
[CrossRef] [PubMed]

1998

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
[CrossRef] [PubMed]

N. Kollias, R. Gillies, M. Moran, I. E. Kochevar, and R. R. Anderson, "Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging," J. Invest. Dermatol. 111, 776-780 (1998).
[CrossRef] [PubMed]

A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, "Noninvasive determination of the optical properties of two-layered turbid media," Appl. Opt. 37, 779-791 (1998).
[CrossRef]

1997

1996

B. J. Tromberg, L. O. Svaasand, M. K. Fehr, S. J. Madsen, P. Wyss, B. Sansone, and Y. Tadir, "A mathematical model for light dosimetry in photodynamic destruction of human endometrium," Phys. Med. Biol. 41, 223-237 (1996).
[CrossRef] [PubMed]

S. Jacques, R. Glickman, and J. Schwartz, "Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium," SPIE Proc. 2681, 468-477 (1996).
[CrossRef]

1995

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

1993

1990

K. M. Yoo, F. Liu, and R. R. Alfano, "When Does the Diffusion-Approximation Fail to Describe Photon Transport in Random-Media," Phys. Rev. Lett. 64, 2647-2650 (1990).
[CrossRef] [PubMed]

1989

I. M. Braverman, "Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states," J. Invest. Dermatol. 93, 2S-9S (1989).
[CrossRef] [PubMed]

1985

N. Kollias, and A. Baqer, "Spectroscopic characteristics of human melanin in vivo," J. Invest. Dermatol. 85, 38-42 (1985).
[CrossRef] [PubMed]

Aarnoudse, J. G.

Aguilar, G.

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand, G. Aguilar, and J. S. Nelson, "Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms," J. Biomed. Opt. 10, 024030 (2005).
[CrossRef] [PubMed]

Aizu, Y.

I. Nishidate, Y. Aizu, and H. Mishina, "Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation," J. Biomed. Opt. 9, 700-710 (2004).
[CrossRef] [PubMed]

Alfano, R. R.

K. M. Yoo, F. Liu, and R. R. Alfano, "When Does the Diffusion-Approximation Fail to Describe Photon Transport in Random-Media," Phys. Rev. Lett. 64, 2647-2650 (1990).
[CrossRef] [PubMed]

Anderson, R. R.

N. Kollias, R. Gillies, M. Moran, I. E. Kochevar, and R. R. Anderson, "Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging," J. Invest. Dermatol. 111, 776-780 (1998).
[CrossRef] [PubMed]

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

Arifler, D.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004).
[CrossRef] [PubMed]

Baqer, A.

N. Kollias, and A. Baqer, "Spectroscopic characteristics of human melanin in vivo," J. Invest. Dermatol. 85, 38-42 (1985).
[CrossRef] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," J. Phys. D 38, 2543-2555 (2005).
[CrossRef]

Bays, R.

Bigio, I. J.

Boyer, J.

Braverman, I. M.

I. M. Braverman, "Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states," J. Invest. Dermatol. 93, 2S-9S (1989).
[CrossRef] [PubMed]

Brenner, M.

M. Brenner, and V. J. Hearing, "The Protective Role of Melanin Against UV Damage in Human Skin," Photochem. Photobiol. 84, 539-549 (2008).
[CrossRef] [PubMed]

Butler, J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

Cerussi, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

Chang, S. K.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004).
[CrossRef] [PubMed]

Choi, B.

K. M. Kelly, B. Choi, S. McFarlane, A. Motosue, B. J. Jung, M. H. Khan, J. C. Ramirez-San-Juan, and J. S. Nelson, "Description and analysis of treatments for port-wine stain birthmarks," Arch. Facial Plast. Surg. 7, 287-294 (2005).
[CrossRef] [PubMed]

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand, G. Aguilar, and J. S. Nelson, "Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms," J. Biomed. Opt. 10, 024030 (2005).
[CrossRef] [PubMed]

Choi, J. H.

U. Wolf, M. Wolf, J. H. Choi, M. Levi, D. Choudhury, S. Hull, D. Coussirat, L. A. Paunescu, L. P. Safonova, A. Michalos, W. W. Mantulin, and E. Gratton, "Localized irregularities in hemoglobin flow and oxygenation in calf muscle in patients with peripheral vascular disease detected with near-infrared spectrophotometry," J. Vasc. Surg. 37, 1017-1026 (2003).
[CrossRef] [PubMed]

Choudhury, D.

U. Wolf, M. Wolf, J. H. Choi, M. Levi, D. Choudhury, S. Hull, D. Coussirat, L. A. Paunescu, L. P. Safonova, A. Michalos, W. W. Mantulin, and E. Gratton, "Localized irregularities in hemoglobin flow and oxygenation in calf muscle in patients with peripheral vascular disease detected with near-infrared spectrophotometry," J. Vasc. Surg. 37, 1017-1026 (2003).
[CrossRef] [PubMed]

Comelli, D.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-129 (2003).
[CrossRef] [PubMed]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
[CrossRef] [PubMed]

Coussirat, D.

U. Wolf, M. Wolf, J. H. Choi, M. Levi, D. Choudhury, S. Hull, D. Coussirat, L. A. Paunescu, L. P. Safonova, A. Michalos, W. W. Mantulin, and E. Gratton, "Localized irregularities in hemoglobin flow and oxygenation in calf muscle in patients with peripheral vascular disease detected with near-infrared spectrophotometry," J. Vasc. Surg. 37, 1017-1026 (2003).
[CrossRef] [PubMed]

Cubeddu, R.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-129 (2003).
[CrossRef] [PubMed]

Dassel, A. C. M.

de Mul, F. F. M.

Dimou, A.

Dognitz, N.

Drezek, R.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004).
[CrossRef] [PubMed]

Durkin, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

Durkin, A. J.

S. H. Tseng, A. Grant, and A. J. Durkin, "In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy," J. Biomed. Opt. 13, 014016 (2008).
[CrossRef] [PubMed]

S. H. Tseng, C. Hayakawa, B. J. Tromberg, J. Spanier, and A. J. Durkin, "Quantitative spectroscopy of superficial turbid media," Opt. Lett. 30, 3165-3167 (2005).
[CrossRef] [PubMed]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
[CrossRef] [PubMed]

Esterowitz, D.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

Fehr, M. K.

B. J. Tromberg, L. O. Svaasand, M. K. Fehr, S. J. Madsen, P. Wyss, B. Sansone, and Y. Tadir, "A mathematical model for light dosimetry in photodynamic destruction of human endometrium," Phys. Med. Biol. 41, 223-237 (1996).
[CrossRef] [PubMed]

Follen, M.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004).
[CrossRef] [PubMed]

Fuselier, T.

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," J. Phys. D 38, 2543-2555 (2005).
[CrossRef]

Gillies, R.

N. Kollias, R. Gillies, M. Moran, I. E. Kochevar, and R. R. Anderson, "Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging," J. Invest. Dermatol. 111, 776-780 (1998).
[CrossRef] [PubMed]

Glickman, R.

S. Jacques, R. Glickman, and J. Schwartz, "Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium," SPIE Proc. 2681, 468-477 (1996).
[CrossRef]

Graaff, R.

Grant, A.

S. H. Tseng, A. Grant, and A. J. Durkin, "In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy," J. Biomed. Opt. 13, 014016 (2008).
[CrossRef] [PubMed]

Gratton, E.

U. Wolf, M. Wolf, J. H. Choi, M. Levi, D. Choudhury, S. Hull, D. Coussirat, L. A. Paunescu, L. P. Safonova, A. Michalos, W. W. Mantulin, and E. Gratton, "Localized irregularities in hemoglobin flow and oxygenation in calf muscle in patients with peripheral vascular disease detected with near-infrared spectrophotometry," J. Vasc. Surg. 37, 1017-1026 (2003).
[CrossRef] [PubMed]

Grossman, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

Hayakawa, C.

Hearing, V. J.

M. Brenner, and V. J. Hearing, "The Protective Role of Melanin Against UV Damage in Human Skin," Photochem. Photobiol. 84, 539-549 (2008).
[CrossRef] [PubMed]

Hsiang, D.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

Hull, S.

U. Wolf, M. Wolf, J. H. Choi, M. Levi, D. Choudhury, S. Hull, D. Coussirat, L. A. Paunescu, L. P. Safonova, A. Michalos, W. W. Mantulin, and E. Gratton, "Localized irregularities in hemoglobin flow and oxygenation in calf muscle in patients with peripheral vascular disease detected with near-infrared spectrophotometry," J. Vasc. Surg. 37, 1017-1026 (2003).
[CrossRef] [PubMed]

Jacques, S.

S. Jacques, R. Glickman, and J. Schwartz, "Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium," SPIE Proc. 2681, 468-477 (1996).
[CrossRef]

Jacques, S. L.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Jiang, B.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, "Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range," J. Biomed. Opt. 11, 064026 (2006).
[CrossRef]

Johnson, T. M.

Jung, B. J.

K. M. Kelly, B. Choi, S. McFarlane, A. Motosue, B. J. Jung, M. H. Khan, J. C. Ramirez-San-Juan, and J. S. Nelson, "Description and analysis of treatments for port-wine stain birthmarks," Arch. Facial Plast. Surg. 7, 287-294 (2005).
[CrossRef] [PubMed]

Jung, R.

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand, G. Aguilar, and J. S. Nelson, "Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms," J. Biomed. Opt. 10, 024030 (2005).
[CrossRef] [PubMed]

Kawabata, M.

Kelly, K. M.

K. M. Kelly, B. Choi, S. McFarlane, A. Motosue, B. J. Jung, M. H. Khan, J. C. Ramirez-San-Juan, and J. S. Nelson, "Description and analysis of treatments for port-wine stain birthmarks," Arch. Facial Plast. Surg. 7, 287-294 (2005).
[CrossRef] [PubMed]

Khan, M. H.

K. M. Kelly, B. Choi, S. McFarlane, A. Motosue, B. J. Jung, M. H. Khan, J. C. Ramirez-San-Juan, and J. S. Nelson, "Description and analysis of treatments for port-wine stain birthmarks," Arch. Facial Plast. Surg. 7, 287-294 (2005).
[CrossRef] [PubMed]

Kienle, A.

Kochevar, I. E.

N. Kollias, R. Gillies, M. Moran, I. E. Kochevar, and R. R. Anderson, "Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging," J. Invest. Dermatol. 111, 776-780 (1998).
[CrossRef] [PubMed]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," J. Phys. D 38, 2543-2555 (2005).
[CrossRef]

Koelink, M. H.

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
[CrossRef] [PubMed]

Kollias, N.

G. N. Stamatas, and N. Kollias, "Blood stasis contributions to the perception of skin pigmentation," J. Biomed. Opt. 9, 315-322 (2004).
[CrossRef] [PubMed]

N. Kollias, R. Gillies, M. Moran, I. E. Kochevar, and R. R. Anderson, "Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging," J. Invest. Dermatol. 111, 776-780 (1998).
[CrossRef] [PubMed]

N. Kollias, and A. Baqer, "Spectroscopic characteristics of human melanin in vivo," J. Invest. Dermatol. 85, 38-42 (1985).
[CrossRef] [PubMed]

Levi, M.

U. Wolf, M. Wolf, J. H. Choi, M. Levi, D. Choudhury, S. Hull, D. Coussirat, L. A. Paunescu, L. P. Safonova, A. Michalos, W. W. Mantulin, and E. Gratton, "Localized irregularities in hemoglobin flow and oxygenation in calf muscle in patients with peripheral vascular disease detected with near-infrared spectrophotometry," J. Vasc. Surg. 37, 1017-1026 (2003).
[CrossRef] [PubMed]

Liu, F.

K. M. Yoo, F. Liu, and R. R. Alfano, "When Does the Diffusion-Approximation Fail to Describe Photon Transport in Random-Media," Phys. Rev. Lett. 64, 2647-2650 (1990).
[CrossRef] [PubMed]

Madsen, S. J.

B. J. Tromberg, L. O. Svaasand, M. K. Fehr, S. J. Madsen, P. Wyss, B. Sansone, and Y. Tadir, "A mathematical model for light dosimetry in photodynamic destruction of human endometrium," Phys. Med. Biol. 41, 223-237 (1996).
[CrossRef] [PubMed]

Mantulin, W. W.

U. Wolf, M. Wolf, J. H. Choi, M. Levi, D. Choudhury, S. Hull, D. Coussirat, L. A. Paunescu, L. P. Safonova, A. Michalos, W. W. Mantulin, and E. Gratton, "Localized irregularities in hemoglobin flow and oxygenation in calf muscle in patients with peripheral vascular disease detected with near-infrared spectrophotometry," J. Vasc. Surg. 37, 1017-1026 (2003).
[CrossRef] [PubMed]

McFarlane, S.

K. M. Kelly, B. Choi, S. McFarlane, A. Motosue, B. J. Jung, M. H. Khan, J. C. Ramirez-San-Juan, and J. S. Nelson, "Description and analysis of treatments for port-wine stain birthmarks," Arch. Facial Plast. Surg. 7, 287-294 (2005).
[CrossRef] [PubMed]

Michalos, A.

U. Wolf, M. Wolf, J. H. Choi, M. Levi, D. Choudhury, S. Hull, D. Coussirat, L. A. Paunescu, L. P. Safonova, A. Michalos, W. W. Mantulin, and E. Gratton, "Localized irregularities in hemoglobin flow and oxygenation in calf muscle in patients with peripheral vascular disease detected with near-infrared spectrophotometry," J. Vasc. Surg. 37, 1017-1026 (2003).
[CrossRef] [PubMed]

Mishina, H.

I. Nishidate, Y. Aizu, and H. Mishina, "Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation," J. Biomed. Opt. 9, 700-710 (2004).
[CrossRef] [PubMed]

Miyamae, Y.

Moran, M.

N. Kollias, R. Gillies, M. Moran, I. E. Kochevar, and R. R. Anderson, "Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging," J. Invest. Dermatol. 111, 776-780 (1998).
[CrossRef] [PubMed]

Motosue, A.

K. M. Kelly, B. Choi, S. McFarlane, A. Motosue, B. J. Jung, M. H. Khan, J. C. Ramirez-San-Juan, and J. S. Nelson, "Description and analysis of treatments for port-wine stain birthmarks," Arch. Facial Plast. Surg. 7, 287-294 (2005).
[CrossRef] [PubMed]

Mourant, J. R.

Nelson, J. S.

K. M. Kelly, B. Choi, S. McFarlane, A. Motosue, B. J. Jung, M. H. Khan, J. C. Ramirez-San-Juan, and J. S. Nelson, "Description and analysis of treatments for port-wine stain birthmarks," Arch. Facial Plast. Surg. 7, 287-294 (2005).
[CrossRef] [PubMed]

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand, G. Aguilar, and J. S. Nelson, "Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms," J. Biomed. Opt. 10, 024030 (2005).
[CrossRef] [PubMed]

Nishidate, I.

I. Nishidate, Y. Aizu, and H. Mishina, "Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation," J. Biomed. Opt. 9, 700-710 (2004).
[CrossRef] [PubMed]

Novak, J.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, "Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range," J. Biomed. Opt. 11, 064026 (2006).
[CrossRef]

Ozaki, Y.

Patterson, M. S.

Paunescu, L. A.

U. Wolf, M. Wolf, J. H. Choi, M. Levi, D. Choudhury, S. Hull, D. Coussirat, L. A. Paunescu, L. P. Safonova, A. Michalos, W. W. Mantulin, and E. Gratton, "Localized irregularities in hemoglobin flow and oxygenation in calf muscle in patients with peripheral vascular disease detected with near-infrared spectrophotometry," J. Vasc. Surg. 37, 1017-1026 (2003).
[CrossRef] [PubMed]

Pifferi, A.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-129 (2003).
[CrossRef] [PubMed]

Rajadhyaksha, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

Ramirez-San-Juan, J. C.

K. M. Kelly, B. Choi, S. McFarlane, A. Motosue, B. J. Jung, M. H. Khan, J. C. Ramirez-San-Juan, and J. S. Nelson, "Description and analysis of treatments for port-wine stain birthmarks," Arch. Facial Plast. Surg. 7, 287-294 (2005).
[CrossRef] [PubMed]

Reinoso, R. F.

R. F. Reinoso, B. A. Telfer, and M. Rowland, "Tissue water content in rats measured by desiccation," J. Pharmacol. Toxicol. Methods 38, 87-92 (1997).
[CrossRef] [PubMed]

Richards-Kortum, R.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004).
[CrossRef] [PubMed]

Rowland, M.

R. F. Reinoso, B. A. Telfer, and M. Rowland, "Tissue water content in rats measured by desiccation," J. Pharmacol. Toxicol. Methods 38, 87-92 (1997).
[CrossRef] [PubMed]

Safonova, L. P.

U. Wolf, M. Wolf, J. H. Choi, M. Levi, D. Choudhury, S. Hull, D. Coussirat, L. A. Paunescu, L. P. Safonova, A. Michalos, W. W. Mantulin, and E. Gratton, "Localized irregularities in hemoglobin flow and oxygenation in calf muscle in patients with peripheral vascular disease detected with near-infrared spectrophotometry," J. Vasc. Surg. 37, 1017-1026 (2003).
[CrossRef] [PubMed]

Salomatina, E.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, "Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range," J. Biomed. Opt. 11, 064026 (2006).
[CrossRef]

Sansone, B.

B. J. Tromberg, L. O. Svaasand, M. K. Fehr, S. J. Madsen, P. Wyss, B. Sansone, and Y. Tadir, "A mathematical model for light dosimetry in photodynamic destruction of human endometrium," Phys. Med. Biol. 41, 223-237 (1996).
[CrossRef] [PubMed]

Schwartz, J.

S. Jacques, R. Glickman, and J. Schwartz, "Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium," SPIE Proc. 2681, 468-477 (1996).
[CrossRef]

Shah, N.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
[CrossRef] [PubMed]

Spanier, J.

Stamatas, G. N.

G. N. Stamatas, and N. Kollias, "Blood stasis contributions to the perception of skin pigmentation," J. Biomed. Opt. 9, 315-322 (2004).
[CrossRef] [PubMed]

Svaasand, L. O.

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand, G. Aguilar, and J. S. Nelson, "Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms," J. Biomed. Opt. 10, 024030 (2005).
[CrossRef] [PubMed]

B. J. Tromberg, L. O. Svaasand, M. K. Fehr, S. J. Madsen, P. Wyss, B. Sansone, and Y. Tadir, "A mathematical model for light dosimetry in photodynamic destruction of human endometrium," Phys. Med. Biol. 41, 223-237 (1996).
[CrossRef] [PubMed]

Tadir, Y.

B. J. Tromberg, L. O. Svaasand, M. K. Fehr, S. J. Madsen, P. Wyss, B. Sansone, and Y. Tadir, "A mathematical model for light dosimetry in photodynamic destruction of human endometrium," Phys. Med. Biol. 41, 223-237 (1996).
[CrossRef] [PubMed]

Taroni, P.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-129 (2003).
[CrossRef] [PubMed]

Telfer, B. A.

R. F. Reinoso, B. A. Telfer, and M. Rowland, "Tissue water content in rats measured by desiccation," J. Pharmacol. Toxicol. Methods 38, 87-92 (1997).
[CrossRef] [PubMed]

Thennadil, S. N.

T. L. Troy and S. N. Thennadil, "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm," J. Biomed. Opt. 6, 167-176 (2001).
[CrossRef] [PubMed]

Torricelli, A.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-129 (2003).
[CrossRef] [PubMed]

Tromberg, B. J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

S. H. Tseng, C. Hayakawa, B. J. Tromberg, J. Spanier, and A. J. Durkin, "Quantitative spectroscopy of superficial turbid media," Opt. Lett. 30, 3165-3167 (2005).
[CrossRef] [PubMed]

B. J. Tromberg, L. O. Svaasand, M. K. Fehr, S. J. Madsen, P. Wyss, B. Sansone, and Y. Tadir, "A mathematical model for light dosimetry in photodynamic destruction of human endometrium," Phys. Med. Biol. 41, 223-237 (1996).
[CrossRef] [PubMed]

Troy, T. L.

T. L. Troy and S. N. Thennadil, "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm," J. Biomed. Opt. 6, 167-176 (2001).
[CrossRef] [PubMed]

Tseng, S. H.

S. H. Tseng, A. Grant, and A. J. Durkin, "In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy," J. Biomed. Opt. 13, 014016 (2008).
[CrossRef] [PubMed]

S. H. Tseng, C. Hayakawa, B. J. Tromberg, J. Spanier, and A. J. Durkin, "Quantitative spectroscopy of superficial turbid media," Opt. Lett. 30, 3165-3167 (2005).
[CrossRef] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," J. Phys. D 38, 2543-2555 (2005).
[CrossRef]

van den Bergh, H.

Verkruysse, W.

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand, G. Aguilar, and J. S. Nelson, "Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms," J. Biomed. Opt. 10, 024030 (2005).
[CrossRef] [PubMed]

Viator, J. A.

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand, G. Aguilar, and J. S. Nelson, "Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms," J. Biomed. Opt. 10, 024030 (2005).
[CrossRef] [PubMed]

Wagnieres, G.

Wang, L. H.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Webb, R. H.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

Wolf, M.

U. Wolf, M. Wolf, J. H. Choi, M. Levi, D. Choudhury, S. Hull, D. Coussirat, L. A. Paunescu, L. P. Safonova, A. Michalos, W. W. Mantulin, and E. Gratton, "Localized irregularities in hemoglobin flow and oxygenation in calf muscle in patients with peripheral vascular disease detected with near-infrared spectrophotometry," J. Vasc. Surg. 37, 1017-1026 (2003).
[CrossRef] [PubMed]

Wolf, U.

U. Wolf, M. Wolf, J. H. Choi, M. Levi, D. Choudhury, S. Hull, D. Coussirat, L. A. Paunescu, L. P. Safonova, A. Michalos, W. W. Mantulin, and E. Gratton, "Localized irregularities in hemoglobin flow and oxygenation in calf muscle in patients with peripheral vascular disease detected with near-infrared spectrophotometry," J. Vasc. Surg. 37, 1017-1026 (2003).
[CrossRef] [PubMed]

Wyss, P.

B. J. Tromberg, L. O. Svaasand, M. K. Fehr, S. J. Madsen, P. Wyss, B. Sansone, and Y. Tadir, "A mathematical model for light dosimetry in photodynamic destruction of human endometrium," Phys. Med. Biol. 41, 223-237 (1996).
[CrossRef] [PubMed]

Yamakawa, Y.

Yaroslavsky, A. N.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, "Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range," J. Biomed. Opt. 11, 064026 (2006).
[CrossRef]

Yoo, K. M.

K. M. Yoo, F. Liu, and R. R. Alfano, "When Does the Diffusion-Approximation Fail to Describe Photon Transport in Random-Media," Phys. Rev. Lett. 64, 2647-2650 (1990).
[CrossRef] [PubMed]

Zhang, R.

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand, G. Aguilar, and J. S. Nelson, "Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms," J. Biomed. Opt. 10, 024030 (2005).
[CrossRef] [PubMed]

Zheng, L. Q.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Zijlstra, W. G.

Zonios, G.

Appl. Opt.

Appl. Spectrosc.

Arch. Facial Plast. Surg.

K. M. Kelly, B. Choi, S. McFarlane, A. Motosue, B. J. Jung, M. H. Khan, J. C. Ramirez-San-Juan, and J. S. Nelson, "Description and analysis of treatments for port-wine stain birthmarks," Arch. Facial Plast. Surg. 7, 287-294 (2005).
[CrossRef] [PubMed]

Comput. Methods Programs Biomed.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, "Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

J. Biomed. Opt.

R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand, G. Aguilar, and J. S. Nelson, "Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms," J. Biomed. Opt. 10, 024030 (2005).
[CrossRef] [PubMed]

S. H. Tseng, A. Grant, and A. J. Durkin, "In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy," J. Biomed. Opt. 13, 014016 (2008).
[CrossRef] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006).
[CrossRef] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, "Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation," J. Biomed. Opt. 9, 700-710 (2004).
[CrossRef] [PubMed]

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004).
[CrossRef] [PubMed]

T. L. Troy and S. N. Thennadil, "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm," J. Biomed. Opt. 6, 167-176 (2001).
[CrossRef] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, "Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range," J. Biomed. Opt. 11, 064026 (2006).
[CrossRef]

G. N. Stamatas, and N. Kollias, "Blood stasis contributions to the perception of skin pigmentation," J. Biomed. Opt. 9, 315-322 (2004).
[CrossRef] [PubMed]

J. Invest. Dermatol.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

N. Kollias, R. Gillies, M. Moran, I. E. Kochevar, and R. R. Anderson, "Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging," J. Invest. Dermatol. 111, 776-780 (1998).
[CrossRef] [PubMed]

N. Kollias, and A. Baqer, "Spectroscopic characteristics of human melanin in vivo," J. Invest. Dermatol. 85, 38-42 (1985).
[CrossRef] [PubMed]

I. M. Braverman, "Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states," J. Invest. Dermatol. 93, 2S-9S (1989).
[CrossRef] [PubMed]

J. Pharmacol. Toxicol. Methods

R. F. Reinoso, B. A. Telfer, and M. Rowland, "Tissue water content in rats measured by desiccation," J. Pharmacol. Toxicol. Methods 38, 87-92 (1997).
[CrossRef] [PubMed]

J. Phys. D

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," J. Phys. D 38, 2543-2555 (2005).
[CrossRef]

J. Vasc. Surg.

U. Wolf, M. Wolf, J. H. Choi, M. Levi, D. Choudhury, S. Hull, D. Coussirat, L. A. Paunescu, L. P. Safonova, A. Michalos, W. W. Mantulin, and E. Gratton, "Localized irregularities in hemoglobin flow and oxygenation in calf muscle in patients with peripheral vascular disease detected with near-infrared spectrophotometry," J. Vasc. Surg. 37, 1017-1026 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Photochem. Photobiol.

M. Brenner, and V. J. Hearing, "The Protective Role of Melanin Against UV Damage in Human Skin," Photochem. Photobiol. 84, 539-549 (2008).
[CrossRef] [PubMed]

Photochem. Photobiol. Sci.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, "In vivo absorption and scattering spectroscopy of biological tissues," Photochem. Photobiol. Sci. 2, 124-129 (2003).
[CrossRef] [PubMed]

Phys. Med. Biol.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
[CrossRef] [PubMed]

B. J. Tromberg, L. O. Svaasand, M. K. Fehr, S. J. Madsen, P. Wyss, B. Sansone, and Y. Tadir, "A mathematical model for light dosimetry in photodynamic destruction of human endometrium," Phys. Med. Biol. 41, 223-237 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett.

K. M. Yoo, F. Liu, and R. R. Alfano, "When Does the Diffusion-Approximation Fail to Describe Photon Transport in Random-Media," Phys. Rev. Lett. 64, 2647-2650 (1990).
[CrossRef] [PubMed]

SPIE Proc.

S. Jacques, R. Glickman, and J. Schwartz, "Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium," SPIE Proc. 2681, 468-477 (1996).
[CrossRef]

Other

S. Prahl, "Hemoglobin absorption coefficient," (1999), http://omlc.ogi.edu/spectra/hemoglobin/index.html.

S. L. Jacques, "Melanosome absorption coefficient," (1998), http://omlc.ogi.edu/spectra/melanin/mua.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Configuration of the diffusing probe.

Fig. 2.
Fig. 2.

Average and standard deviation of age of 6 subjects in each skin photo-type category.

Fig. 3.
Fig. 3.

Normalized photon fluence distribution maps of the diffusing probe with (a) a light source of 500nm wavelength and (b) a light source of 900nm wavelength. Whiter region represent higher fluence rate area. Note that the contour line “-4” in (b) encloses larger region than that in (a). Please refer to text for the parameters used.

Fig. 4.
Fig. 4.

50% threshold maps for the diffusing probe of 1.5mm source-detector separation with (a) 500nm light source and (b) 900nm light source, and for the diffusing probe of 3mm sourcedetector separation with (c) 500nm light source and (d) 900nm light source. White region in the tissue sample represents the area that has top 50% fluence rate. Please refer to text for the parameters used.

Fig. 5.
Fig. 5.

(a) absorption coefficient and (b) reduced scattering coefficient of in-vivo dorsal forearm of 18 subjects. Each skin phototype group has 6 subjects. Solid squares, open circles, and open stars represent optical properties of skin type I–II, III–VI, and V–VI, respectively.

Fig. 6.
Fig. 6.

(a) absorption coefficient and (b) reduced scattering coefficient of in-vivo upper inner arm of 18 subjects. Each skin phototype group has 6 subjects. Solid squares, open circles, and open stars represent optical properties of skin type I–II, III–VI, and V–VI, respectively.

Fig. 7.
Fig. 7.

The difference between the (a) mean absorption coefficient, and (b) mean reduced scattering coefficient of dorsal forearm and upper inner arm of twelve subjects of skin type I–IV. (The mean coefficient of upper inner arm is subtracted from that of dorsal forearm)

Fig. 8.
Fig. 8.

Two typical chromophore fitting examples with full range fitting method and two-region fitting method. (a) and (b) demonstrate the fitting results of two fitting methods with the same raw data. (c) and (d) demonstrate another example. Solid squares represent raw data and open circles represent fit spectra.

Fig. 9.
Fig. 9.

Two-region power law fitting of the reduced scattering spectra of the (a) dorsal forearm and (b) upper inner arm of a subject. Open squares represent raw data. Solid lines are the power law fitting to the raw data in 500nm to 600nm range while the dash lines are the power law fitting results in the 600nm to 1000nm range.

Fig. 10.
Fig. 10.

Scattering power calculated from two-region fitting to the reduced scattering spectra of dorsal forearm and upper inner arm of 18 subjects. Each skin phototype group has 6 subjects.

Fig. 11.
Fig. 11.

Oxy- and deoxy-hemoglobin concentration of volar forearm before (white bars) and after (gray bars) applying 50mmHg venous occlusion recovered at (a) 500–600nm region and (b) 600–1000nm region. “P” stands for the P-value.

Tables (2)

Tables Icon

Table 1. Chromophore concentrations of dorsal forearm of 18 subjects recovered with two-regional fitting. Standard deviations were calculated to illustrate the deviation of recovered chromophore concentrations of 6 subjects within each group. Res.full represents the fitting residual of full wavelength range (500–1000nm) fitting, and Res.reg represents the fitting residual of two-regional fitting.

Tables Icon

Table 2. Chromophore concentrations of upper inner arm of 18 subjects recovered with two-regional fitting. Standard deviations were calculated to illustrate the deviation of recovered chromophore concentrations of 6 subjects within each group. Res.full represents the fitting residual of full wavelength range (500–1000nm) fitting, and Res.reg represents the fitting residual of two-regional fitting.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[1cit+μαi[Di(r)]] Φi (r,t)=Si(r,t)
ϕ2(z,s)=sinh[α1(zb+z0)]D1α1cosh[α1(l+zb)]+D2α2sinh[α1(l+zb)]
R(ρ)=2π[1Rfres(θ)]cosθ(L24π)dΩ

Metrics