Abstract

Real-time optical orthogonal frequency division multiplexing (OOFDM) transceivers are experimentally demonstrated with advanced pilot subcarrier-assisted channel estimation being implemented. The channel estimation technique is, for the first time, proposed and experimentally verified rigorously, which offers a number of unique features including high accuracy, low complexity, small pilot bandwidth usage, excellent stability and buffer-free data flow. The fastest ever real-time end-to-end transmission of 3Gb/s 16-QAM-encoded OOFDM signals over 75km MetroCor single-mode fibres is achieved with negative power penalties of −2dB at BERs of 1.0×10−4 in directly modulated DFB laser-based, intensity-modulation and direct-detection systems without in-line optical amplification and chromatic dispersion compensation.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. E. Jolley, H. Kee, R. Rickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550 nm 10 Gb/s optical orthogonal frequency division multiplexed signal over 1000 m of multimode fibre using a directly modulated DFB,” presented at the Optical Fibre Communication Conf./National Fiber Optic Engineers Conf. (OFC/NFOEC), (OSA, 2005), Paper OFP3.
  2. J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptively modulated optical OFDM signals over multimode fibres using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006).
    [CrossRef]
  3. J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
    [CrossRef]
  4. H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, T. Yamada, and S. Kamei, “13.5-Tb/s (135×111-Gb/s/ch) no-guard-interval coherent OFDM transmission over 6248km using SNR maximized second-order DRA in the extended L-band,” Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2009), Paper PDPB5.
  5. B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-detection optical OFDM,” Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2009), Paper PDPC3.
  6. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [CrossRef] [PubMed]
  7. T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s for upstream transmission by remote modulation of 1 GHz RSOA using Adaptively Modulated Optical OFDM for WDM-PON single fiber architecture,” European Conference on Optical Communication (ECOC), (Brussels, Belgium, 2008), PD paper Th.3.F.1.
  8. C.-W. Chow, C.-H. Yeh, C.-H. Wang, F.-Y. Shih, C.-L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express 16(16), 12096–12101 (2008).
    [CrossRef] [PubMed]
  9. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct-detection,” Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2009), Paper PDPD5.
  10. H. Yang, S. C. J. Lee, E. Tangdiongga, F. Breyer, S. Randel, and A. M. J. Koonen, “40-Gb/s transmission over 100m graded-index plastic optical fibre based on discrete multitone modulation,” Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2009), Paper PDPD8.
  11. R.P. Giddings, X.Q. Jin, H.H. Kee, X.L. Yang and J.M. Tang, “First experimental demonstration of real-time optical OFDM transceivers,” presented at ECOC, Vienna, Austria, Sep. 2009 (accepted for presentation).
  12. R. P. Giddings, X. Q. Jin, and J. M. Tang, “Experimental demonstration of real-time 3Gb/s optical OFDM transceivers,” Opt. Express (submitted).
    [PubMed]
  13. L. Hanzo, S. X. Ng, T. Keller, and W. Webb, Quadrature Amplitude Modulation: from basics to adaptive trellis-coded, turbo-equalised and space-time coded OFDM, CDMA and MC-CDMA systems, (John Wiley & Sons, England, 2004).
  14. C.-S. Yeh and Y. Lin, “Channel estimation using pilot tones in OFDM systems,” IEEE Trans. Broadcast 45(4), 400–409 (1999).
    [CrossRef]
  15. J. A. P. Morgado and A. V. T. Cartaxo, “Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1315–1324 (2003).
    [CrossRef]
  16. I. Tomkos, B. Hallock, I. Boudas, R. Hesse, A. Boskovic, R. Vodhanel, and J. Nakano, “Transmission of 1550nm 10Gb/s directly modulated signal over 100km of negative dispersion fibre without any dispersion compensation,” presented at the Optical Fibre Communication Conf./National Fiber Optic Engineers Conf. (OFC/NFOEC), (OSA, 2001), Paper TuU6–1.

2009

2008

2006

2003

J. A. P. Morgado and A. V. T. Cartaxo, “Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1315–1324 (2003).
[CrossRef]

1999

C.-S. Yeh and Y. Lin, “Channel estimation using pilot tones in OFDM systems,” IEEE Trans. Broadcast 45(4), 400–409 (1999).
[CrossRef]

Cartaxo, A. V. T.

J. A. P. Morgado and A. V. T. Cartaxo, “Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1315–1324 (2003).
[CrossRef]

Chen, S.

Chi, S.

Chow, C.-W.

Giddings, R. P.

R. P. Giddings, X. Q. Jin, and J. M. Tang, “Experimental demonstration of real-time 3Gb/s optical OFDM transceivers,” Opt. Express (submitted).
[PubMed]

Jin, X. Q.

R. P. Giddings, X. Q. Jin, and J. M. Tang, “Experimental demonstration of real-time 3Gb/s optical OFDM transceivers,” Opt. Express (submitted).
[PubMed]

Lane, P. M.

Lin, Y.

C.-S. Yeh and Y. Lin, “Channel estimation using pilot tones in OFDM systems,” IEEE Trans. Broadcast 45(4), 400–409 (1999).
[CrossRef]

Ma, Y.

Morgado, J. A. P.

J. A. P. Morgado and A. V. T. Cartaxo, “Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1315–1324 (2003).
[CrossRef]

Pan, C.-L.

Shieh, W.

Shih, F.-Y.

Shore, K. A.

Tang, J. M.

Tang, Y.

Wang, C.-H.

Yang, Q.

Yeh, C.-H.

Yeh, C.-S.

C.-S. Yeh and Y. Lin, “Channel estimation using pilot tones in OFDM systems,” IEEE Trans. Broadcast 45(4), 400–409 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. A. P. Morgado and A. V. T. Cartaxo, “Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1315–1324 (2003).
[CrossRef]

IEEE Trans. Broadcast

C.-S. Yeh and Y. Lin, “Channel estimation using pilot tones in OFDM systems,” IEEE Trans. Broadcast 45(4), 400–409 (1999).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

L. Hanzo, S. X. Ng, T. Keller, and W. Webb, Quadrature Amplitude Modulation: from basics to adaptive trellis-coded, turbo-equalised and space-time coded OFDM, CDMA and MC-CDMA systems, (John Wiley & Sons, England, 2004).

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s for upstream transmission by remote modulation of 1 GHz RSOA using Adaptively Modulated Optical OFDM for WDM-PON single fiber architecture,” European Conference on Optical Communication (ECOC), (Brussels, Belgium, 2008), PD paper Th.3.F.1.

N. E. Jolley, H. Kee, R. Rickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550 nm 10 Gb/s optical orthogonal frequency division multiplexed signal over 1000 m of multimode fibre using a directly modulated DFB,” presented at the Optical Fibre Communication Conf./National Fiber Optic Engineers Conf. (OFC/NFOEC), (OSA, 2005), Paper OFP3.

I. Tomkos, B. Hallock, I. Boudas, R. Hesse, A. Boskovic, R. Vodhanel, and J. Nakano, “Transmission of 1550nm 10Gb/s directly modulated signal over 100km of negative dispersion fibre without any dispersion compensation,” presented at the Optical Fibre Communication Conf./National Fiber Optic Engineers Conf. (OFC/NFOEC), (OSA, 2001), Paper TuU6–1.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct-detection,” Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2009), Paper PDPD5.

H. Yang, S. C. J. Lee, E. Tangdiongga, F. Breyer, S. Randel, and A. M. J. Koonen, “40-Gb/s transmission over 100m graded-index plastic optical fibre based on discrete multitone modulation,” Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2009), Paper PDPD8.

R.P. Giddings, X.Q. Jin, H.H. Kee, X.L. Yang and J.M. Tang, “First experimental demonstration of real-time optical OFDM transceivers,” presented at ECOC, Vienna, Austria, Sep. 2009 (accepted for presentation).

H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, T. Yamada, and S. Kamei, “13.5-Tb/s (135×111-Gb/s/ch) no-guard-interval coherent OFDM transmission over 6248km using SNR maximized second-order DRA in the extended L-band,” Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2009), Paper PDPB5.

B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “100 Gbit/s transmission using single-band direct-detection optical OFDM,” Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2009), Paper PDPC3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Pilot and information-bearing subcarrier allocation in the time-frequency OOFDM symbol space.

Fig. 2
Fig. 2

Pilot subcarrier identification using Q peaks after the FFT in the receiver.

Fig. 3
Fig. 3

(a): Experimental transmission system setup; and (b) real-time OOFDM transceiver architecture with channel estimation.

Fig. 4
Fig. 4

Effectiveness of pilot subcarrier averaging for different received optical powers.

Fig. 7
Fig. 7

(a) BER versus received optical power for 3Gb/s 16-QAM-encoded OOFDM signal transmission over DML-based IMDD MetroCor SMFs of different lengths; (b) Power penalty at a BER of 1.0×10−4 versus transmission distance.

Fig. 5
Fig. 5

BER versus channel estimation updating rate for different received optical powers.

Fig. 6
Fig. 6

Normalized channel transfer functions for optical back-to-back and SMFs of 50km and 75km

Fig. 8
Fig. 8

Constellations of various 16-QAM-encoded subcarriers for 3Gb/s OOFDM signals after transmitting through the75km SMF: (a) BER of 3.98×10−7, (b) BER of 5.65×10−4.

Fig. 9
Fig. 9

BER of each subcarrier of an OOFDM symbol for optical back-to-back and 75km MetroCor SMF transmission.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Xm,k={pm,k(mk)=qNsdm,k(mk)qNsq=0,1,2,
Dm,1=χm,1χ(m+Ns),1
Qm,1=1C|i=0C1D(m+iNs),1|2
Hk=1Mi=0M1R(k+iNs),kp(k+iNs),k=1MΡi=0M1R(k+iNs),k

Metrics