Abstract

A growing number of quantum communication protocols require entanglement distribution among remote parties, which is best accomplished by exploiting the mature technology and extensive infrastructure of low-loss optical fiber. For this reason, a practical source of entangled photons must be drop-in compatible with optical fiber networks. Here we demonstrate such a source for the first time, in which the nonlinearity of standard single-mode fiber is utilized to yield entangled photon pairs in the 1310-nm O-band. Using an ultra-stable design, we produce polarization entanglement with 98.0% ± 0.5% fidelity to a maximally entangled state as characterized via coincidence-basis tomography. To demonstrate the source’s drop-in capability, we transmit one photon from each entangled pair through a telecommunications-grade optical amplifier set to boost classical 1550-nm (C-band) communication signals. We verify that the photon pairs experience no measurable decoherence upon passing through the active amplifier (the output state’s fidelity with a maximally entangled state is 98.4% ± 1.4%).

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.A. Nielsen and I.L. Chuang I. Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2001).
    [CrossRef]
  3. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
    [CrossRef] [PubMed]
  4. K.-Y. Chen, T. Hogg, and R. Beausoleil, “A Quantum Treatment of Public Goods Economics,” Quantum Inf. Process. 1(6), 449–469 (2002).
    [CrossRef]
  5. S. C. Benjamin and P. M. Hayden, “Multiplayer quantum games,” Phys. Rev. A 64(3), 030301 (2001).
    [CrossRef]
  6. J. Eisert, M. Wilkens, and M. Lewenstein, “Quantum Games and Quantum Strategies,” Phys. Rev. Lett. 83(15), 3077–3080 (1999).
    [CrossRef]
  7. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59(6), 4249–4254 (1999).
    [CrossRef]
  8. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [CrossRef] [PubMed]
  9. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
    [CrossRef]
  10. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64(2), 023802 (2001).
    [CrossRef]
  11. Y. H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A 63(6), 062301 (2001).
    [CrossRef]
  12. Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002).
    [CrossRef]
  13. G. Bitton, W. P. Grice, J. Moreau, and L. Zhang, “Cascaded ultrabright source of polarization-entangled photons,” Phys. Rev. A 65(6), 063805 (2002).
    [CrossRef]
  14. M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69(4), 041801 (2003).
    [CrossRef]
  15. B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
    [CrossRef]
  16. M. Fiorentino, C. E. Kuklewicz, and F. N. C. Wong, “Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones,” Opt. Express 13(1), 127–135 (2005).
    [CrossRef] [PubMed]
  17. J. Altepeter, E. Jeffrey, and P. Kwiat, “Phase-compensated ultra-bright source of entangled photons,” Opt. Express 13(22), 8951–8959 (2005).
    [CrossRef] [PubMed]
  18. J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76(4), 043836 (2007).
    [CrossRef]
  19. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99(12), 120501 (2007).
    [CrossRef] [PubMed]
  20. N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
    [CrossRef]
  21. E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in Erbium-doped single-mode fibers,” J. Lightwave Technol. 7(5), 835–845 (1989).
    [CrossRef]
  22. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm Telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
    [CrossRef] [PubMed]
  23. H. Takesua and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
    [CrossRef]
  24. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31(12), 1905–1907 (2006).
    [CrossRef] [PubMed]
  25. X. Li, C. Liang, K. Fook Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73(5), 052301 (2006).
    [CrossRef]
  26. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
    [CrossRef]
  27. X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30(10), 1201–1203 (2005).
    [CrossRef] [PubMed]
  28. C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” Optical Fiber Communications Conference (OFC’2006), paper PDP35.
  29. H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15(12), 7853–7862 (2007).
    [CrossRef] [PubMed]
  30. S. Sauge, M. Swillo, S. Albert-Seifried, G. B. Xavier, J. Waldebäck, M. Tengner, D. Ljunggren, and A. Karlsson, “Narrowband polarization-entangled photon pairs distributed over a WDM link for qubit networks,” Opt. Express 15(11), 6926–6933 (2007).
    [CrossRef] [PubMed]
  31. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15(21), 13957–13964 (2007).
    [CrossRef] [PubMed]
  32. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
    [CrossRef]
  33. C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express 14(15), 6936–6941 (2006).
    [CrossRef] [PubMed]
  34. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  35. J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Chap. 3: Photonic State Tomography,” Advances in AMO Physics, Vol. 52 (Elsevier, 2006).
  36. N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote State Preparation: Arbitrary Remote Control of Photon Polarization,” Phys. Rev. Lett. 94(15), 150502 (2005).
    [CrossRef] [PubMed]
  37. E. Desurvire, D. Bayart, B. Desthieux, and S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley-Interscience, 2002).

2007

2006

2005

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm Telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[CrossRef] [PubMed]

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote State Preparation: Arbitrary Remote Control of Photon Polarization,” Phys. Rev. Lett. 94(15), 150502 (2005).
[CrossRef] [PubMed]

M. Fiorentino, C. E. Kuklewicz, and F. N. C. Wong, “Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones,” Opt. Express 13(1), 127–135 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30(10), 1201–1203 (2005).
[CrossRef] [PubMed]

J. Altepeter, E. Jeffrey, and P. Kwiat, “Phase-compensated ultra-bright source of entangled photons,” Opt. Express 13(22), 8951–8959 (2005).
[CrossRef] [PubMed]

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[CrossRef]

2004

H. Takesua and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
[CrossRef]

B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
[CrossRef]

2003

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69(4), 041801 (2003).
[CrossRef]

2002

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002).
[CrossRef]

G. Bitton, W. P. Grice, J. Moreau, and L. Zhang, “Cascaded ultrabright source of polarization-entangled photons,” Phys. Rev. A 65(6), 063805 (2002).
[CrossRef]

K.-Y. Chen, T. Hogg, and R. Beausoleil, “A Quantum Treatment of Public Goods Economics,” Quantum Inf. Process. 1(6), 449–469 (2002).
[CrossRef]

2001

S. C. Benjamin and P. M. Hayden, “Multiplayer quantum games,” Phys. Rev. A 64(3), 030301 (2001).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2001).
[CrossRef]

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64(2), 023802 (2001).
[CrossRef]

Y. H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A 63(6), 062301 (2001).
[CrossRef]

1999

J. Eisert, M. Wilkens, and M. Lewenstein, “Quantum Games and Quantum Strategies,” Phys. Rev. Lett. 83(15), 3077–3080 (1999).
[CrossRef]

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59(6), 4249–4254 (1999).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

1998

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[CrossRef]

1995

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

1991

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[CrossRef] [PubMed]

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

1989

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in Erbium-doped single-mode fibers,” J. Lightwave Technol. 7(5), 835–845 (1989).
[CrossRef]

Albert-Seifried, S.

Alibart, O.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[CrossRef] [PubMed]

Altepeter, J.

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

Asobe, M.

Barreiro, J. T.

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote State Preparation: Arbitrary Remote Control of Photon Polarization,” Phys. Rev. Lett. 94(15), 150502 (2005).
[CrossRef] [PubMed]

Beausoleil, R.

K.-Y. Chen, T. Hogg, and R. Beausoleil, “A Quantum Treatment of Public Goods Economics,” Quantum Inf. Process. 1(6), 449–469 (2002).
[CrossRef]

Benjamin, S. C.

S. C. Benjamin and P. M. Hayden, “Multiplayer quantum games,” Phys. Rev. A 64(3), 030301 (2001).
[CrossRef]

Bitton, G.

G. Bitton, W. P. Grice, J. Moreau, and L. Zhang, “Cascaded ultrabright source of polarization-entangled photons,” Phys. Rev. A 65(6), 063805 (2002).
[CrossRef]

Blauensteiner, B.

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[CrossRef]

Chapuran, T. E.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[CrossRef]

Chekhova, M. V.

Y. H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A 63(6), 062301 (2001).
[CrossRef]

Chen, J.

Chen, K.-Y.

K.-Y. Chen, T. Hogg, and R. Beausoleil, “A Quantum Treatment of Public Goods Economics,” Quantum Inf. Process. 1(6), 449–469 (2002).
[CrossRef]

Cirac, J. I.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59(6), 4249–4254 (1999).
[CrossRef]

Dallmann, N.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[CrossRef]

Desurvire, E.

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in Erbium-doped single-mode fibers,” J. Lightwave Technol. 7(5), 835–845 (1989).
[CrossRef]

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

Eisaman, M. D.

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76(4), 043836 (2007).
[CrossRef]

Eisert, J.

J. Eisert, M. Wilkens, and M. Lewenstein, “Quantum Games and Quantum Strategies,” Phys. Rev. Lett. 83(15), 3077–3080 (1999).
[CrossRef]

Ekert, A. K.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59(6), 4249–4254 (1999).
[CrossRef]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[CrossRef] [PubMed]

Fan, J.

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76(4), 043836 (2007).
[CrossRef]

Fiorentino, M.

M. Fiorentino, C. E. Kuklewicz, and F. N. C. Wong, “Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones,” Opt. Express 13(1), 127–135 (2005).
[CrossRef] [PubMed]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69(4), 041801 (2003).
[CrossRef]

Fook Lee, K.

X. Li, C. Liang, K. Fook Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73(5), 052301 (2006).
[CrossRef]

Fulconis, J.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[CrossRef] [PubMed]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2001).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[CrossRef]

Goggin, M. E.

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote State Preparation: Arbitrary Remote Control of Photon Polarization,” Phys. Rev. Lett. 94(15), 150502 (2005).
[CrossRef] [PubMed]

Goodman, M. S.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[CrossRef]

Grice, W. P.

G. Bitton, W. P. Grice, J. Moreau, and L. Zhang, “Cascaded ultrabright source of polarization-entangled photons,” Phys. Rev. A 65(6), 063805 (2002).
[CrossRef]

Hayden, P. M.

S. C. Benjamin and P. M. Hayden, “Multiplayer quantum games,” Phys. Rev. A 64(3), 030301 (2001).
[CrossRef]

Hiskett, P.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[CrossRef]

Hogg, T.

K.-Y. Chen, T. Hogg, and R. Beausoleil, “A Quantum Treatment of Public Goods Economics,” Quantum Inf. Process. 1(6), 449–469 (2002).
[CrossRef]

Honjo, T.

Hübel, H.

Huelga, S. F.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59(6), 4249–4254 (1999).
[CrossRef]

Hughes, R. J.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[CrossRef]

Inoue, K.

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15(21), 13957–13964 (2007).
[CrossRef] [PubMed]

H. Takesua and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
[CrossRef]

Jeffrey, E.

Kamada, H.

Karlsson, A.

Khurgin, J. B.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[CrossRef]

Kim, Y. H.

Y. H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A 63(6), 062301 (2001).
[CrossRef]

Kuklewicz, C. E.

M. Fiorentino, C. E. Kuklewicz, and F. N. C. Wong, “Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones,” Opt. Express 13(1), 127–135 (2005).
[CrossRef] [PubMed]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69(4), 041801 (2003).
[CrossRef]

Kulik, S. P.

Y. H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A 63(6), 062301 (2001).
[CrossRef]

Kumar, P.

Kurtsiefer, C.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64(2), 023802 (2001).
[CrossRef]

Kwiat, P.

Kwiat, P. G.

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote State Preparation: Arbitrary Remote Control of Photon Polarization,” Phys. Rev. Lett. 94(15), 150502 (2005).
[CrossRef] [PubMed]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Lederer, T.

Lee, K. F.

Levin, T.

Lewenstein, M.

J. Eisert, M. Wilkens, and M. Lewenstein, “Quantum Games and Quantum Strategies,” Phys. Rev. Lett. 83(15), 3077–3080 (1999).
[CrossRef]

Li, X.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31(12), 1905–1907 (2006).
[CrossRef] [PubMed]

X. Li, C. Liang, K. Fook Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73(5), 052301 (2006).
[CrossRef]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30(10), 1201–1203 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm Telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[CrossRef] [PubMed]

Liang, C.

Ljunggren, D.

Lorünser, T.

Macchiavello, C.

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59(6), 4249–4254 (1999).
[CrossRef]

Matsumoto, K.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002).
[CrossRef]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

McCabe, K.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[CrossRef]

McNown, S. R.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[CrossRef]

Messin, G.

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69(4), 041801 (2003).
[CrossRef]

Migdall, A.

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76(4), 043836 (2007).
[CrossRef]

Miniscalco, W. J.

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

Moreau, J.

G. Bitton, W. P. Grice, J. Moreau, and L. Zhang, “Cascaded ultrabright source of polarization-entangled photons,” Phys. Rev. A 65(6), 063805 (2002).
[CrossRef]

Nakamura, K.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002).
[CrossRef]

Nambu, Y.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002).
[CrossRef]

Nishida, Y.

Nordholt, J. E.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[CrossRef]

Nweke, N. I.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[CrossRef]

O’Brien, J. L.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[CrossRef] [PubMed]

Oberparleiter, M.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64(2), 023802 (2001).
[CrossRef]

Peters, N. A.

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote State Preparation: Arbitrary Remote Control of Photon Polarization,” Phys. Rev. Lett. 94(15), 150502 (2005).
[CrossRef] [PubMed]

Peterson, C. G.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[CrossRef]

Poppe, A.

Rarity, J. G.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[CrossRef] [PubMed]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2001).
[CrossRef]

Rubin, M. H.

Y. H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A 63(6), 062301 (2001).
[CrossRef]

Runser, R. J.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[CrossRef]

Sauge, S.

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Shapiro, J. H.

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69(4), 041801 (2003).
[CrossRef]

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm Telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30(10), 1201–1203 (2005).
[CrossRef] [PubMed]

Shi, B. S.

B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
[CrossRef]

Shih, Y.

Y. H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A 63(6), 062301 (2001).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Simpson, J. R.

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in Erbium-doped single-mode fibers,” J. Lightwave Technol. 7(5), 835–845 (1989).
[CrossRef]

Swillo, M.

Tadanaga, O.

Takesua, H.

H. Takesua and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
[CrossRef]

Takesue, H.

Tengner, M.

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2001).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[CrossRef]

Toliver, P.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[CrossRef]

Tomita, A.

B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
[CrossRef]

Tsuda, Y.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002).
[CrossRef]

Tyagi, K.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[CrossRef]

Usami, K.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002).
[CrossRef]

Vanner, M. R.

Voss, P. L.

X. Li, C. Liang, K. Fook Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73(5), 052301 (2006).
[CrossRef]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31(12), 1905–1907 (2006).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30(10), 1201–1203 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm Telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[CrossRef] [PubMed]

Wadsworth, W. J.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[CrossRef] [PubMed]

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

Waldebäck, J.

Wei, T.-C.

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote State Preparation: Arbitrary Remote Control of Photon Polarization,” Phys. Rev. Lett. 94(15), 150502 (2005).
[CrossRef] [PubMed]

Weinfurter, H.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64(2), 023802 (2001).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

Wilkens, M.

J. Eisert, M. Wilkens, and M. Lewenstein, “Quantum Games and Quantum Strategies,” Phys. Rev. Lett. 83(15), 3077–3080 (1999).
[CrossRef]

Wong, F. N. C.

M. Fiorentino, C. E. Kuklewicz, and F. N. C. Wong, “Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones,” Opt. Express 13(1), 127–135 (2005).
[CrossRef] [PubMed]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69(4), 041801 (2003).
[CrossRef]

Xavier, G. B.

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2001).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[CrossRef]

Zeilinger, A.

H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15(12), 7853–7862 (2007).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Zhang, L.

G. Bitton, W. P. Grice, J. Moreau, and L. Zhang, “Cascaded ultrabright source of polarization-entangled photons,” Phys. Rev. A 65(6), 063805 (2002).
[CrossRef]

Appl. Phys. Lett.

N. I. Nweke, P. Toliver, R. J. Runser, S. R. McNown, J. B. Khurgin, T. E. Chapuran, M. S. Goodman, R. J. Hughes, C. G. Peterson, K. McCabe, J. E. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels,” Appl. Phys. Lett. 87(17), 174103 (2005).
[CrossRef]

J. Lightwave Technol.

E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in Erbium-doped single-mode fibers,” J. Lightwave Technol. 7(5), 835–845 (1989).
[CrossRef]

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

H. Takesua and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
[CrossRef]

X. Li, C. Liang, K. Fook Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73(5), 052301 (2006).
[CrossRef]

S. C. Benjamin and P. M. Hayden, “Multiplayer quantum games,” Phys. Rev. A 64(3), 030301 (2001).
[CrossRef]

J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59(6), 4249–4254 (1999).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64(2), 023802 (2001).
[CrossRef]

Y. H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, “Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A 63(6), 062301 (2001).
[CrossRef]

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002).
[CrossRef]

G. Bitton, W. P. Grice, J. Moreau, and L. Zhang, “Cascaded ultrabright source of polarization-entangled photons,” Phys. Rev. A 65(6), 063805 (2002).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69(4), 041801 (2003).
[CrossRef]

B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
[CrossRef]

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76(4), 043836 (2007).
[CrossRef]

Phys. Rev. Lett.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

J. Eisert, M. Wilkens, and M. Lewenstein, “Quantum Games and Quantum Strategies,” Phys. Rev. Lett. 83(15), 3077–3080 (1999).
[CrossRef]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. 81(17), 3563–3566 (1998).
[CrossRef]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm Telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[CrossRef] [PubMed]

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote State Preparation: Arbitrary Remote Control of Photon Polarization,” Phys. Rev. Lett. 94(15), 150502 (2005).
[CrossRef] [PubMed]

Quantum Inf. Process.

K.-Y. Chen, T. Hogg, and R. Beausoleil, “A Quantum Treatment of Public Goods Economics,” Quantum Inf. Process. 1(6), 449–469 (2002).
[CrossRef]

Rev. Mod. Phys.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2001).
[CrossRef]

Other

M.A. Nielsen and I.L. Chuang I. Quantum Computation and Quantum Information (Cambridge University Press, 2000).

E. Desurvire, D. Bayart, B. Desthieux, and S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley-Interscience, 2002).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Chap. 3: Photonic State Tomography,” Advances in AMO Physics, Vol. 52 (Elsevier, 2006).

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” Optical Fiber Communications Conference (OFC’2006), paper PDP35.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of experimental setup. (a) The O-band entangled pair source. A polarization delay breaks each strong, single-color pump pulse into two orthogonally polarized and relatively delayed pulses. These pulses travel down 500 m of fiber, Faraday rotate and return up the same fiber. Photon pairs are probabilistically generated in this fiber. The pump is then filtered out and the pair is analyzed and detected. (b) Filter transmission spectra. FM, Faraday rotator mirror; DGF, double grating filter; FPC, fiber polarization controller; Circ, circulator; PA, polarization analyzer; D1(2), avalanche photodiode.

Fig. 2
Fig. 2

Experimentally reconstructed density matrices for various experimental configurations. (a) High pump power, all accidental coincidence counts subtracted (F = 98.0% ± 0.5%). (b) High pump power, shown in the un-rotated |HH〉 basis (fidelity to |HH〉 + |VV〉 = 94.3%). (c) Low pump power, only dark count coincidences subtracted (F = 97.3% ± 1.2%). (d) Low pump power, all accidental coincidences are subtracted (F = 98.6% ± 0.9%).

Fig. 3
Fig. 3

Two photon interference fringes. (a) The signal was projected into state |ϕs〉 = |H〉 while the idler projection traced out the blue great circle on the Poincaré sphere and the resulting TPI fringe. (b) The signal was projected into state |ϕs〉 = |D〉 while the idler projection traced out the red great circle on the Poincaré sphere and the resulting TPI fringe.

Fig. 4
Fig. 4

Experimental schematic for entanglement transmission through an active EDFA. (a) The signal photon is multiplexed with a bright 1550-nm classical data stream before transmission through an EDFA providing a 13 dB gain to the classical signal while preserving the entanglement between the 1306.5 nm photon and its partner. (b) Optical spectrum out of the EDFA. (c) The measured eye-diagram of the 10-GHz classical data before transmission through the EDFA. (d) The measured eye-diagram of the classical signal after amplification.

Fig. 5
Fig. 5

Experimental results. (a) The reconstructed density matrix of the photon pair after transmission through an active optical amplifier (F = 98.4% ± 1.4%). (b) Traces of the PDL of the EDFA on the Poincaré-sphere. (c) PDL plotted linearly showing that the EDFA introduced approximately 0.47dB of PDL. Minimal changes to commercial EDFA designs can dramatically reduce both absolute and polarization dependent loss.

Metrics