Abstract

Optical cavities provide a route to sensing through the shift of the optical resonant peak. However, effective sensing with optical cavities requires the optimization of the modal quality factor, Q, and the field overlap with the sample, f. For a photonic crystal slab (PCS) this figure of merit, M = fQ, involves two competing effects. The air modes usually have large f but small Q, whereas the dielectric modes have high-Q and small f. We compare the sensitivity of air and dielectric modes for different PCS cavity designs and account for loss associated with absorption by the sensed sample or its host liquid. We find that optimizing Q at the expense of f is the most beneficial strategy, and modes deriving from the dielectric bands are thus preferred.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  2. Optical microcavities, K. Vahala, ed. (World Scientific Publishing, 2004).
  3. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [CrossRef] [PubMed]
  4. I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(241104), 1–3 (2007).
    [CrossRef]
  5. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
    [CrossRef] [PubMed]
  6. F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16(2), 1062–1067 (2008).
    [CrossRef] [PubMed]
  7. H.-C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor - analysis for adsorption of rodlike bacteria,” Opt. Express 15(25), 17410–17423 (2007).
    [CrossRef] [PubMed]
  8. J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(141116), 1–3 (2007).
    [CrossRef]
  9. M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
    [CrossRef]
  10. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
    [CrossRef] [PubMed]
  11. A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, and P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89(101102), 1–3 (2006).
    [CrossRef]
  12. N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
    [CrossRef]
  13. S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16(16), 11709–11717 (2008).
    [CrossRef] [PubMed]
  14. D. F. Dofner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(181103), 1–3 (2008).
  15. F. Bordas, M. J. Steel, C. Seassal, and A. Rahmani, “Confinement of band-edge modes in a photonic crystal slab,” Opt. Express 15(17), 10890–10902 (2007).
    [CrossRef] [PubMed]
  16. F. Bordas, C. Seassal, E. Dupuy, P. Regreny, M. Gendry, P. Viktorovitch, M. J. Steel, and A. Rahmani, “Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 microm using cavity-confined slow light,” Opt. Express 17(7), 5439–5445 (2009).
    [CrossRef] [PubMed]
  17. S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006).
    [CrossRef] [PubMed]
  18. C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express 16(20), 15887–15896 (2008).
    [CrossRef] [PubMed]
  19. U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33(19), 2206–2208 (2008).
    [CrossRef] [PubMed]
  20. B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure cavities,” N. J. Phys. 8(209), 1–12 (2006).
    [CrossRef]
  21. F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(211117), 1–3 (2006).
    [CrossRef]
  22. S. Tomljenovic-Hanic, A. D. Greentree, C. M. de Sterke, and S. Prawer, “Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs,” Opt. Express 17(8), 6465–6475 (2009).
    [CrossRef] [PubMed]
  23. T. Xu, M. S. Wheeler, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, “The influence of material absorption on the quality factor of photonic crystal cavities,” Opt. Express 17(10), 8343–8348 (2009).
    [CrossRef] [PubMed]

2009 (3)

2008 (8)

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16(2), 1062–1067 (2008).
[CrossRef] [PubMed]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[CrossRef] [PubMed]

S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16(16), 11709–11717 (2008).
[CrossRef] [PubMed]

C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express 16(20), 15887–15896 (2008).
[CrossRef] [PubMed]

U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33(19), 2206–2208 (2008).
[CrossRef] [PubMed]

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[CrossRef]

D. F. Dofner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(181103), 1–3 (2008).

2007 (4)

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(241104), 1–3 (2007).
[CrossRef]

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(141116), 1–3 (2007).
[CrossRef]

F. Bordas, M. J. Steel, C. Seassal, and A. Rahmani, “Confinement of band-edge modes in a photonic crystal slab,” Opt. Express 15(17), 10890–10902 (2007).
[CrossRef] [PubMed]

H.-C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor - analysis for adsorption of rodlike bacteria,” Opt. Express 15(25), 17410–17423 (2007).
[CrossRef] [PubMed]

2006 (4)

A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, and P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89(101102), 1–3 (2006).
[CrossRef]

B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure cavities,” N. J. Phys. 8(209), 1–12 (2006).
[CrossRef]

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(211117), 1–3 (2006).
[CrossRef]

S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

Abstreiter, G.

D. F. Dofner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(181103), 1–3 (2008).

Aitchison, J. S.

Alija, A. R.

A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, and P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89(101102), 1–3 (2006).
[CrossRef]

Arnold, S.

Asano, T.

B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure cavities,” N. J. Phys. 8(209), 1–12 (2006).
[CrossRef]

Bettoti, P.

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(211117), 1–3 (2006).
[CrossRef]

Bog, U.

Bordas, F.

Borri, P.

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(141116), 1–3 (2007).
[CrossRef]

Brambilla, G.

Chen, L.

Chow, E.

Colocci, M.

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(211117), 1–3 (2006).
[CrossRef]

de Sterke, C. M.

Dofner, D. F.

D. F. Dofner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(181103), 1–3 (2008).

Dupuy, E.

Eggleton, B. J.

Fan, X.

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(241104), 1–3 (2007).
[CrossRef]

Finazzi, V.

Finley, J. J.

D. F. Dofner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(181103), 1–3 (2008).

Forchel, A.

Frandsen, L. H.

D. F. Dofner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(181103), 1–3 (2008).

Gendry, M.

Girolami, G.

Gohring, J.

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(241104), 1–3 (2007).
[CrossRef]

Greentree, A. D.

Grillet, C.

Grot, A.

Hurlimann, T.

D. F. Dofner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(181103), 1–3 (2008).

Intonti, F.

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(211117), 1–3 (2006).
[CrossRef]

Kamp, M.

Karnutsch, C.

Krauss, T. F.

Kwon, S.-H.

Lacey, S.

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(241104), 1–3 (2007).
[CrossRef]

Langbein, W.

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(141116), 1–3 (2007).
[CrossRef]

Lee, M. W.

Libchaber, A.

Lipson, M.

Loncar, M.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

Lutti, J.

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(141116), 1–3 (2007).
[CrossRef]

Martinez, L. J.

A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, and P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89(101102), 1–3 (2006).
[CrossRef]

McPhedran, R. C.

Mirkarimi, L. W.

Mojahedi, M.

Monat, C.

Mortensen, N. A.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[CrossRef]

Noda, S.

B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure cavities,” N. J. Phys. 8(209), 1–12 (2006).
[CrossRef]

O’Faolain, L.

Pavesi, L.

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(211117), 1–3 (2006).
[CrossRef]

Pedersen, J.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[CrossRef]

Postigo, P. A.

A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, and P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89(101102), 1–3 (2006).
[CrossRef]

Prawer, S.

Pruneri, V.

Qiu, Y.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

Rahmani, A.

Regreny, P.

Ren, H.-C.

Robinson, J. T.

Ruda, H. E.

Scherer, A.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

Schweizer, S. L.

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(211117), 1–3 (2006).
[CrossRef]

Seassal, C.

Sigalas, M.

Smith, C. L. C.

Song, B.-S.

B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure cavities,” N. J. Phys. 8(209), 1–12 (2006).
[CrossRef]

Steel, M. J.

Sun, Y.

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(241104), 1–3 (2007).
[CrossRef]

Sünner, T.

Tomljenovic-Hanic, S.

Türck, V.

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(211117), 1–3 (2006).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Vignolini, S.

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(211117), 1–3 (2006).
[CrossRef]

Viktorovitch, P.

Vollmer, F.

Wehrspohn, R.

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(211117), 1–3 (2006).
[CrossRef]

Wheeler, M. S.

White, I. M.

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(241104), 1–3 (2007).
[CrossRef]

Wiersma, D.

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(211117), 1–3 (2006).
[CrossRef]

Wu, D. K. C.

Xiao, S.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[CrossRef]

Xu, F.

Xu, T.

Yang, G.

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(241104), 1–3 (2007).
[CrossRef]

Zabel, T.

D. F. Dofner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(181103), 1–3 (2008).

Appl. Phys. Lett. (6)

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(241104), 1–3 (2007).
[CrossRef]

J. Lutti, W. Langbein, and P. Borri, “High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers,” Appl. Phys. Lett. 91(141116), 1–3 (2007).
[CrossRef]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

A. R. Alija, L. J. Martinez, P. A. Postigo, C. Seassal, and P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89(101102), 1–3 (2006).
[CrossRef]

D. F. Dofner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(181103), 1–3 (2008).

F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(211117), 1–3 (2006).
[CrossRef]

Microfluid. Nanofluid. (1)

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008).
[CrossRef]

N. J. Phys. (1)

B.-S. Song, T. Asano, and S. Noda, “Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure cavities,” N. J. Phys. 8(209), 1–12 (2006).
[CrossRef]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express (11)

S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006).
[CrossRef] [PubMed]

F. Bordas, M. J. Steel, C. Seassal, and A. Rahmani, “Confinement of band-edge modes in a photonic crystal slab,” Opt. Express 15(17), 10890–10902 (2007).
[CrossRef] [PubMed]

H.-C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor - analysis for adsorption of rodlike bacteria,” Opt. Express 15(25), 17410–17423 (2007).
[CrossRef] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16(2), 1062–1067 (2008).
[CrossRef] [PubMed]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[CrossRef] [PubMed]

S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16(16), 11709–11717 (2008).
[CrossRef] [PubMed]

C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express 16(20), 15887–15896 (2008).
[CrossRef] [PubMed]

F. Bordas, C. Seassal, E. Dupuy, P. Regreny, M. Gendry, P. Viktorovitch, M. J. Steel, and A. Rahmani, “Room temperature low-threshold InAs/InP quantum dot single mode photonic crystal microlasers at 1.5 microm using cavity-confined slow light,” Opt. Express 17(7), 5439–5445 (2009).
[CrossRef] [PubMed]

S. Tomljenovic-Hanic, A. D. Greentree, C. M. de Sterke, and S. Prawer, “Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs,” Opt. Express 17(8), 6465–6475 (2009).
[CrossRef] [PubMed]

T. Xu, M. S. Wheeler, H. E. Ruda, M. Mojahedi, and J. S. Aitchison, “The influence of material absorption on the quality factor of photonic crystal cavities,” Opt. Express 17(10), 8343–8348 (2009).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (1)

Optical microcavities, K. Vahala, ed. (World Scientific Publishing, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of a band edge cavity with a seven hole core and one adaptation ring. The hole radius decreases (increases) across the adaptation rings to confine a dielectric (air) band-edge mode (see text and [15] for details); (b) schematic of an infiltrated double-heterostructure cavity with L = 6a + 2R.

Fig. 2
Fig. 2

Sensitivity of the air-mode (crosses) and dielectric mode (squares) for the (a) double-heterostructure type cavity and (b) band edge cavity as a function of the refractive index change. The solid horizontal line represents the detection limit.

Fig. 3
Fig. 3

M as a function of the imaginary part of the refractive index for (a) the band edge cavity and (b) DH cavity for dielectric (squares) and air mode (crosses).

Tables (1)

Tables Icon

Table 1 The total quality factor, overlap of the field and the sample, figure of merit and modal volume.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S=Δωδω.
S=fQΔnnf=MΔnnf.
V=d3r   U(r)max[U(r)].
1Qtot=1Q+2fninf,

Metrics