Abstract

High quality factor (Q≈3.4×106) microdisk resonators are demonstrated in a Si3N4 on SiO2 platform at 652–660 nm with integrated in-plane coupling waveguides. Critical coupling to several radial modes is demonstrated using a rib-like structure with a thin Si3N4 layer at the air-substrate interface to improve the coupling.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425(6961), 944-947 (2003).
    [CrossRef]
  2. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041,112 (2006).
    [CrossRef]
  3. T. Barwicz, M. Popovi?, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis," Opt. Express 12, 1437-1442 (2004).
    [CrossRef] [PubMed]
  4. P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber coupled high-Q SiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131,108 (2006).
    [CrossRef]
  5. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003).
    [CrossRef] [PubMed]
  6. M. Borselli, T. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
    [CrossRef] [PubMed]
  7. M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics," Opt. Express 15, 4694-4704 (2007).
    [CrossRef] [PubMed]
  8. C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
    [CrossRef]
  9. D. L. Jeanmarie and R. P. Van Duyne, "Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, And Aliphatic-Amines Adsorbed On Anodized Silver Electrode," J. Electroanal. Chem. 84, 1-20 (1977).
    [CrossRef]
  10. Z. Lai, Y. Wang, N. Allbritton, G.-P. Li, and M. Bachman, "Label-free biosensor by protein grating coupler on planar optical waveguides," Opt. Lett. 33, 1735-1737 (2008).
    [CrossRef] [PubMed]
  11. J. Campbell, Introduction to Remote Sensing (The Guilford Press, 2006).
  12. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzó, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
    [CrossRef] [PubMed]
  13. D. Klunder, F. Tan, T. van der Veen, H. Bulthuis, G. Sengo, B. Docter, H. Hokstra, and A. Driessen, "Experimental and numerical study of SiON microresonators with air and polymer cladding," J. Lightwave Technol. 21, 1099-1110 (2003).
    [CrossRef]
  14. N. Ma, C. Li, and A. Poon, "Laterally coupled hexagonal micropillar resonator add-drop filters in silicon nitride," IEEE Photonics Technol. Lett 16, 2487-2489 (2004).
    [CrossRef]
  15. S. Zheng, H. Chen, and A. Poon, "Microring-resonator cross-connect filters in silicon nitride: rib waveguide dimensions dependence," IEEE J. Sel. Top. Quantum Electron. 12, 1380-1387 (2006).
    [CrossRef]
  16. A. Schweinsberg, S. Hocdé, N. Lepeshkin, R. Boyd, C. Chase, and J. Fajardo, "An environmental sensor based on an integrated optical whispering gallery mode disk resonator," Sens. Actuators B. Chemical 123, 727-732 (2007).
    [CrossRef]
  17. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, "Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides," Opt. Express 16, 12,987-12,994 (2008).
    [CrossRef]
  18. A. Gondarenko, J. S. Levy, and M. Lipson, "High confinement micron-scale silicon nitride high Q ring resonator," Opt. Express 17, 11,366-11,370 (2009).
    [CrossRef]
  19. E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett. 27, 512-514 (2002).
    [CrossRef]
  20. M. Charlton and G. Parker, "Nanofabrication of advanced waveguide structures incorporating a visible photonic band gap," J. Micromech. Microeng. 8(2), 172-176 (1998).
    [CrossRef]
  21. M. C. Netti, M. D. B. Charlton, G. J. Parker, and J. J. Baumberg, "Visible photonic band gap engineering in silicon nitride waveguides," Appl. Phys. Lett. 76, 991-993 (2000).
    [CrossRef]
  22. J. Baumberg, N. Perney, M. Netti, M. Charlton, M. Zoorob, and G. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
    [CrossRef]
  23. M. Charlton, M. Zoorob, M. Netti, N. Perney, G. Parker, P. Ayliffe, and J. Baumberg, "Realisation of ultra-low loss photonic crystal slab waveguide devices," Microelectron. J. 36, 277-281 (2005).
    [CrossRef]
  24. K. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115,126 (2006).
    [CrossRef]
  25. M. Barth, J. Kouba, J. Stingl, B. Lchel, and O. Benson, "Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities," Opt. Express 15, 17,231-17,240 (2007).
    [CrossRef]
  26. E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores," Talanta 65, 1086-1090 (2005).
    [CrossRef]
  27. M. Madou, Fundamentals of microfabrication: the science of miniaturization (CRC, 2002).
  28. D. Weiss, V. Sandoghdar, J. Hare, V. Lef’evre-Seguin, J. Raimond, and S. Haroche, "Splitting of high-Q Mie modes induced by light backscattering in silica microspheres," Opt. Lett. 20, 1835-1835 (1995).
    [CrossRef] [PubMed]
  29. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron Lett. 36, 321-322 (2000).
    [CrossRef]
  30. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2006).
  31. H. Haus, Waves and fields in optoelectronics (Prentice-Hall, 1984).
  32. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation (Cambridge University Press, 1999).
  33. M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, "Systematic Engineering ofWaveguide-Resonator Coupling for Silicon Microring/Microdisk/Racetrack Resonators: Theory and Experiment," submitted (2008).
  34. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, "Improvement of thermal properties of ultra-high Q silicon microdisk resonators," Opt. Express 15, 17,305-17,312 (2007).
    [CrossRef]
  35. S. Chuang, "A coupled mode formulation by reciprocity and a variational principle," J. Lightwave Technol. 5, 5-15 (1987).
    [CrossRef]

2009 (1)

A. Gondarenko, J. S. Levy, and M. Lipson, "High confinement micron-scale silicon nitride high Q ring resonator," Opt. Express 17, 11,366-11,370 (2009).
[CrossRef]

2008 (3)

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, "Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides," Opt. Express 16, 12,987-12,994 (2008).
[CrossRef]

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, "Systematic Engineering ofWaveguide-Resonator Coupling for Silicon Microring/Microdisk/Racetrack Resonators: Theory and Experiment," submitted (2008).

Z. Lai, Y. Wang, N. Allbritton, G.-P. Li, and M. Bachman, "Label-free biosensor by protein grating coupler on planar optical waveguides," Opt. Lett. 33, 1735-1737 (2008).
[CrossRef] [PubMed]

2007 (4)

M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics," Opt. Express 15, 4694-4704 (2007).
[CrossRef] [PubMed]

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, "Improvement of thermal properties of ultra-high Q silicon microdisk resonators," Opt. Express 15, 17,305-17,312 (2007).
[CrossRef]

A. Schweinsberg, S. Hocdé, N. Lepeshkin, R. Boyd, C. Chase, and J. Fajardo, "An environmental sensor based on an integrated optical whispering gallery mode disk resonator," Sens. Actuators B. Chemical 123, 727-732 (2007).
[CrossRef]

M. Barth, J. Kouba, J. Stingl, B. Lchel, and O. Benson, "Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities," Opt. Express 15, 17,231-17,240 (2007).
[CrossRef]

2006 (4)

K. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115,126 (2006).
[CrossRef]

S. Zheng, H. Chen, and A. Poon, "Microring-resonator cross-connect filters in silicon nitride: rib waveguide dimensions dependence," IEEE J. Sel. Top. Quantum Electron. 12, 1380-1387 (2006).
[CrossRef]

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber coupled high-Q SiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131,108 (2006).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041,112 (2006).
[CrossRef]

2005 (3)

M. Charlton, M. Zoorob, M. Netti, N. Perney, G. Parker, P. Ayliffe, and J. Baumberg, "Realisation of ultra-low loss photonic crystal slab waveguide devices," Microelectron. J. 36, 277-281 (2005).
[CrossRef]

E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores," Talanta 65, 1086-1090 (2005).
[CrossRef]

M. Borselli, T. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
[CrossRef] [PubMed]

2004 (3)

T. Barwicz, M. Popovi?, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis," Opt. Express 12, 1437-1442 (2004).
[CrossRef] [PubMed]

N. Ma, C. Li, and A. Poon, "Laterally coupled hexagonal micropillar resonator add-drop filters in silicon nitride," IEEE Photonics Technol. Lett 16, 2487-2489 (2004).
[CrossRef]

J. Baumberg, N. Perney, M. Netti, M. Charlton, M. Zoorob, and G. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
[CrossRef]

2003 (3)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425(6961), 944-947 (2003).
[CrossRef]

D. Klunder, F. Tan, T. van der Veen, H. Bulthuis, G. Sengo, B. Docter, H. Hokstra, and A. Driessen, "Experimental and numerical study of SiON microresonators with air and polymer cladding," J. Lightwave Technol. 21, 1099-1110 (2003).
[CrossRef]

2002 (1)

2000 (3)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzó, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

M. C. Netti, M. D. B. Charlton, G. J. Parker, and J. J. Baumberg, "Visible photonic band gap engineering in silicon nitride waveguides," Appl. Phys. Lett. 76, 991-993 (2000).
[CrossRef]

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron Lett. 36, 321-322 (2000).
[CrossRef]

1999 (1)

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

1998 (1)

M. Charlton and G. Parker, "Nanofabrication of advanced waveguide structures incorporating a visible photonic band gap," J. Micromech. Microeng. 8(2), 172-176 (1998).
[CrossRef]

1995 (1)

1987 (1)

S. Chuang, "A coupled mode formulation by reciprocity and a variational principle," J. Lightwave Technol. 5, 5-15 (1987).
[CrossRef]

1977 (1)

D. L. Jeanmarie and R. P. Van Duyne, "Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, And Aliphatic-Amines Adsorbed On Anodized Silver Electrode," J. Electroanal. Chem. 84, 1-20 (1977).
[CrossRef]

Adibi, A.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, "Systematic Engineering ofWaveguide-Resonator Coupling for Silicon Microring/Microdisk/Racetrack Resonators: Theory and Experiment," submitted (2008).

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, "Improvement of thermal properties of ultra-high Q silicon microdisk resonators," Opt. Express 15, 17,305-17,312 (2007).
[CrossRef]

M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics," Opt. Express 15, 4694-4704 (2007).
[CrossRef] [PubMed]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425(6961), 944-947 (2003).
[CrossRef]

Alic, N.

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, "Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides," Opt. Express 16, 12,987-12,994 (2008).
[CrossRef]

Allbritton, N.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425(6961), 944-947 (2003).
[CrossRef]

Ayliffe, P.

M. Charlton, M. Zoorob, M. Netti, N. Perney, G. Parker, P. Ayliffe, and J. Baumberg, "Realisation of ultra-low loss photonic crystal slab waveguide devices," Microelectron. J. 36, 277-281 (2005).
[CrossRef]

Bachman, M.

Barclay, P. E.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber coupled high-Q SiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131,108 (2006).
[CrossRef]

Barth, M.

M. Barth, J. Kouba, J. Stingl, B. Lchel, and O. Benson, "Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities," Opt. Express 15, 17,231-17,240 (2007).
[CrossRef]

Barwicz, T.

Baumberg, J.

M. Charlton, M. Zoorob, M. Netti, N. Perney, G. Parker, P. Ayliffe, and J. Baumberg, "Realisation of ultra-low loss photonic crystal slab waveguide devices," Microelectron. J. 36, 277-281 (2005).
[CrossRef]

J. Baumberg, N. Perney, M. Netti, M. Charlton, M. Zoorob, and G. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
[CrossRef]

Baumberg, J. J.

M. C. Netti, M. D. B. Charlton, G. J. Parker, and J. J. Baumberg, "Visible photonic band gap engineering in silicon nitride waveguides," Appl. Phys. Lett. 76, 991-993 (2000).
[CrossRef]

Benson, O.

M. Barth, J. Kouba, J. Stingl, B. Lchel, and O. Benson, "Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities," Opt. Express 15, 17,231-17,240 (2007).
[CrossRef]

Borselli, M.

Boyd, R.

A. Schweinsberg, S. Hocdé, N. Lepeshkin, R. Boyd, C. Chase, and J. Fajardo, "An environmental sensor based on an integrated optical whispering gallery mode disk resonator," Sens. Actuators B. Chemical 123, 727-732 (2007).
[CrossRef]

Bulthuis, H.

Charlton, M.

M. Charlton, M. Zoorob, M. Netti, N. Perney, G. Parker, P. Ayliffe, and J. Baumberg, "Realisation of ultra-low loss photonic crystal slab waveguide devices," Microelectron. J. 36, 277-281 (2005).
[CrossRef]

J. Baumberg, N. Perney, M. Netti, M. Charlton, M. Zoorob, and G. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
[CrossRef]

M. Charlton and G. Parker, "Nanofabrication of advanced waveguide structures incorporating a visible photonic band gap," J. Micromech. Microeng. 8(2), 172-176 (1998).
[CrossRef]

Charlton, M. D. B.

M. C. Netti, M. D. B. Charlton, G. J. Parker, and J. J. Baumberg, "Visible photonic band gap engineering in silicon nitride waveguides," Appl. Phys. Lett. 76, 991-993 (2000).
[CrossRef]

Chase, C.

A. Schweinsberg, S. Hocdé, N. Lepeshkin, R. Boyd, C. Chase, and J. Fajardo, "An environmental sensor based on an integrated optical whispering gallery mode disk resonator," Sens. Actuators B. Chemical 123, 727-732 (2007).
[CrossRef]

Chen, H.

S. Zheng, H. Chen, and A. Poon, "Microring-resonator cross-connect filters in silicon nitride: rib waveguide dimensions dependence," IEEE J. Sel. Top. Quantum Electron. 12, 1380-1387 (2006).
[CrossRef]

Chuang, S.

S. Chuang, "A coupled mode formulation by reciprocity and a variational principle," J. Lightwave Technol. 5, 5-15 (1987).
[CrossRef]

Crozier, K.

K. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115,126 (2006).
[CrossRef]

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzó, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Docter, B.

Driessen, A.

Fainman, Y.

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, "Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides," Opt. Express 16, 12,987-12,994 (2008).
[CrossRef]

Fajardo, J.

A. Schweinsberg, S. Hocdé, N. Lepeshkin, R. Boyd, C. Chase, and J. Fajardo, "An environmental sensor based on an integrated optical whispering gallery mode disk resonator," Sens. Actuators B. Chemical 123, 727-732 (2007).
[CrossRef]

Fan, S.

K. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115,126 (2006).
[CrossRef]

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Franzó, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzó, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Gondarenko, A.

A. Gondarenko, J. S. Levy, and M. Lipson, "High confinement micron-scale silicon nitride high Q ring resonator," Opt. Express 17, 11,366-11,370 (2009).
[CrossRef]

Greve, J.

E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores," Talanta 65, 1086-1090 (2005).
[CrossRef]

E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett. 27, 512-514 (2002).
[CrossRef]

Hare, J.

Haroche, S.

Haus, H.

T. Barwicz, M. Popovi?, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis," Opt. Express 12, 1437-1442 (2004).
[CrossRef] [PubMed]

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Hocdé, S.

A. Schweinsberg, S. Hocdé, N. Lepeshkin, R. Boyd, C. Chase, and J. Fajardo, "An environmental sensor based on an integrated optical whispering gallery mode disk resonator," Sens. Actuators B. Chemical 123, 727-732 (2007).
[CrossRef]

Hokstra, H.

Ikeda, K.

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, "Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides," Opt. Express 16, 12,987-12,994 (2008).
[CrossRef]

Ippen, E.

Jeanmarie, D. L.

D. L. Jeanmarie and R. P. Van Duyne, "Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, And Aliphatic-Amines Adsorbed On Anodized Silver Electrode," J. Electroanal. Chem. 84, 1-20 (1977).
[CrossRef]

Joannopoulos, J.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Johnson, T.

Khan, M.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Kilic, O.

K. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115,126 (2006).
[CrossRef]

Kim, S.

K. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115,126 (2006).
[CrossRef]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Klunder, D.

Kouba, J.

M. Barth, J. Kouba, J. Stingl, B. Lchel, and O. Benson, "Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities," Opt. Express 15, 17,231-17,240 (2007).
[CrossRef]

Krioukov, E.

E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores," Talanta 65, 1086-1090 (2005).
[CrossRef]

E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett. 27, 512-514 (2002).
[CrossRef]

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041,112 (2006).
[CrossRef]

Lai, Z.

Lchel, B.

M. Barth, J. Kouba, J. Stingl, B. Lchel, and O. Benson, "Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities," Opt. Express 15, 17,231-17,240 (2007).
[CrossRef]

Lef’evre-Seguin, V.

Lepeshkin, N.

A. Schweinsberg, S. Hocdé, N. Lepeshkin, R. Boyd, C. Chase, and J. Fajardo, "An environmental sensor based on an integrated optical whispering gallery mode disk resonator," Sens. Actuators B. Chemical 123, 727-732 (2007).
[CrossRef]

Lev, B.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber coupled high-Q SiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131,108 (2006).
[CrossRef]

Levy, J. S.

A. Gondarenko, J. S. Levy, and M. Lipson, "High confinement micron-scale silicon nitride high Q ring resonator," Opt. Express 17, 11,366-11,370 (2009).
[CrossRef]

Li, C.

N. Ma, C. Li, and A. Poon, "Laterally coupled hexagonal micropillar resonator add-drop filters in silicon nitride," IEEE Photonics Technol. Lett 16, 2487-2489 (2004).
[CrossRef]

Li, G.-P.

Li, Q.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, "Systematic Engineering ofWaveguide-Resonator Coupling for Silicon Microring/Microdisk/Racetrack Resonators: Theory and Experiment," submitted (2008).

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, "Improvement of thermal properties of ultra-high Q silicon microdisk resonators," Opt. Express 15, 17,305-17,312 (2007).
[CrossRef]

Lipson, M.

A. Gondarenko, J. S. Levy, and M. Lipson, "High confinement micron-scale silicon nitride high Q ring resonator," Opt. Express 17, 11,366-11,370 (2009).
[CrossRef]

Lousse, V.

K. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115,126 (2006).
[CrossRef]

Ma, N.

N. Ma, C. Li, and A. Poon, "Laterally coupled hexagonal micropillar resonator add-drop filters in silicon nitride," IEEE Photonics Technol. Lett 16, 2487-2489 (2004).
[CrossRef]

Mabuchi, H.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber coupled high-Q SiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131,108 (2006).
[CrossRef]

Manolatou, C.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzó, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041,112 (2006).
[CrossRef]

Netti, M.

M. Charlton, M. Zoorob, M. Netti, N. Perney, G. Parker, P. Ayliffe, and J. Baumberg, "Realisation of ultra-low loss photonic crystal slab waveguide devices," Microelectron. J. 36, 277-281 (2005).
[CrossRef]

J. Baumberg, N. Perney, M. Netti, M. Charlton, M. Zoorob, and G. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
[CrossRef]

Netti, M. C.

M. C. Netti, M. D. B. Charlton, G. J. Parker, and J. J. Baumberg, "Visible photonic band gap engineering in silicon nitride waveguides," Appl. Phys. Lett. 76, 991-993 (2000).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425(6961), 944-947 (2003).
[CrossRef]

Notomi, M.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041,112 (2006).
[CrossRef]

Otto, C.

E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores," Talanta 65, 1086-1090 (2005).
[CrossRef]

E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett. 27, 512-514 (2002).
[CrossRef]

Painter, O.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber coupled high-Q SiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131,108 (2006).
[CrossRef]

M. Borselli, T. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
[CrossRef] [PubMed]

Parker, G.

M. Charlton, M. Zoorob, M. Netti, N. Perney, G. Parker, P. Ayliffe, and J. Baumberg, "Realisation of ultra-low loss photonic crystal slab waveguide devices," Microelectron. J. 36, 277-281 (2005).
[CrossRef]

J. Baumberg, N. Perney, M. Netti, M. Charlton, M. Zoorob, and G. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
[CrossRef]

M. Charlton and G. Parker, "Nanofabrication of advanced waveguide structures incorporating a visible photonic band gap," J. Micromech. Microeng. 8(2), 172-176 (1998).
[CrossRef]

Parker, G. J.

M. C. Netti, M. D. B. Charlton, G. J. Parker, and J. J. Baumberg, "Visible photonic band gap engineering in silicon nitride waveguides," Appl. Phys. Lett. 76, 991-993 (2000).
[CrossRef]

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzó, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Perney, N.

M. Charlton, M. Zoorob, M. Netti, N. Perney, G. Parker, P. Ayliffe, and J. Baumberg, "Realisation of ultra-low loss photonic crystal slab waveguide devices," Microelectron. J. 36, 277-281 (2005).
[CrossRef]

J. Baumberg, N. Perney, M. Netti, M. Charlton, M. Zoorob, and G. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
[CrossRef]

Poon, A.

S. Zheng, H. Chen, and A. Poon, "Microring-resonator cross-connect filters in silicon nitride: rib waveguide dimensions dependence," IEEE J. Sel. Top. Quantum Electron. 12, 1380-1387 (2006).
[CrossRef]

N. Ma, C. Li, and A. Poon, "Laterally coupled hexagonal micropillar resonator add-drop filters in silicon nitride," IEEE Photonics Technol. Lett 16, 2487-2489 (2004).
[CrossRef]

Popovic, M.

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzó, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Raimond, J.

Rakich, P.

Sandoghdar, V.

Saperstein, R. E.

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, "Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides," Opt. Express 16, 12,987-12,994 (2008).
[CrossRef]

Schweinsberg, A.

A. Schweinsberg, S. Hocdé, N. Lepeshkin, R. Boyd, C. Chase, and J. Fajardo, "An environmental sensor based on an integrated optical whispering gallery mode disk resonator," Sens. Actuators B. Chemical 123, 727-732 (2007).
[CrossRef]

Sengo, G.

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041,112 (2006).
[CrossRef]

Smith, H.

Solgaard, O.

K. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115,126 (2006).
[CrossRef]

Soltani, M.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, "Systematic Engineering ofWaveguide-Resonator Coupling for Silicon Microring/Microdisk/Racetrack Resonators: Theory and Experiment," submitted (2008).

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, "Improvement of thermal properties of ultra-high Q silicon microdisk resonators," Opt. Express 15, 17,305-17,312 (2007).
[CrossRef]

M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics," Opt. Express 15, 4694-4704 (2007).
[CrossRef] [PubMed]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425(6961), 944-947 (2003).
[CrossRef]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Srinivasan, K.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber coupled high-Q SiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131,108 (2006).
[CrossRef]

Stingl, J.

M. Barth, J. Kouba, J. Stingl, B. Lchel, and O. Benson, "Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities," Opt. Express 15, 17,231-17,240 (2007).
[CrossRef]

Tan, F.

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041,112 (2006).
[CrossRef]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

van der Veen, T.

Van Duyne, R. P.

D. L. Jeanmarie and R. P. Van Duyne, "Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, And Aliphatic-Amines Adsorbed On Anodized Silver Electrode," J. Electroanal. Chem. 84, 1-20 (1977).
[CrossRef]

Villeneuve, P.

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Wang, Y.

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041,112 (2006).
[CrossRef]

Watts, M.

Weiss, D.

Yariv, A.

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron Lett. 36, 321-322 (2000).
[CrossRef]

Yegnanarayanan, S.

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, "Systematic Engineering ofWaveguide-Resonator Coupling for Silicon Microring/Microdisk/Racetrack Resonators: Theory and Experiment," submitted (2008).

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, "Improvement of thermal properties of ultra-high Q silicon microdisk resonators," Opt. Express 15, 17,305-17,312 (2007).
[CrossRef]

M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics," Opt. Express 15, 4694-4704 (2007).
[CrossRef] [PubMed]

Zheng, S.

S. Zheng, H. Chen, and A. Poon, "Microring-resonator cross-connect filters in silicon nitride: rib waveguide dimensions dependence," IEEE J. Sel. Top. Quantum Electron. 12, 1380-1387 (2006).
[CrossRef]

Zoorob, M.

M. Charlton, M. Zoorob, M. Netti, N. Perney, G. Parker, P. Ayliffe, and J. Baumberg, "Realisation of ultra-low loss photonic crystal slab waveguide devices," Microelectron. J. 36, 277-281 (2005).
[CrossRef]

J. Baumberg, N. Perney, M. Netti, M. Charlton, M. Zoorob, and G. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
[CrossRef]

Appl. Phys. Lett. (4)

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041,112 (2006).
[CrossRef]

M. C. Netti, M. D. B. Charlton, G. J. Parker, and J. J. Baumberg, "Visible photonic band gap engineering in silicon nitride waveguides," Appl. Phys. Lett. 76, 991-993 (2000).
[CrossRef]

J. Baumberg, N. Perney, M. Netti, M. Charlton, M. Zoorob, and G. Parker, "Visible-wavelength super-refraction in photonic crystal superprisms," Appl. Phys. Lett. 85, 354-356 (2004).
[CrossRef]

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber coupled high-Q SiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131,108 (2006).
[CrossRef]

Electron Lett. (1)

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron Lett. 36, 321-322 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Manolatou, M. Khan, S. Fan, P. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Zheng, H. Chen, and A. Poon, "Microring-resonator cross-connect filters in silicon nitride: rib waveguide dimensions dependence," IEEE J. Sel. Top. Quantum Electron. 12, 1380-1387 (2006).
[CrossRef]

IEEE Photonics Technol. Lett (1)

N. Ma, C. Li, and A. Poon, "Laterally coupled hexagonal micropillar resonator add-drop filters in silicon nitride," IEEE Photonics Technol. Lett 16, 2487-2489 (2004).
[CrossRef]

J. Electroanal. Chem. (1)

D. L. Jeanmarie and R. P. Van Duyne, "Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, And Aliphatic-Amines Adsorbed On Anodized Silver Electrode," J. Electroanal. Chem. 84, 1-20 (1977).
[CrossRef]

J. Lightwave Technol. (2)

J. Micromech. Microeng. (1)

M. Charlton and G. Parker, "Nanofabrication of advanced waveguide structures incorporating a visible photonic band gap," J. Micromech. Microeng. 8(2), 172-176 (1998).
[CrossRef]

Microelectron. J. (1)

M. Charlton, M. Zoorob, M. Netti, N. Perney, G. Parker, P. Ayliffe, and J. Baumberg, "Realisation of ultra-low loss photonic crystal slab waveguide devices," Microelectron. J. 36, 277-281 (2005).
[CrossRef]

Nature (3)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425(6961), 944-947 (2003).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzó, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Opt. Express (7)

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, "Improvement of thermal properties of ultra-high Q silicon microdisk resonators," Opt. Express 15, 17,305-17,312 (2007).
[CrossRef]

T. Barwicz, M. Popovi?, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis," Opt. Express 12, 1437-1442 (2004).
[CrossRef] [PubMed]

M. Borselli, T. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
[CrossRef] [PubMed]

M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics," Opt. Express 15, 4694-4704 (2007).
[CrossRef] [PubMed]

M. Barth, J. Kouba, J. Stingl, B. Lchel, and O. Benson, "Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities," Opt. Express 15, 17,231-17,240 (2007).
[CrossRef]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, "Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides," Opt. Express 16, 12,987-12,994 (2008).
[CrossRef]

A. Gondarenko, J. S. Levy, and M. Lipson, "High confinement micron-scale silicon nitride high Q ring resonator," Opt. Express 17, 11,366-11,370 (2009).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. B (1)

K. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115,126 (2006).
[CrossRef]

Sens. Actuators B. Chemical (1)

A. Schweinsberg, S. Hocdé, N. Lepeshkin, R. Boyd, C. Chase, and J. Fajardo, "An environmental sensor based on an integrated optical whispering gallery mode disk resonator," Sens. Actuators B. Chemical 123, 727-732 (2007).
[CrossRef]

Talanta (1)

E. Krioukov, D. Klunder, A. Driessen, J. Greve, and C. Otto, "Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores," Talanta 65, 1086-1090 (2005).
[CrossRef]

Theory and Experiment (1)

M. Soltani, S. Yegnanarayanan, Q. Li, and A. Adibi, "Systematic Engineering ofWaveguide-Resonator Coupling for Silicon Microring/Microdisk/Racetrack Resonators: Theory and Experiment," submitted (2008).

Other (5)

J. Campbell, Introduction to Remote Sensing (The Guilford Press, 2006).

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2006).

H. Haus, Waves and fields in optoelectronics (Prentice-Hall, 1984).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation (Cambridge University Press, 1999).

M. Madou, Fundamentals of microfabrication: the science of miniaturization (CRC, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) SEM image of a waveguide etched on a 203 nm layer of Si3N4 on top of 6 µm of isolating SiO2 on a Si substrate. A Si3N4 pedestal layer is created to enhance the in-plane coupling strength of the resonators to the waveguides to achieve critical coupling. This layer is accurately defined during the etching by controlling the etch time of the ICP plasma process. (b) Tilted SEM image of a microdisk resonator side-coupled to an in-plane single mode waveguide with a 190 nm coupling gap. The radius of the disk is 20 µm. (c) The cleaved facet of a low roughness a waveguide etched using the optimized plasma etching parameters.

Fig. 2.
Fig. 2.

(a) The normalized transmission of the waveguide coupled to the microdisk shown in Fig. 1(b). Each dip in the spectrum represents a specific TE p,m resonance in which p and m are respectively the number of radial and azimuthal antinodes. The dips denoted by the circles are due to TE2,m family of modes, which have the highest quality factor among all the radial families (for a 20 µm radius disk). The mode identification is based on the free spectral range (FSR) of the modes, matched with the FEM simulation data in Table 1. (b) Transmission spectrum zoomed around TE2,328. By fitting a double-Lorentzian lineshape to the experimental data, the intrinsic Q of TE2,328 is found to be about 6.1×105.

Fig. 3.
Fig. 3.

(a) The normalized transmission of a waveguide coupled to a large microdisk with radius R=100 µm (other properties of the structure are the same as those in the caption of Fig. 2(b). (b) Transmission spectrum zoomed around one of the high Q resonant modes of the R=100 µm microdisk resonator in (a). The intrinsic quality factor of the higher Q mode is Qo =3.4×106.

Fig. 4.
Fig. 4.

Digram of a disk side-coupled to a waveguide. The phase of E disk at any point can be evaluated as ϕdisk =- in which θ is calculated in reference to the z=0 plane. The waveguide field (E wg), on the other hand, experiences a linear phase change along the waveguide ϕwg =-βwgz.

Fig. 5.
Fig. 5.

(left) Hz field pattern of the TE2,328 microdisk mode simulated with COMSOL® using a cylindrical symmetry. (right) The vertical magnetic field (Hz ) of the first-order mode is demonstrated. The two-dimensional cross section of the single mode waveguide is also simulated and the coupling between them is estimated. A pedestal layer, which is achieved with partial etching of the silicon nitride layer, is used to increase the coupling coefficient. W, d, ped, and g denote the waveguide width, Si3N4 layer thickness, the pedestal height, and the gap between the waveguide and the cavity, respectively. In the field simulated, d=200 nm, W=380 nm, and ped=50 nm.

Fig. 6.
Fig. 6.

(a) The effective index of the TE mode of the waveguide multiplied by 1/ξ=(R+g+W/2)/R as a function of the waveguide thickness (W) with h=200 nm and ped=50 nm. The horizontal lines depict the effective indeces of the different TE radial mode orders, with the first mode (TE1), having the highest effective index. (b) The coupling quality factor (Qc ) as the function of the waveguide width with a constant gap of 190 nm and the other parameters as mentioned in the caption of Fig. 5.

Tables (1)

Tables Icon

Table 1. Measured intrinsic quality factor (Qo ), simulated normalized mode volume (V(n/λo )3), simulated effective index of the disk defined as ndisk m/(koR), and the free spectral range (FSR) of the first four radial TE modes of the Si3N4 microdisk with R=20 µm, thickness of d=203 nm and a pedestal layer of ped=50 nm (ko is the free–space wavenumber ko ≡2π/λo ). TE2 mode has the highest quality, and TE1 has the smallest mode volume.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T(ωo)=Pout(ωo)Pin(ωo)=QoQcQo+Qc2
κ=iωεo40Wpedd(nSiN21)EdiskEwgejϕdydxdz
ϕ=ϕdiskϕwg=mθ+θwgz(zisthedirectionofwaveguidepropagation)
m(z(R+g+W2))+βwgz(forsmallz,θz(R+g+W2))
=ndiskkozR(R+g+W2)+nwgkoz(atresonance,2πRndiskko=2πm)
=koz(nwgndiskξ).(wedefineξRR+g+W2)

Metrics