Abstract

We theoretically investigate second harmonic generation (SHG) in one-dimensional multilayer nonlinear photonic crystal (NPC) structures with distributed Bragg reflector (DBR) as mirrors. The NPC structures have periodic modulation on both the linear and second-order susceptibility. Three major physical mechanisms, quasi-phase matching (QPM) effect, slow light effect at photonic band gap edges, and cavity effect induced by DBR mirrors can be harnessed to enhance SHG. Selection of appropriate structural parameters can facilitate coexistence of these mechanisms to act collectively and constructively to create very high SHG conversion efficiency with an enhancement by up to seven orders of magnitude compared with the ordinary NPC where only QPM works.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [CrossRef]
  2. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
    [CrossRef]
  3. P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82(24), 4230–4232 (2003).
    [CrossRef]
  4. P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
    [CrossRef] [PubMed]
  5. A. Piskarskas, V. Smilgevi Ius, A. Stabinis, V. Jarutis, V. Pasiskevi Ius, S. Wang, J. Tellefsen, and F. Laurell, “Noncollinear second-harmonic generation in periodically poled KTiOPO4 excited by the Bessel beam,” Opt. Lett. 24(15), 1053–1055 (1999).
    [CrossRef]
  6. S. Kawai, T. Ogawa, H. S. Lee Robert, C. DeMattei, and R. S. Feigelson, “Second-harmonic generation from needlelike ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals,” Appl. Phys. Lett. 73(6), 768–770 (1998).
    [CrossRef]
  7. A. V. Balakin, V. A. Bushuev, N. I. Koroteev, B. I. Mantsyzov, I. A. Ozheredov, A. P. Shkurinov, D. Boucher, and P. Masselin, “Enhancement of second-harmonic generation with femtosecond laser pulses near the photonic band edge for different polarizations of incident light,” Opt. Lett. 24(12), 793–795 (1999).
    [CrossRef]
  8. G. Vecchi, J. Terres, D. Coquillat, M. L. V. d’Yerville, and A. M Malvezzi “Enhancement of visible second harmonic generation in epitaxial GaN-based two-dimensional photonic crystal structures,” Appl. Phys. Lett. 84(8), 1245–1247 (2004).
    [CrossRef]
  9. Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78(20), 3021–3023 (2001).
    [CrossRef]
  10. G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ 2 interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1 ), 016609 (2001).
    [CrossRef] [PubMed]
  11. Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, C. Me’riadec, and A. Levenson, “χ(2) semiconductor photonic crystals,” J. Opt. Soc. Am. B 19(9), 2094–2101 (2002).
    [CrossRef]
  12. T. M. Liu, Ch. T. Yu, and Ch. K. Sun, “2 GHz repetition-rate femtosecond blue sources by second harmonic generation in a resonantly enhanced cavity,” Appl. Phys. Lett. 86(6), 061112 (2005).
    [CrossRef]
  13. S. Nakagawa, N. Yamada, N. Mikoshiba, and D. E. Mars, “Second-harmonic generation from GaAs/AlAs vertical cavity,” Appl. Phys. Lett. 66(17), 2159–2161 (1995).
    [CrossRef]
  14. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Second-harmonic generation of a continuous wave diode-pumped Nd:YAG laser using an externally resonant cavity,” Opt. Lett. 12(12), 1014–1016 (1987).
    [CrossRef] [PubMed]
  15. V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, and L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74(14), 1945–1947 (1999).
    [CrossRef]
  16. H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, “Large enhancement of second harmonic generation in polymer films by microcavities,” Appl. Phys. Lett. 76(5), 538 (2000).
    [CrossRef]
  17. B. Shi, Z. M. Jiang, and X. Wang, “Defective photonic crystals with greatly enhanced second-harmonic generation,” Opt. Lett. 26(15), 1194–1196 (2001).
    [CrossRef]
  18. F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. R. Qiu, J. H. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70(24), 245109 (2004).
    [CrossRef]
  19. Y. Zeng, X. S. Chen, and W. Lu, “Optical limiting in defective quadratic nonlinear photonic crystals,” J. Appl. Phys. 99(12), 123107 (2006).
    [CrossRef]
  20. L. M. Zhao and B. Y. Gu, “Giant enhancement of second harmonic generation in multiple photonic quantum well structures made of nonlinear material,” Appl. Phys. Lett. 88(12), 122904 (2006).
    [CrossRef]
  21. J. J. Li, Z. Y. Li, and D. Z. Zhang, “Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(5), 056606 (2007).
    [CrossRef] [PubMed]
  22. J. J. Li, Z. Y. Li, Y. Sheng, and D. Z. Zhang, “Giant enhancement of second harmonic generation in poled ferroelectric crystals,” Appl. Phys. Lett. 91(2), 022903 (2007).
    [CrossRef]
  23. J. J. Li, Z. Y. Li, and D. Z. Zhang, “Nonlinear frequency conversion in two-dimensional nonlinear photonic crystals solved by a plane-wave-based transfer-matrix method,” Phys. Rev. B 77(19), 195127 (2008).
    [CrossRef]
  24. Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
    [CrossRef] [PubMed]
  25. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
    [CrossRef]
  26. V. G. Dmitriev, G. G. Gurazdyan, and D. N. Nikogosyan, Handbook of nonlinear optical crystals (Springer, Berlin, 1997), Vol. 64, p. 125.

2008

J. J. Li, Z. Y. Li, and D. Z. Zhang, “Nonlinear frequency conversion in two-dimensional nonlinear photonic crystals solved by a plane-wave-based transfer-matrix method,” Phys. Rev. B 77(19), 195127 (2008).
[CrossRef]

2007

J. J. Li, Z. Y. Li, and D. Z. Zhang, “Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(5), 056606 (2007).
[CrossRef] [PubMed]

J. J. Li, Z. Y. Li, Y. Sheng, and D. Z. Zhang, “Giant enhancement of second harmonic generation in poled ferroelectric crystals,” Appl. Phys. Lett. 91(2), 022903 (2007).
[CrossRef]

2006

Y. Zeng, X. S. Chen, and W. Lu, “Optical limiting in defective quadratic nonlinear photonic crystals,” J. Appl. Phys. 99(12), 123107 (2006).
[CrossRef]

L. M. Zhao and B. Y. Gu, “Giant enhancement of second harmonic generation in multiple photonic quantum well structures made of nonlinear material,” Appl. Phys. Lett. 88(12), 122904 (2006).
[CrossRef]

2005

T. M. Liu, Ch. T. Yu, and Ch. K. Sun, “2 GHz repetition-rate femtosecond blue sources by second harmonic generation in a resonantly enhanced cavity,” Appl. Phys. Lett. 86(6), 061112 (2005).
[CrossRef]

2004

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

G. Vecchi, J. Terres, D. Coquillat, M. L. V. d’Yerville, and A. M Malvezzi “Enhancement of visible second harmonic generation in epitaxial GaN-based two-dimensional photonic crystal structures,” Appl. Phys. Lett. 84(8), 1245–1247 (2004).
[CrossRef]

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. R. Qiu, J. H. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70(24), 245109 (2004).
[CrossRef]

2003

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[CrossRef] [PubMed]

P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82(24), 4230–4232 (2003).
[CrossRef]

2002

2001

B. Shi, Z. M. Jiang, and X. Wang, “Defective photonic crystals with greatly enhanced second-harmonic generation,” Opt. Lett. 26(15), 1194–1196 (2001).
[CrossRef]

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78(20), 3021–3023 (2001).
[CrossRef]

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ 2 interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1 ), 016609 (2001).
[CrossRef] [PubMed]

2000

H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, “Large enhancement of second harmonic generation in polymer films by microcavities,” Appl. Phys. Lett. 76(5), 538 (2000).
[CrossRef]

1999

1998

S. Kawai, T. Ogawa, H. S. Lee Robert, C. DeMattei, and R. S. Feigelson, “Second-harmonic generation from needlelike ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals,” Appl. Phys. Lett. 73(6), 768–770 (1998).
[CrossRef]

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[CrossRef]

1995

S. Nakagawa, N. Yamada, N. Mikoshiba, and D. E. Mars, “Second-harmonic generation from GaAs/AlAs vertical cavity,” Appl. Phys. Lett. 66(17), 2159–2161 (1995).
[CrossRef]

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

1987

1984

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
[CrossRef]

Balakin, A. V.

Beltram, F.

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, and L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74(14), 1945–1947 (1999).
[CrossRef]

Berger, V.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[CrossRef]

Bertolotti, M.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ 2 interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1 ), 016609 (2001).
[CrossRef] [PubMed]

Bloemer, M. J.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ 2 interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1 ), 016609 (2001).
[CrossRef] [PubMed]

Boucher, D.

Bowden, C. M.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ 2 interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1 ), 016609 (2001).
[CrossRef] [PubMed]

Bushuev, V. A.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Second-harmonic generation of a continuous wave diode-pumped Nd:YAG laser using an externally resonant cavity,” Opt. Lett. 12(12), 1014–1016 (1987).
[CrossRef] [PubMed]

Cao, C. Q.

H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, “Large enhancement of second harmonic generation in polymer films by microcavities,” Appl. Phys. Lett. 76(5), 538 (2000).
[CrossRef]

Cao, H.

H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, “Large enhancement of second harmonic generation in polymer films by microcavities,” Appl. Phys. Lett. 76(5), 538 (2000).
[CrossRef]

Carusotto, I.

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, and L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74(14), 1945–1947 (1999).
[CrossRef]

Centini, M.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ 2 interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1 ), 016609 (2001).
[CrossRef] [PubMed]

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78(20), 3021–3023 (2001).
[CrossRef]

Chen, X. S.

Y. Zeng, X. S. Chen, and W. Lu, “Optical limiting in defective quadratic nonlinear photonic crystals,” J. Appl. Phys. 99(12), 123107 (2006).
[CrossRef]

Cheng, B.

P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82(24), 4230–4232 (2003).
[CrossRef]

Cheng, C.

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. R. Qiu, J. H. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70(24), 245109 (2004).
[CrossRef]

Colombelli, R.

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, and L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74(14), 1945–1947 (1999).
[CrossRef]

Coquillat, D.

G. Vecchi, J. Terres, D. Coquillat, M. L. V. d’Yerville, and A. M Malvezzi “Enhancement of visible second harmonic generation in epitaxial GaN-based two-dimensional photonic crystal structures,” Appl. Phys. Lett. 84(8), 1245–1247 (2004).
[CrossRef]

D’Aguanno, G.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78(20), 3021–3023 (2001).
[CrossRef]

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ 2 interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1 ), 016609 (2001).
[CrossRef] [PubMed]

d’Yerville, M. L. V.

G. Vecchi, J. Terres, D. Coquillat, M. L. V. d’Yerville, and A. M Malvezzi “Enhancement of visible second harmonic generation in epitaxial GaN-based two-dimensional photonic crystal structures,” Appl. Phys. Lett. 84(8), 1245–1247 (2004).
[CrossRef]

DeMattei, C.

S. Kawai, T. Ogawa, H. S. Lee Robert, C. DeMattei, and R. S. Feigelson, “Second-harmonic generation from needlelike ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals,” Appl. Phys. Lett. 73(6), 768–770 (1998).
[CrossRef]

Dumeige, Y.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, C. Me’riadec, and A. Levenson, “χ(2) semiconductor photonic crystals,” J. Opt. Soc. Am. B 19(9), 2094–2101 (2002).
[CrossRef]

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ 2 interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1 ), 016609 (2001).
[CrossRef] [PubMed]

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78(20), 3021–3023 (2001).
[CrossRef]

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
[CrossRef]

Feigelson, R. S.

S. Kawai, T. Ogawa, H. S. Lee Robert, C. DeMattei, and R. S. Feigelson, “Second-harmonic generation from needlelike ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals,” Appl. Phys. Lett. 73(6), 768–770 (1998).
[CrossRef]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Franciosi, A.

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, and L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74(14), 1945–1947 (1999).
[CrossRef]

Gu, B. Y.

L. M. Zhao and B. Y. Gu, “Giant enhancement of second harmonic generation in multiple photonic quantum well structures made of nonlinear material,” Appl. Phys. Lett. 88(12), 122904 (2006).
[CrossRef]

Hall, D. B.

H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, “Large enhancement of second harmonic generation in polymer films by microcavities,” Appl. Phys. Lett. 76(5), 538 (2000).
[CrossRef]

Haus, J. W.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ 2 interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1 ), 016609 (2001).
[CrossRef] [PubMed]

He, J. L.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Hirao, K.

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. R. Qiu, J. H. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70(24), 245109 (2004).
[CrossRef]

Jarutis, V.

Ji, S. H.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Jiang, Z. M.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Kawai, S.

S. Kawai, T. Ogawa, H. S. Lee Robert, C. DeMattei, and R. S. Feigelson, “Second-harmonic generation from needlelike ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals,” Appl. Phys. Lett. 73(6), 768–770 (1998).
[CrossRef]

Koroteev, N. I.

Kozlovsky, W. J.

Lantier, R.

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, and L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74(14), 1945–1947 (1999).
[CrossRef]

Laurell, F.

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
[CrossRef]

Lee Robert, H. S.

S. Kawai, T. Ogawa, H. S. Lee Robert, C. DeMattei, and R. S. Feigelson, “Second-harmonic generation from needlelike ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals,” Appl. Phys. Lett. 73(6), 768–770 (1998).
[CrossRef]

Levenson, A.

Levenson, J. A.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ 2 interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1 ), 016609 (2001).
[CrossRef] [PubMed]

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78(20), 3021–3023 (2001).
[CrossRef]

Li, J. J.

J. J. Li, Z. Y. Li, and D. Z. Zhang, “Nonlinear frequency conversion in two-dimensional nonlinear photonic crystals solved by a plane-wave-based transfer-matrix method,” Phys. Rev. B 77(19), 195127 (2008).
[CrossRef]

J. J. Li, Z. Y. Li, and D. Z. Zhang, “Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(5), 056606 (2007).
[CrossRef] [PubMed]

J. J. Li, Z. Y. Li, Y. Sheng, and D. Z. Zhang, “Giant enhancement of second harmonic generation in poled ferroelectric crystals,” Appl. Phys. Lett. 91(2), 022903 (2007).
[CrossRef]

Li, R.

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. R. Qiu, J. H. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70(24), 245109 (2004).
[CrossRef]

Li, Z. Y.

J. J. Li, Z. Y. Li, and D. Z. Zhang, “Nonlinear frequency conversion in two-dimensional nonlinear photonic crystals solved by a plane-wave-based transfer-matrix method,” Phys. Rev. B 77(19), 195127 (2008).
[CrossRef]

J. J. Li, Z. Y. Li, Y. Sheng, and D. Z. Zhang, “Giant enhancement of second harmonic generation in poled ferroelectric crystals,” Appl. Phys. Lett. 91(2), 022903 (2007).
[CrossRef]

J. J. Li, Z. Y. Li, and D. Z. Zhang, “Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(5), 056606 (2007).
[CrossRef] [PubMed]

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[CrossRef] [PubMed]

Lin, L. L.

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[CrossRef] [PubMed]

Liu, T. M.

T. M. Liu, Ch. T. Yu, and Ch. K. Sun, “2 GHz repetition-rate femtosecond blue sources by second harmonic generation in a resonantly enhanced cavity,” Appl. Phys. Lett. 86(6), 061112 (2005).
[CrossRef]

Lu, W.

Y. Zeng, X. S. Chen, and W. Lu, “Optical limiting in defective quadratic nonlinear photonic crystals,” J. Appl. Phys. 99(12), 123107 (2006).
[CrossRef]

Ma, B.

P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82(24), 4230–4232 (2003).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Malvezzi, A. M

G. Vecchi, J. Terres, D. Coquillat, M. L. V. d’Yerville, and A. M Malvezzi “Enhancement of visible second harmonic generation in epitaxial GaN-based two-dimensional photonic crystal structures,” Appl. Phys. Lett. 84(8), 1245–1247 (2004).
[CrossRef]

Mantsyzov, B. I.

Mars, D. E.

S. Nakagawa, N. Yamada, N. Mikoshiba, and D. E. Mars, “Second-harmonic generation from GaAs/AlAs vertical cavity,” Appl. Phys. Lett. 66(17), 2159–2161 (1995).
[CrossRef]

Masselin, P.

Me’riadec, C.

Mikoshiba, N.

S. Nakagawa, N. Yamada, N. Mikoshiba, and D. E. Mars, “Second-harmonic generation from GaAs/AlAs vertical cavity,” Appl. Phys. Lett. 66(17), 2159–2161 (1995).
[CrossRef]

Ming, N. B.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Monnier, P.

Nabors, C. D.

Nakagawa, S.

S. Nakagawa, N. Yamada, N. Mikoshiba, and D. E. Mars, “Second-harmonic generation from GaAs/AlAs vertical cavity,” Appl. Phys. Lett. 66(17), 2159–2161 (1995).
[CrossRef]

Ni, P.

P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82(24), 4230–4232 (2003).
[CrossRef]

Ogawa, T.

S. Kawai, T. Ogawa, H. S. Lee Robert, C. DeMattei, and R. S. Feigelson, “Second-harmonic generation from needlelike ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals,” Appl. Phys. Lett. 73(6), 768–770 (1998).
[CrossRef]

Ozheredov, I. A.

Pasiskevi Ius, V.

Pavesi, L.

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, and L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74(14), 1945–1947 (1999).
[CrossRef]

Pellegrini, V.

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, and L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74(14), 1945–1947 (1999).
[CrossRef]

Piskarskas, A.

Qiu, J. R.

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. R. Qiu, J. H. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70(24), 245109 (2004).
[CrossRef]

Ren, F. F.

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. R. Qiu, J. H. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70(24), 245109 (2004).
[CrossRef]

Rubini, S.

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, and L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74(14), 1945–1947 (1999).
[CrossRef]

Sagnes, I.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, C. Me’riadec, and A. Levenson, “χ(2) semiconductor photonic crystals,” J. Opt. Soc. Am. B 19(9), 2094–2101 (2002).
[CrossRef]

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78(20), 3021–3023 (2001).
[CrossRef]

Sauvage, S.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78(20), 3021–3023 (2001).
[CrossRef]

Scalora, M.

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78(20), 3021–3023 (2001).
[CrossRef]

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ 2 interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1 ), 016609 (2001).
[CrossRef] [PubMed]

Sheng, Y.

J. J. Li, Z. Y. Li, Y. Sheng, and D. Z. Zhang, “Giant enhancement of second harmonic generation in poled ferroelectric crystals,” Appl. Phys. Lett. 91(2), 022903 (2007).
[CrossRef]

Shi, B.

Shkurinov, A. P.

Si, J. H.

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. R. Qiu, J. H. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70(24), 245109 (2004).
[CrossRef]

Sibilia, C.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ 2 interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1 ), 016609 (2001).
[CrossRef] [PubMed]

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78(20), 3021–3023 (2001).
[CrossRef]

Smilgevi Ius, V.

Stabinis, A.

Sun, Ch. K.

T. M. Liu, Ch. T. Yu, and Ch. K. Sun, “2 GHz repetition-rate femtosecond blue sources by second harmonic generation in a resonantly enhanced cavity,” Appl. Phys. Lett. 86(6), 061112 (2005).
[CrossRef]

Sun, J.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Tellefsen, J.

Terres, J.

G. Vecchi, J. Terres, D. Coquillat, M. L. V. d’Yerville, and A. M Malvezzi “Enhancement of visible second harmonic generation in epitaxial GaN-based two-dimensional photonic crystal structures,” Appl. Phys. Lett. 84(8), 1245–1247 (2004).
[CrossRef]

Torkelson, J. M.

H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, “Large enhancement of second harmonic generation in polymer films by microcavities,” Appl. Phys. Lett. 76(5), 538 (2000).
[CrossRef]

Vecchi, G.

G. Vecchi, J. Terres, D. Coquillat, M. L. V. d’Yerville, and A. M Malvezzi “Enhancement of visible second harmonic generation in epitaxial GaN-based two-dimensional photonic crystal structures,” Appl. Phys. Lett. 84(8), 1245–1247 (2004).
[CrossRef]

Vidakovic, P.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, C. Me’riadec, and A. Levenson, “χ(2) semiconductor photonic crystals,” J. Opt. Soc. Am. B 19(9), 2094–2101 (2002).
[CrossRef]

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ 2 interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1 ), 016609 (2001).
[CrossRef] [PubMed]

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78(20), 3021–3023 (2001).
[CrossRef]

Vinegoni, C.

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, and L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74(14), 1945–1947 (1999).
[CrossRef]

Wang, H. T.

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. R. Qiu, J. H. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70(24), 245109 (2004).
[CrossRef]

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Wang, S.

Wang, X.

P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82(24), 4230–4232 (2003).
[CrossRef]

B. Shi, Z. M. Jiang, and X. Wang, “Defective photonic crystals with greatly enhanced second-harmonic generation,” Opt. Lett. 26(15), 1194–1196 (2001).
[CrossRef]

Xu, P.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Yamada, N.

S. Nakagawa, N. Yamada, N. Mikoshiba, and D. E. Mars, “Second-harmonic generation from GaAs/AlAs vertical cavity,” Appl. Phys. Lett. 66(17), 2159–2161 (1995).
[CrossRef]

Yu, Ch. T.

T. M. Liu, Ch. T. Yu, and Ch. K. Sun, “2 GHz repetition-rate femtosecond blue sources by second harmonic generation in a resonantly enhanced cavity,” Appl. Phys. Lett. 86(6), 061112 (2005).
[CrossRef]

Yu, X. Q.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Zeng, Y.

Y. Zeng, X. S. Chen, and W. Lu, “Optical limiting in defective quadratic nonlinear photonic crystals,” J. Appl. Phys. 99(12), 123107 (2006).
[CrossRef]

Zhang, D.

P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82(24), 4230–4232 (2003).
[CrossRef]

Zhang, D. Z.

J. J. Li, Z. Y. Li, and D. Z. Zhang, “Nonlinear frequency conversion in two-dimensional nonlinear photonic crystals solved by a plane-wave-based transfer-matrix method,” Phys. Rev. B 77(19), 195127 (2008).
[CrossRef]

J. J. Li, Z. Y. Li, Y. Sheng, and D. Z. Zhang, “Giant enhancement of second harmonic generation in poled ferroelectric crystals,” Appl. Phys. Lett. 91(2), 022903 (2007).
[CrossRef]

J. J. Li, Z. Y. Li, and D. Z. Zhang, “Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(5), 056606 (2007).
[CrossRef] [PubMed]

Zhao, L. M.

L. M. Zhao and B. Y. Gu, “Giant enhancement of second harmonic generation in multiple photonic quantum well structures made of nonlinear material,” Appl. Phys. Lett. 88(12), 122904 (2006).
[CrossRef]

Zhu, S. N.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Zhu, Y. Y.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett.

P. Ni, B. Ma, X. Wang, B. Cheng, and D. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82(24), 4230–4232 (2003).
[CrossRef]

S. Kawai, T. Ogawa, H. S. Lee Robert, C. DeMattei, and R. S. Feigelson, “Second-harmonic generation from needlelike ferroelectric domains in Sr0.6Ba0.4Nd2O6 single crystals,” Appl. Phys. Lett. 73(6), 768–770 (1998).
[CrossRef]

G. Vecchi, J. Terres, D. Coquillat, M. L. V. d’Yerville, and A. M Malvezzi “Enhancement of visible second harmonic generation in epitaxial GaN-based two-dimensional photonic crystal structures,” Appl. Phys. Lett. 84(8), 1245–1247 (2004).
[CrossRef]

Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D’Aguanno, and M. Scalora, “Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,” Appl. Phys. Lett. 78(20), 3021–3023 (2001).
[CrossRef]

T. M. Liu, Ch. T. Yu, and Ch. K. Sun, “2 GHz repetition-rate femtosecond blue sources by second harmonic generation in a resonantly enhanced cavity,” Appl. Phys. Lett. 86(6), 061112 (2005).
[CrossRef]

S. Nakagawa, N. Yamada, N. Mikoshiba, and D. E. Mars, “Second-harmonic generation from GaAs/AlAs vertical cavity,” Appl. Phys. Lett. 66(17), 2159–2161 (1995).
[CrossRef]

V. Pellegrini, R. Colombelli, I. Carusotto, F. Beltram, S. Rubini, R. Lantier, A. Franciosi, C. Vinegoni, and L. Pavesi, “Resonant second harmonic generation in ZnSe bulk microcavity,” Appl. Phys. Lett. 74(14), 1945–1947 (1999).
[CrossRef]

H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, “Large enhancement of second harmonic generation in polymer films by microcavities,” Appl. Phys. Lett. 76(5), 538 (2000).
[CrossRef]

L. M. Zhao and B. Y. Gu, “Giant enhancement of second harmonic generation in multiple photonic quantum well structures made of nonlinear material,” Appl. Phys. Lett. 88(12), 122904 (2006).
[CrossRef]

J. J. Li, Z. Y. Li, Y. Sheng, and D. Z. Zhang, “Giant enhancement of second harmonic generation in poled ferroelectric crystals,” Appl. Phys. Lett. 91(2), 022903 (2007).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi phase matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

J. Appl. Phys.

Y. Zeng, X. S. Chen, and W. Lu, “Optical limiting in defective quadratic nonlinear photonic crystals,” J. Appl. Phys. 99(12), 123107 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Opt. Quantum Electron.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
[CrossRef]

Phys. Rev. B

J. J. Li, Z. Y. Li, and D. Z. Zhang, “Nonlinear frequency conversion in two-dimensional nonlinear photonic crystals solved by a plane-wave-based transfer-matrix method,” Phys. Rev. B 77(19), 195127 (2008).
[CrossRef]

F. F. Ren, R. Li, C. Cheng, H. T. Wang, J. R. Qiu, J. H. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B 70(24), 245109 (2004).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ 2 interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(1 ), 016609 (2001).
[CrossRef] [PubMed]

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003).
[CrossRef] [PubMed]

J. J. Li, Z. Y. Li, and D. Z. Zhang, “Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(5), 056606 (2007).
[CrossRef] [PubMed]

Phys. Rev. Lett.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[CrossRef]

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93(13), 133904 (2004).
[CrossRef] [PubMed]

Other

V. G. Dmitriev, G. G. Gurazdyan, and D. N. Nikogosyan, Handbook of nonlinear optical crystals (Springer, Berlin, 1997), Vol. 64, p. 125.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of a 1D NPC structure with DFR mirrors at the two ends. N stands for the period number of the NPC, while D1 and D2 represents the period number of the left and right DBR mirror. (b) Schematic diagram of the central NPC with both periodic modulation on the refractive index and second-order nonlinear susceptibility. Layers A1 and A2 represent the poled LiNbO3 crystal, and Layer B is an air layer. The arrows inside the crystal indicate the polarization direction.

Fig. 2
Fig. 2

Calculated conversion efficiency of the forward SHG from different NPC structures as a function of the wavelength of the incident FW. Panels (a)-(d) correspond to the case (1)-(4) structure, respectively. All the curves exhibit a very sharp peak with a width of about 0.02 nm.

Fig. 3
Fig. 3

Calculated local field intensity distribution of FW within different NPC structures. Panels (a)-(d) correspond to the case (1) - (4) structure, respectively.

Fig. 4
Fig. 4

Calculated conversion efficiency of forward SHG as a function of the incident FW wavelength for (a) a NPC where only the pure QPM acts, (b) a NPC where only PBGE effect plays a role.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ne2(λ,T)=a1+b1f+a2+b2fλ2(a3+b3f)2a4λ2,

Metrics