Abstract

Many applications require detectors with both high sensitivity and linearity, such as low light level imaging and quantum computing. Here we present an opto-electro-mechanical detector based on nano-injection and lateral charge compression that operates at the short infrared (SWIR) range. Electrical signal is generated by photo-induced changes in a nano-injector gap, and subsequent change of tunneling current. We present a theoretical model developed for the OEM detector, and it shows good agreement with the measured experimental results for both the mechanical and electrical properties of the device. The device shows a measured responsivity of 276 A/W, equivalent to 220 electrons per incoming photon, and an NEP of 3.53 × 10−14 W/Hz0.5 at room temperature. Although these results are already competing with common APDs in linear mode, we believe replacing the AFM tip with a dedicated nanoinjector can improve the sensitivity significantly.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
    [CrossRef] [PubMed]
  2. T. C. Tsu, “Interplanetary Travel by Solar Sail,” ARS J. 29(6), (1959).
  3. C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
    [CrossRef] [PubMed]
  4. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
    [CrossRef] [PubMed]
  5. M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
    [CrossRef]
  6. A. C. Bleszynski-Jayich, W. E. Shanks, B. R. Ilic, and J. G. E. Harris, “High sensitivity cantilevers for measuring persistent currents in normal metal rings,” J. Vac. Sci. Technol. B 26(4), 1412 (2008).
    [CrossRef]
  7. H. Mohseni, J. Wojkowski, and M. Razeghi, “Uncooled InAs-GaSb type-II infrared detectors grown on GaAs substrates for the 8-12-mu m atmospheric window,” IEEE J. Quantum Electron. 35(1041), (1999).
    [CrossRef]
  8. J. C. Campbell, “Recent advances in telecommunications avalanche photodiodes,” J. Lightwave Technol. 25(1), 109–121 (2007).
    [CrossRef]
  9. L. Aina and ., “Linear-mode single photon counting APD arrays with subnanosecond, afterpulse-free performance for ladar, spectroscopy, and QKD applications,” Proc. SPIE 6572, 65720H–1 (2007).
    [CrossRef]
  10. O. G. Memis, A. Katsnelson, S.-C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “A photon detector with very high gain at low bias and at room temperature,” Appl. Phys. Lett. 91(17), 171112 (2007).
    [CrossRef]
  11. O. G. Memis, A. Katsnelson, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “On the Source of Jitter in a Room-Temperature Nanoinjection Photon Detector at 1.55 µm,” IEEE Electron Device Lett. 29(8), 867–869 (2008).
    [CrossRef]
  12. O. G. Memis, A. Katsnelson, S. C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “Sub-Poissonian shot noise of a high internal gain injection photon detector,” Opt. Express 16(17), 12701–12706 (2008).
    [PubMed]
  13. P. L. Voss and ., “14MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes,” J. Mod. Opt. 51(9–10), 1369–1379 (2004).
  14. U. Mohideen and A. Roy, “Precision measurement of the Casimir force from 0.1 to 0.9 µm,” Phys. Rev. Lett. 81(21), 4549–4552 (1998).
    [CrossRef]
  15. J. N. Munday, F. Capasso, and V. A. Parsegian, “Measured long-range repulsive Casimir-Lifshitz forces,” Nature 457(7226), 170–173 (2009).
    [CrossRef] [PubMed]
  16. H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 291(5510), 1941–1944 (2001).
    [CrossRef] [PubMed]
  17. F. Chen and ., “Measurements of the normal and shape dependent Casimir forces using an Atomic Force Microscope,” Int. J. Mod. Phys. A 17(6&7), 711–721 (2002).
    [CrossRef]
  18. A. Roy, C. Y. Lin, and U. Mohideen, “Improved precision measurement of the Casimir force,” Phys. Rev. D Part. Fields 60(11), 111101 (1999).
    [CrossRef]
  19. P. S. Maruvada and N. Hylten-Cavallius, “Capacitance Calculations for Basic High Voltage Electrode Configurations,” IEEE Trans. Power Apparatus Syst PAS-94(5), (1975).

2009 (1)

J. N. Munday, F. Capasso, and V. A. Parsegian, “Measured long-range repulsive Casimir-Lifshitz forces,” Nature 457(7226), 170–173 (2009).
[CrossRef] [PubMed]

2008 (4)

O. G. Memis, A. Katsnelson, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “On the Source of Jitter in a Room-Temperature Nanoinjection Photon Detector at 1.55 µm,” IEEE Electron Device Lett. 29(8), 867–869 (2008).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[CrossRef] [PubMed]

A. C. Bleszynski-Jayich, W. E. Shanks, B. R. Ilic, and J. G. E. Harris, “High sensitivity cantilevers for measuring persistent currents in normal metal rings,” J. Vac. Sci. Technol. B 26(4), 1412 (2008).
[CrossRef]

O. G. Memis, A. Katsnelson, S. C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “Sub-Poissonian shot noise of a high internal gain injection photon detector,” Opt. Express 16(17), 12701–12706 (2008).
[PubMed]

2007 (4)

L. Aina and ., “Linear-mode single photon counting APD arrays with subnanosecond, afterpulse-free performance for ladar, spectroscopy, and QKD applications,” Proc. SPIE 6572, 65720H–1 (2007).
[CrossRef]

O. G. Memis, A. Katsnelson, S.-C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “A photon detector with very high gain at low bias and at room temperature,” Appl. Phys. Lett. 91(17), 171112 (2007).
[CrossRef]

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[CrossRef]

J. C. Campbell, “Recent advances in telecommunications avalanche photodiodes,” J. Lightwave Technol. 25(1), 109–121 (2007).
[CrossRef]

2006 (1)

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[CrossRef] [PubMed]

2004 (2)

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

P. L. Voss and ., “14MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes,” J. Mod. Opt. 51(9–10), 1369–1379 (2004).

2002 (1)

F. Chen and ., “Measurements of the normal and shape dependent Casimir forces using an Atomic Force Microscope,” Int. J. Mod. Phys. A 17(6&7), 711–721 (2002).
[CrossRef]

2001 (1)

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 291(5510), 1941–1944 (2001).
[CrossRef] [PubMed]

1999 (2)

A. Roy, C. Y. Lin, and U. Mohideen, “Improved precision measurement of the Casimir force,” Phys. Rev. D Part. Fields 60(11), 111101 (1999).
[CrossRef]

H. Mohseni, J. Wojkowski, and M. Razeghi, “Uncooled InAs-GaSb type-II infrared detectors grown on GaAs substrates for the 8-12-mu m atmospheric window,” IEEE J. Quantum Electron. 35(1041), (1999).
[CrossRef]

1998 (1)

U. Mohideen and A. Roy, “Precision measurement of the Casimir force from 0.1 to 0.9 µm,” Phys. Rev. Lett. 81(21), 4549–4552 (1998).
[CrossRef]

1975 (1)

P. S. Maruvada and N. Hylten-Cavallius, “Capacitance Calculations for Basic High Voltage Electrode Configurations,” IEEE Trans. Power Apparatus Syst PAS-94(5), (1975).

1959 (1)

T. C. Tsu, “Interplanetary Travel by Solar Sail,” ARS J. 29(6), (1959).

Adesida, I.

O. G. Memis, A. Katsnelson, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “On the Source of Jitter in a Room-Temperature Nanoinjection Photon Detector at 1.55 µm,” IEEE Electron Device Lett. 29(8), 867–869 (2008).
[CrossRef]

O. G. Memis, A. Katsnelson, S. C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “Sub-Poissonian shot noise of a high internal gain injection photon detector,” Opt. Express 16(17), 12701–12706 (2008).
[PubMed]

O. G. Memis, A. Katsnelson, S.-C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “A photon detector with very high gain at low bias and at room temperature,” Appl. Phys. Lett. 91(17), 171112 (2007).
[CrossRef]

Aina, L.

L. Aina and ., “Linear-mode single photon counting APD arrays with subnanosecond, afterpulse-free performance for ladar, spectroscopy, and QKD applications,” Proc. SPIE 6572, 65720H–1 (2007).
[CrossRef]

Aksyuk, V. A.

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 291(5510), 1941–1944 (2001).
[CrossRef] [PubMed]

Arcizet, O.

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[CrossRef] [PubMed]

Bishop, D. J.

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 291(5510), 1941–1944 (2001).
[CrossRef] [PubMed]

Bleszynski-Jayich, A. C.

A. C. Bleszynski-Jayich, W. E. Shanks, B. R. Ilic, and J. G. E. Harris, “High sensitivity cantilevers for measuring persistent currents in normal metal rings,” J. Vac. Sci. Technol. B 26(4), 1412 (2008).
[CrossRef]

Briant, T.

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[CrossRef] [PubMed]

Campbell, J. C.

Capasso, F.

J. N. Munday, F. Capasso, and V. A. Parsegian, “Measured long-range repulsive Casimir-Lifshitz forces,” Nature 457(7226), 170–173 (2009).
[CrossRef] [PubMed]

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 291(5510), 1941–1944 (2001).
[CrossRef] [PubMed]

Chan, H. B.

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 291(5510), 1941–1944 (2001).
[CrossRef] [PubMed]

Chen, F.

F. Chen and ., “Measurements of the normal and shape dependent Casimir forces using an Atomic Force Microscope,” Int. J. Mod. Phys. A 17(6&7), 711–721 (2002).
[CrossRef]

Cohadon, P. F.

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[CrossRef] [PubMed]

Harris, J. G. E.

A. C. Bleszynski-Jayich, W. E. Shanks, B. R. Ilic, and J. G. E. Harris, “High sensitivity cantilevers for measuring persistent currents in normal metal rings,” J. Vac. Sci. Technol. B 26(4), 1412 (2008).
[CrossRef]

Heidmann, A.

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[CrossRef] [PubMed]

Hossain, T.

O. G. Memis, A. Katsnelson, S. C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “Sub-Poissonian shot noise of a high internal gain injection photon detector,” Opt. Express 16(17), 12701–12706 (2008).
[PubMed]

O. G. Memis, A. Katsnelson, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “On the Source of Jitter in a Room-Temperature Nanoinjection Photon Detector at 1.55 µm,” IEEE Electron Device Lett. 29(8), 867–869 (2008).
[CrossRef]

O. G. Memis, A. Katsnelson, S.-C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “A photon detector with very high gain at low bias and at room temperature,” Appl. Phys. Lett. 91(17), 171112 (2007).
[CrossRef]

Hylten-Cavallius, N.

P. S. Maruvada and N. Hylten-Cavallius, “Capacitance Calculations for Basic High Voltage Electrode Configurations,” IEEE Trans. Power Apparatus Syst PAS-94(5), (1975).

Ilic, B. R.

A. C. Bleszynski-Jayich, W. E. Shanks, B. R. Ilic, and J. G. E. Harris, “High sensitivity cantilevers for measuring persistent currents in normal metal rings,” J. Vac. Sci. Technol. B 26(4), 1412 (2008).
[CrossRef]

Jin, N.

O. G. Memis, A. Katsnelson, S. C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “Sub-Poissonian shot noise of a high internal gain injection photon detector,” Opt. Express 16(17), 12701–12706 (2008).
[PubMed]

O. G. Memis, A. Katsnelson, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “On the Source of Jitter in a Room-Temperature Nanoinjection Photon Detector at 1.55 µm,” IEEE Electron Device Lett. 29(8), 867–869 (2008).
[CrossRef]

O. G. Memis, A. Katsnelson, S.-C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “A photon detector with very high gain at low bias and at room temperature,” Appl. Phys. Lett. 91(17), 171112 (2007).
[CrossRef]

Karrai, K.

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

Katsnelson, A.

O. G. Memis, A. Katsnelson, S. C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “Sub-Poissonian shot noise of a high internal gain injection photon detector,” Opt. Express 16(17), 12701–12706 (2008).
[PubMed]

O. G. Memis, A. Katsnelson, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “On the Source of Jitter in a Room-Temperature Nanoinjection Photon Detector at 1.55 µm,” IEEE Electron Device Lett. 29(8), 867–869 (2008).
[CrossRef]

O. G. Memis, A. Katsnelson, S.-C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “A photon detector with very high gain at low bias and at room temperature,” Appl. Phys. Lett. 91(17), 171112 (2007).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[CrossRef] [PubMed]

Kleiman, R. N.

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 291(5510), 1941–1944 (2001).
[CrossRef] [PubMed]

Kong, S. C.

Kong, S.-C.

O. G. Memis, A. Katsnelson, S.-C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “A photon detector with very high gain at low bias and at room temperature,” Appl. Phys. Lett. 91(17), 171112 (2007).
[CrossRef]

Li, M.

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[CrossRef]

Lin, C. Y.

A. Roy, C. Y. Lin, and U. Mohideen, “Improved precision measurement of the Casimir force,” Phys. Rev. D Part. Fields 60(11), 111101 (1999).
[CrossRef]

Maruvada, P. S.

P. S. Maruvada and N. Hylten-Cavallius, “Capacitance Calculations for Basic High Voltage Electrode Configurations,” IEEE Trans. Power Apparatus Syst PAS-94(5), (1975).

Memis, O. G.

O. G. Memis, A. Katsnelson, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “On the Source of Jitter in a Room-Temperature Nanoinjection Photon Detector at 1.55 µm,” IEEE Electron Device Lett. 29(8), 867–869 (2008).
[CrossRef]

O. G. Memis, A. Katsnelson, S. C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “Sub-Poissonian shot noise of a high internal gain injection photon detector,” Opt. Express 16(17), 12701–12706 (2008).
[PubMed]

O. G. Memis, A. Katsnelson, S.-C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “A photon detector with very high gain at low bias and at room temperature,” Appl. Phys. Lett. 91(17), 171112 (2007).
[CrossRef]

Metzger, C. H.

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

Mohideen, U.

A. Roy, C. Y. Lin, and U. Mohideen, “Improved precision measurement of the Casimir force,” Phys. Rev. D Part. Fields 60(11), 111101 (1999).
[CrossRef]

U. Mohideen and A. Roy, “Precision measurement of the Casimir force from 0.1 to 0.9 µm,” Phys. Rev. Lett. 81(21), 4549–4552 (1998).
[CrossRef]

Mohseni, H.

O. G. Memis, A. Katsnelson, S. C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “Sub-Poissonian shot noise of a high internal gain injection photon detector,” Opt. Express 16(17), 12701–12706 (2008).
[PubMed]

O. G. Memis, A. Katsnelson, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “On the Source of Jitter in a Room-Temperature Nanoinjection Photon Detector at 1.55 µm,” IEEE Electron Device Lett. 29(8), 867–869 (2008).
[CrossRef]

O. G. Memis, A. Katsnelson, S.-C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “A photon detector with very high gain at low bias and at room temperature,” Appl. Phys. Lett. 91(17), 171112 (2007).
[CrossRef]

H. Mohseni, J. Wojkowski, and M. Razeghi, “Uncooled InAs-GaSb type-II infrared detectors grown on GaAs substrates for the 8-12-mu m atmospheric window,” IEEE J. Quantum Electron. 35(1041), (1999).
[CrossRef]

Munday, J. N.

J. N. Munday, F. Capasso, and V. A. Parsegian, “Measured long-range repulsive Casimir-Lifshitz forces,” Nature 457(7226), 170–173 (2009).
[CrossRef] [PubMed]

Parsegian, V. A.

J. N. Munday, F. Capasso, and V. A. Parsegian, “Measured long-range repulsive Casimir-Lifshitz forces,” Nature 457(7226), 170–173 (2009).
[CrossRef] [PubMed]

Pinard, M.

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[CrossRef] [PubMed]

Razeghi, M.

H. Mohseni, J. Wojkowski, and M. Razeghi, “Uncooled InAs-GaSb type-II infrared detectors grown on GaAs substrates for the 8-12-mu m atmospheric window,” IEEE J. Quantum Electron. 35(1041), (1999).
[CrossRef]

Roukes, M. L.

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[CrossRef]

Roy, A.

A. Roy, C. Y. Lin, and U. Mohideen, “Improved precision measurement of the Casimir force,” Phys. Rev. D Part. Fields 60(11), 111101 (1999).
[CrossRef]

U. Mohideen and A. Roy, “Precision measurement of the Casimir force from 0.1 to 0.9 µm,” Phys. Rev. Lett. 81(21), 4549–4552 (1998).
[CrossRef]

Shanks, W. E.

A. C. Bleszynski-Jayich, W. E. Shanks, B. R. Ilic, and J. G. E. Harris, “High sensitivity cantilevers for measuring persistent currents in normal metal rings,” J. Vac. Sci. Technol. B 26(4), 1412 (2008).
[CrossRef]

Tang, H. X.

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[CrossRef]

Tsu, T. C.

T. C. Tsu, “Interplanetary Travel by Solar Sail,” ARS J. 29(6), (1959).

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[CrossRef] [PubMed]

Voss, P. L.

P. L. Voss and ., “14MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes,” J. Mod. Opt. 51(9–10), 1369–1379 (2004).

Wojkowski, J.

H. Mohseni, J. Wojkowski, and M. Razeghi, “Uncooled InAs-GaSb type-II infrared detectors grown on GaAs substrates for the 8-12-mu m atmospheric window,” IEEE J. Quantum Electron. 35(1041), (1999).
[CrossRef]

Yan, M.

O. G. Memis, A. Katsnelson, S. C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “Sub-Poissonian shot noise of a high internal gain injection photon detector,” Opt. Express 16(17), 12701–12706 (2008).
[PubMed]

O. G. Memis, A. Katsnelson, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “On the Source of Jitter in a Room-Temperature Nanoinjection Photon Detector at 1.55 µm,” IEEE Electron Device Lett. 29(8), 867–869 (2008).
[CrossRef]

O. G. Memis, A. Katsnelson, S.-C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “A photon detector with very high gain at low bias and at room temperature,” Appl. Phys. Lett. 91(17), 171112 (2007).
[CrossRef]

Zhang, S.

O. G. Memis, A. Katsnelson, S. C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “Sub-Poissonian shot noise of a high internal gain injection photon detector,” Opt. Express 16(17), 12701–12706 (2008).
[PubMed]

O. G. Memis, A. Katsnelson, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “On the Source of Jitter in a Room-Temperature Nanoinjection Photon Detector at 1.55 µm,” IEEE Electron Device Lett. 29(8), 867–869 (2008).
[CrossRef]

O. G. Memis, A. Katsnelson, S.-C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “A photon detector with very high gain at low bias and at room temperature,” Appl. Phys. Lett. 91(17), 171112 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

O. G. Memis, A. Katsnelson, S.-C. Kong, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “A photon detector with very high gain at low bias and at room temperature,” Appl. Phys. Lett. 91(17), 171112 (2007).
[CrossRef]

ARS J. (1)

T. C. Tsu, “Interplanetary Travel by Solar Sail,” ARS J. 29(6), (1959).

IEEE Electron Device Lett. (1)

O. G. Memis, A. Katsnelson, H. Mohseni, M. Yan, S. Zhang, T. Hossain, N. Jin, and I. Adesida, “On the Source of Jitter in a Room-Temperature Nanoinjection Photon Detector at 1.55 µm,” IEEE Electron Device Lett. 29(8), 867–869 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Mohseni, J. Wojkowski, and M. Razeghi, “Uncooled InAs-GaSb type-II infrared detectors grown on GaAs substrates for the 8-12-mu m atmospheric window,” IEEE J. Quantum Electron. 35(1041), (1999).
[CrossRef]

IEEE Trans. Power Apparatus Syst (1)

P. S. Maruvada and N. Hylten-Cavallius, “Capacitance Calculations for Basic High Voltage Electrode Configurations,” IEEE Trans. Power Apparatus Syst PAS-94(5), (1975).

Int. J. Mod. Phys. A (1)

F. Chen and ., “Measurements of the normal and shape dependent Casimir forces using an Atomic Force Microscope,” Int. J. Mod. Phys. A 17(6&7), 711–721 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

P. L. Voss and ., “14MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes,” J. Mod. Opt. 51(9–10), 1369–1379 (2004).

J. Vac. Sci. Technol. B (1)

A. C. Bleszynski-Jayich, W. E. Shanks, B. R. Ilic, and J. G. E. Harris, “High sensitivity cantilevers for measuring persistent currents in normal metal rings,” J. Vac. Sci. Technol. B 26(4), 1412 (2008).
[CrossRef]

Nat. Nanotechnol. (1)

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[CrossRef]

Nature (3)

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[CrossRef] [PubMed]

J. N. Munday, F. Capasso, and V. A. Parsegian, “Measured long-range repulsive Casimir-Lifshitz forces,” Nature 457(7226), 170–173 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. D Part. Fields (1)

A. Roy, C. Y. Lin, and U. Mohideen, “Improved precision measurement of the Casimir force,” Phys. Rev. D Part. Fields 60(11), 111101 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

U. Mohideen and A. Roy, “Precision measurement of the Casimir force from 0.1 to 0.9 µm,” Phys. Rev. Lett. 81(21), 4549–4552 (1998).
[CrossRef]

Proc. SPIE (1)

L. Aina and ., “Linear-mode single photon counting APD arrays with subnanosecond, afterpulse-free performance for ladar, spectroscopy, and QKD applications,” Proc. SPIE 6572, 65720H–1 (2007).
[CrossRef]

Science (2)

H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 291(5510), 1941–1944 (2001).
[CrossRef] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a). 3-D Finite Element Method (FEM) simulation of a metal tip 45 nm above a specialized detector device, shown is the potential within the semiconductor of the detector, the tip in black, and the equipotential surfaces. Inset is shown a cross-section of the 3-D view. 1(b). Surface charge density as a function of radial distance for a metal tip 45 nm above a semiconductor surface with a −1 V bias applied to the tip. Most of the charge is focalized in a 200 nm diameter area.

Fig. 2
Fig. 2

Experimental setup and results. 2(a). Experimental setup showing both configurations. 2(b). Calculated and actual phase shift of AFM tip as a function of time when tip bias is turned on at time t = 0. 2c. Surface potential vs. Absorbed optical power, both measured and simulated results are given.

Fig. 3
Fig. 3

(a). Peak to peak current as a function of absorbed optical power and STM setpoint. The responsivity at a given setpoint is the value of the peak to peak signal in Amps over the absorbed optical power in Watts. 3(b). Tunneling current as a function of time over a single measurement, for a single setpoint and single incident power. 3c. Zoomed in section of 3(b).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Felectrostatic=12dCdzV2=12ε0AV2d2=12Q2ε0A
dF=1ε0AQdQ=VddQ
dQ=qdPτλc
dF/dP=Vqτλdc
md2xdt2+rdxdt+kx=F0Cos(ω0t)+Felectrostatic+FCasimir
Felectrostatic=12dCdzV2=πRε0(Vdc2+2VdcVac+Vac2)(dx)2/R+(dx)
FCasimir=π3360Rc(dx)3

Metrics