Abstract

In this paper we provide, for the first time to our knowledge, the effective orientation of the SHG source in cultured cortical neuronal processes in vitro. This is done by the use of the polarization sensitive second harmonic generation (PSHG) imaging microscopy technique. By performing a pixel-level resolution analysis we found that the SHG dipole source has a distribution of angles centered at θe =33.96°, with a bandwidth of Δθe = 12.85°. This orientation can be related with the molecular geometry of the tubulin heterodimmer contained in microtubules.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three – dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
    [CrossRef]
  2. S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
    [CrossRef]
  3. P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
    [CrossRef] [PubMed]
  4. S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
    [CrossRef] [PubMed]
  5. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
    [CrossRef]
  6. F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15(19), 12286–12295 (2007).
    [CrossRef] [PubMed]
  7. S. Psilodimitrakopoulos, S. Santos, I. Amat-Roldan, A. K. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001–014011 (2009).
    [CrossRef] [PubMed]
  8. C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229(Pt 1), 32–38 (2008).
    [CrossRef] [PubMed]
  9. C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express 16(20), 16151–16165 (2008).
    [CrossRef] [PubMed]
  10. S. Psilodimitrakopoulos, D. Artigas, G. Soria, I. Amat-Roldan, A. M. Planas, and P. Loza-Alvarez, “Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response,” Opt. Express 17(12), 10168–10176 (2009).
    [CrossRef] [PubMed]
  11. D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
    [CrossRef] [PubMed]
  12. P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77(6), 3341–3349 (1999).
    [CrossRef] [PubMed]
  13. A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
    [CrossRef] [PubMed]
  14. A. C. Kwan, K. Duff, G. K. Gouras, and W. W. Webb, “Optical visualization of Alzheimer’s pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation,” Opt. Express 17(5), 3679–3689 (2009).
    [CrossRef] [PubMed]
  15. W. H. Stoothoff, B. J. Bacskai, and B. T. Hyman, “Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons,” J. Biomed. Opt. 13(6), 064039 (2008).
    [CrossRef]
  16. G. Filippidis, C. Kouloumentas, G. Voglis, F. Zacharopoulou, T. G. Papazoglou, and N. Tavernarakis, “Imaging of Caenorhabditis elegans neurons by second-harmonic generation and two-photon excitation fluorescence,” J. Biomed. Opt. 10(2), 024015–024018 (2005).
    [CrossRef] [PubMed]
  17. S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11(5), 054022–054028 (2006).
    [CrossRef] [PubMed]
  18. C. Odin, C. Heichette, D. Chretien, and Y. Le Grand, “Second harmonic microscopy of axonemes,” Opt. Express 17(11), 9235–9240 (2009).
    [CrossRef] [PubMed]
  19. A. Akhmanova and M. O. Steinmetz, “Tracking the ends: a dynamic protein network controls the fate of microtubule tips,” Nat. Rev. Mol. Cell Biol. 9(4), 309–322 (2008).
    [CrossRef] [PubMed]
  20. H. P. Erickson, “Microtubule surface lattice and subunit structure and observations on reassembly,” J. Cell Biol. 60(1), 153–167 (1974).
    [CrossRef] [PubMed]
  21. S. Saxena and P. Caroni, “Mechanisms of axon degeneration: from development to disease,” Prog. Neurobiol. 83(3), 174–191 (2007).
    [CrossRef] [PubMed]
  22. K. J. De Vos, A. J. Grierson, S. Ackerley, and C. C. J. Miller, “Role of axonal transport in neurodegenerative diseases,” Annu. Rev. Neurosci. 31(1), 151–173 (2008).
    [CrossRef] [PubMed]
  23. K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc. 230(Pt 1), 70–75 (2008).
    [CrossRef] [PubMed]
  24. V. Petegnief, M. Font-Nieves, M. E. Martín, M. Salinas, and A. M. Planas, “Nitric oxide mediates NMDA-induced persistent inhibition of protein synthesis through dephosphorylation of eukaryotic initiation factor 4E-binding protein 1 and eukaryotic initiation factor 4G proteolysis,” Biochem. J. 411(3), 667–677 (2008).
    [CrossRef] [PubMed]
  25. O. Nadiarnykh and P. J. Campagnola, “Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing,” Opt. Express 17(7), 5794–5806 (2009).
    [CrossRef] [PubMed]
  26. A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002–044010 (2007).
    [CrossRef] [PubMed]
  27. I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
    [CrossRef] [PubMed]
  28. A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
    [CrossRef] [PubMed]

2009

2008

K. J. De Vos, A. J. Grierson, S. Ackerley, and C. C. J. Miller, “Role of axonal transport in neurodegenerative diseases,” Annu. Rev. Neurosci. 31(1), 151–173 (2008).
[CrossRef] [PubMed]

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc. 230(Pt 1), 70–75 (2008).
[CrossRef] [PubMed]

V. Petegnief, M. Font-Nieves, M. E. Martín, M. Salinas, and A. M. Planas, “Nitric oxide mediates NMDA-induced persistent inhibition of protein synthesis through dephosphorylation of eukaryotic initiation factor 4E-binding protein 1 and eukaryotic initiation factor 4G proteolysis,” Biochem. J. 411(3), 667–677 (2008).
[CrossRef] [PubMed]

A. Akhmanova and M. O. Steinmetz, “Tracking the ends: a dynamic protein network controls the fate of microtubule tips,” Nat. Rev. Mol. Cell Biol. 9(4), 309–322 (2008).
[CrossRef] [PubMed]

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[CrossRef] [PubMed]

W. H. Stoothoff, B. J. Bacskai, and B. T. Hyman, “Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons,” J. Biomed. Opt. 13(6), 064039 (2008).
[CrossRef]

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229(Pt 1), 32–38 (2008).
[CrossRef] [PubMed]

C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express 16(20), 16151–16165 (2008).
[CrossRef] [PubMed]

2007

F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15(19), 12286–12295 (2007).
[CrossRef] [PubMed]

A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002–044010 (2007).
[CrossRef] [PubMed]

S. Saxena and P. Caroni, “Mechanisms of axon degeneration: from development to disease,” Prog. Neurobiol. 83(3), 174–191 (2007).
[CrossRef] [PubMed]

2006

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[CrossRef]

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11(5), 054022–054028 (2006).
[CrossRef] [PubMed]

2005

G. Filippidis, C. Kouloumentas, G. Voglis, F. Zacharopoulou, T. G. Papazoglou, and N. Tavernarakis, “Imaging of Caenorhabditis elegans neurons by second-harmonic generation and two-photon excitation fluorescence,” J. Biomed. Opt. 10(2), 024015–024018 (2005).
[CrossRef] [PubMed]

2004

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

2003

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[CrossRef] [PubMed]

2002

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[CrossRef] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three – dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef]

1999

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77(6), 3341–3349 (1999).
[CrossRef] [PubMed]

1986

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[CrossRef] [PubMed]

1979

S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
[CrossRef]

1974

H. P. Erickson, “Microtubule surface lattice and subunit structure and observations on reassembly,” J. Cell Biol. 60(1), 153–167 (1974).
[CrossRef] [PubMed]

Ackerley, S.

K. J. De Vos, A. J. Grierson, S. Ackerley, and C. C. J. Miller, “Role of axonal transport in neurodegenerative diseases,” Annu. Rev. Neurosci. 31(1), 151–173 (2008).
[CrossRef] [PubMed]

Akhmanova, A.

A. Akhmanova and M. O. Steinmetz, “Tracking the ends: a dynamic protein network controls the fate of microtubule tips,” Nat. Rev. Mol. Cell Biol. 9(4), 309–322 (2008).
[CrossRef] [PubMed]

Alkilani, A.

Amat-Roldan, I.

S. Psilodimitrakopoulos, D. Artigas, G. Soria, I. Amat-Roldan, A. M. Planas, and P. Loza-Alvarez, “Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response,” Opt. Express 17(12), 10168–10176 (2009).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, S. Santos, I. Amat-Roldan, A. K. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001–014011 (2009).
[CrossRef] [PubMed]

Amat-Roldán, I.

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc. 230(Pt 1), 70–75 (2008).
[CrossRef] [PubMed]

Anisha Thayil, K. N.

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc. 230(Pt 1), 70–75 (2008).
[CrossRef] [PubMed]

Artigas, D.

S. Psilodimitrakopoulos, S. Santos, I. Amat-Roldan, A. K. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001–014011 (2009).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, D. Artigas, G. Soria, I. Amat-Roldan, A. M. Planas, and P. Loza-Alvarez, “Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response,” Opt. Express 17(12), 10168–10176 (2009).
[CrossRef] [PubMed]

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc. 230(Pt 1), 70–75 (2008).
[CrossRef] [PubMed]

Bacskai, B. J.

W. H. Stoothoff, B. J. Bacskai, and B. T. Hyman, “Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons,” J. Biomed. Opt. 13(6), 064039 (2008).
[CrossRef]

Baffet, G.

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229(Pt 1), 32–38 (2008).
[CrossRef] [PubMed]

Blanchard-Desce, M.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Boryskina, O. P.

Campagnola, P. J.

O. Nadiarnykh and P. J. Campagnola, “Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing,” Opt. Express 17(7), 5794–5806 (2009).
[CrossRef] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[CrossRef]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three – dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77(6), 3341–3349 (1999).
[CrossRef] [PubMed]

Caroni, P.

S. Saxena and P. Caroni, “Mechanisms of axon degeneration: from development to disease,” Prog. Neurobiol. 83(3), 174–191 (2007).
[CrossRef] [PubMed]

Celliers, P. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[CrossRef] [PubMed]

Chen, S. Y.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11(5), 054022–054028 (2006).
[CrossRef] [PubMed]

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Chen, Y. C.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11(5), 054022–054028 (2006).
[CrossRef] [PubMed]

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Chern, G. W.

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Chretien, D.

Chu, S. W.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11(5), 054022–054028 (2006).
[CrossRef] [PubMed]

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Cormack, I. G.

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc. 230(Pt 1), 70–75 (2008).
[CrossRef] [PubMed]

de Lange Davies, C.

A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002–044010 (2007).
[CrossRef] [PubMed]

De Vos, K. J.

K. J. De Vos, A. J. Grierson, S. Ackerley, and C. C. J. Miller, “Role of axonal transport in neurodegenerative diseases,” Annu. Rev. Neurosci. 31(1), 151–173 (2008).
[CrossRef] [PubMed]

Deutsch, M.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[CrossRef] [PubMed]

Dombeck, D. A.

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[CrossRef] [PubMed]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[CrossRef] [PubMed]

Duff, K.

Erickson, H. P.

H. P. Erickson, “Microtubule surface lattice and subunit structure and observations on reassembly,” J. Cell Biol. 60(1), 153–167 (1974).
[CrossRef] [PubMed]

Erikson, A.

A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002–044010 (2007).
[CrossRef] [PubMed]

Filippidis, G.

G. Filippidis, C. Kouloumentas, G. Voglis, F. Zacharopoulou, T. G. Papazoglou, and N. Tavernarakis, “Imaging of Caenorhabditis elegans neurons by second-harmonic generation and two-photon excitation fluorescence,” J. Biomed. Opt. 10(2), 024015–024018 (2005).
[CrossRef] [PubMed]

Fleury, V.

Font-Nieves, M.

V. Petegnief, M. Font-Nieves, M. E. Martín, M. Salinas, and A. M. Planas, “Nitric oxide mediates NMDA-induced persistent inhibition of protein synthesis through dephosphorylation of eukaryotic initiation factor 4E-binding protein 1 and eukaryotic initiation factor 4G proteolysis,” Biochem. J. 411(3), 667–677 (2008).
[CrossRef] [PubMed]

Freund, I.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[CrossRef] [PubMed]

S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
[CrossRef]

Gailhouste, L.

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229(Pt 1), 32–38 (2008).
[CrossRef] [PubMed]

Gouras, G. K.

Grierson, A. J.

K. J. De Vos, A. J. Grierson, S. Ackerley, and C. C. J. Miller, “Role of axonal transport in neurodegenerative diseases,” Annu. Rev. Neurosci. 31(1), 151–173 (2008).
[CrossRef] [PubMed]

Gualda, E. J.

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc. 230(Pt 1), 70–75 (2008).
[CrossRef] [PubMed]

Guilbert, T.

Heichette, C.

Hompland, T.

A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002–044010 (2007).
[CrossRef] [PubMed]

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three – dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef]

Hsieh, C. S.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11(5), 054022–054028 (2006).
[CrossRef] [PubMed]

Hu, C. H.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11(5), 054022–054028 (2006).
[CrossRef] [PubMed]

Hyman, B. T.

W. H. Stoothoff, B. J. Bacskai, and B. T. Hyman, “Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons,” J. Biomed. Opt. 13(6), 064039 (2008).
[CrossRef]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[CrossRef] [PubMed]

Ingelsson, M.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[CrossRef] [PubMed]

Kasischke, K. A.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[CrossRef] [PubMed]

Ko, C. Y.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11(5), 054022–054028 (2006).
[CrossRef] [PubMed]

Kouloumentas, C.

G. Filippidis, C. Kouloumentas, G. Voglis, F. Zacharopoulou, T. G. Papazoglou, and N. Tavernarakis, “Imaging of Caenorhabditis elegans neurons by second-harmonic generation and two-photon excitation fluorescence,” J. Biomed. Opt. 10(2), 024015–024018 (2005).
[CrossRef] [PubMed]

Kwan, A. C.

Le Grand, Y.

C. Odin, C. Heichette, D. Chretien, and Y. Le Grand, “Second harmonic microscopy of axonemes,” Opt. Express 17(11), 9235–9240 (2009).
[CrossRef] [PubMed]

C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express 16(20), 16151–16165 (2008).
[CrossRef] [PubMed]

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229(Pt 1), 32–38 (2008).
[CrossRef] [PubMed]

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Leray, A.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Leroy, L.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Lewis, A.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77(6), 3341–3349 (1999).
[CrossRef] [PubMed]

Lin, B. L.

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Lin, C. Y.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11(5), 054022–054028 (2006).
[CrossRef] [PubMed]

Lindgren, M.

A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002–044010 (2007).
[CrossRef] [PubMed]

Loew, L. M.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77(6), 3341–3349 (1999).
[CrossRef] [PubMed]

Loza-Alvarez, P.

S. Psilodimitrakopoulos, D. Artigas, G. Soria, I. Amat-Roldan, A. M. Planas, and P. Loza-Alvarez, “Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response,” Opt. Express 17(12), 10168–10176 (2009).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, S. Santos, I. Amat-Roldan, A. K. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001–014011 (2009).
[CrossRef] [PubMed]

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc. 230(Pt 1), 70–75 (2008).
[CrossRef] [PubMed]

Mallegol, T.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three – dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef]

Martín, M. E.

V. Petegnief, M. Font-Nieves, M. E. Martín, M. Salinas, and A. M. Planas, “Nitric oxide mediates NMDA-induced persistent inhibition of protein synthesis through dephosphorylation of eukaryotic initiation factor 4E-binding protein 1 and eukaryotic initiation factor 4G proteolysis,” Biochem. J. 411(3), 667–677 (2008).
[CrossRef] [PubMed]

Mathew, M.

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc. 230(Pt 1), 70–75 (2008).
[CrossRef] [PubMed]

Millard, A. C.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[CrossRef]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three – dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef]

Miller, C. C. J.

K. J. De Vos, A. J. Grierson, S. Ackerley, and C. C. J. Miller, “Role of axonal transport in neurodegenerative diseases,” Annu. Rev. Neurosci. 31(1), 151–173 (2008).
[CrossRef] [PubMed]

Mohler, W. A.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[CrossRef]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three – dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef]

Mongin, O.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Nadiarnykh, O.

Odin, C.

C. Odin, C. Heichette, D. Chretien, and Y. Le Grand, “Second harmonic microscopy of axonemes,” Opt. Express 17(11), 9235–9240 (2009).
[CrossRef] [PubMed]

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229(Pt 1), 32–38 (2008).
[CrossRef] [PubMed]

C. Odin, T. Guilbert, A. Alkilani, O. P. Boryskina, V. Fleury, and Y. Le Grand, “Collagen and myosin characterization by orientation field second harmonic microscopy,” Opt. Express 16(20), 16151–16165 (2008).
[CrossRef] [PubMed]

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Örtegren, J.

A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002–044010 (2007).
[CrossRef] [PubMed]

Papazoglou, T. G.

G. Filippidis, C. Kouloumentas, G. Voglis, F. Zacharopoulou, T. G. Papazoglou, and N. Tavernarakis, “Imaging of Caenorhabditis elegans neurons by second-harmonic generation and two-photon excitation fluorescence,” J. Biomed. Opt. 10(2), 024015–024018 (2005).
[CrossRef] [PubMed]

Petegnief, V.

V. Petegnief, M. Font-Nieves, M. E. Martín, M. Salinas, and A. M. Planas, “Nitric oxide mediates NMDA-induced persistent inhibition of protein synthesis through dephosphorylation of eukaryotic initiation factor 4E-binding protein 1 and eukaryotic initiation factor 4G proteolysis,” Biochem. J. 411(3), 667–677 (2008).
[CrossRef] [PubMed]

Planas, A. M.

S. Psilodimitrakopoulos, D. Artigas, G. Soria, I. Amat-Roldan, A. M. Planas, and P. Loza-Alvarez, “Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response,” Opt. Express 17(12), 10168–10176 (2009).
[CrossRef] [PubMed]

V. Petegnief, M. Font-Nieves, M. E. Martín, M. Salinas, and A. M. Planas, “Nitric oxide mediates NMDA-induced persistent inhibition of protein synthesis through dephosphorylation of eukaryotic initiation factor 4E-binding protein 1 and eukaryotic initiation factor 4G proteolysis,” Biochem. J. 411(3), 667–677 (2008).
[CrossRef] [PubMed]

Plotnikov, S. V.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[CrossRef]

Psilodimitrakopoulos, S.

S. Psilodimitrakopoulos, S. Santos, I. Amat-Roldan, A. K. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001–014011 (2009).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, D. Artigas, G. Soria, I. Amat-Roldan, A. M. Planas, and P. Loza-Alvarez, “Quantitative discrimination between endogenous SHG sources in mammalian tissue, based on their polarization response,” Opt. Express 17(12), 10168–10176 (2009).
[CrossRef] [PubMed]

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc. 230(Pt 1), 70–75 (2008).
[CrossRef] [PubMed]

Recher, G.

Reiser, K. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[CrossRef] [PubMed]

Renault, A.

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229(Pt 1), 32–38 (2008).
[CrossRef] [PubMed]

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Roth, S.

S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
[CrossRef]

Rouède, D.

F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15(19), 12286–12295 (2007).
[CrossRef] [PubMed]

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Rubenchik, A. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[CrossRef] [PubMed]

Salinas, M.

V. Petegnief, M. Font-Nieves, M. E. Martín, M. Salinas, and A. M. Planas, “Nitric oxide mediates NMDA-induced persistent inhibition of protein synthesis through dephosphorylation of eukaryotic initiation factor 4E-binding protein 1 and eukaryotic initiation factor 4G proteolysis,” Biochem. J. 411(3), 667–677 (2008).
[CrossRef] [PubMed]

Santos, S.

S. Psilodimitrakopoulos, S. Santos, I. Amat-Roldan, A. K. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001–014011 (2009).
[CrossRef] [PubMed]

Saxena, S.

S. Saxena and P. Caroni, “Mechanisms of axon degeneration: from development to disease,” Prog. Neurobiol. 83(3), 174–191 (2007).
[CrossRef] [PubMed]

Soria, G.

Sprecher, A.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[CrossRef] [PubMed]

Steinmetz, M. O.

A. Akhmanova and M. O. Steinmetz, “Tracking the ends: a dynamic protein network controls the fate of microtubule tips,” Nat. Rev. Mol. Cell Biol. 9(4), 309–322 (2008).
[CrossRef] [PubMed]

Stoller, P.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[CrossRef] [PubMed]

Stoothoff, W. H.

W. H. Stoothoff, B. J. Bacskai, and B. T. Hyman, “Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons,” J. Biomed. Opt. 13(6), 064039 (2008).
[CrossRef]

Sun, C. K.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11(5), 054022–054028 (2006).
[CrossRef] [PubMed]

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Tavernarakis, N.

G. Filippidis, C. Kouloumentas, G. Voglis, F. Zacharopoulou, T. G. Papazoglou, and N. Tavernarakis, “Imaging of Caenorhabditis elegans neurons by second-harmonic generation and two-photon excitation fluorescence,” J. Biomed. Opt. 10(2), 024015–024018 (2005).
[CrossRef] [PubMed]

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three – dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef]

Thayil, A. K.

S. Psilodimitrakopoulos, S. Santos, I. Amat-Roldan, A. K. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001–014011 (2009).
[CrossRef] [PubMed]

Tiaho, F.

Tsai, H. J.

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11(5), 054022–054028 (2006).
[CrossRef] [PubMed]

Tsai, T. H.

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Vié, V.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Vishwasrao, H. D.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[CrossRef] [PubMed]

Voglis, G.

G. Filippidis, C. Kouloumentas, G. Voglis, F. Zacharopoulou, T. G. Papazoglou, and N. Tavernarakis, “Imaging of Caenorhabditis elegans neurons by second-harmonic generation and two-photon excitation fluorescence,” J. Biomed. Opt. 10(2), 024015–024018 (2005).
[CrossRef] [PubMed]

Webb, W. W.

A. C. Kwan, K. Duff, G. K. Gouras, and W. W. Webb, “Optical visualization of Alzheimer’s pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation,” Opt. Express 17(5), 3679–3689 (2009).
[CrossRef] [PubMed]

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[CrossRef] [PubMed]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[CrossRef] [PubMed]

Wei, M. D.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77(6), 3341–3349 (1999).
[CrossRef] [PubMed]

Werts, M. H. V.

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Zacharopoulou, F.

G. Filippidis, C. Kouloumentas, G. Voglis, F. Zacharopoulou, T. G. Papazoglou, and N. Tavernarakis, “Imaging of Caenorhabditis elegans neurons by second-harmonic generation and two-photon excitation fluorescence,” J. Biomed. Opt. 10(2), 024015–024018 (2005).
[CrossRef] [PubMed]

Annu. Rev. Neurosci.

K. J. De Vos, A. J. Grierson, S. Ackerley, and C. C. J. Miller, “Role of axonal transport in neurodegenerative diseases,” Annu. Rev. Neurosci. 31(1), 151–173 (2008).
[CrossRef] [PubMed]

Biochem. J.

V. Petegnief, M. Font-Nieves, M. E. Martín, M. Salinas, and A. M. Planas, “Nitric oxide mediates NMDA-induced persistent inhibition of protein synthesis through dephosphorylation of eukaryotic initiation factor 4E-binding protein 1 and eukaryotic initiation factor 4G proteolysis,” Biochem. J. 411(3), 667–677 (2008).
[CrossRef] [PubMed]

Biophys. J.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50(4), 693–712 (1986).
[CrossRef] [PubMed]

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-modulated second harmonic generation in collagen,” Biophys. J. 82(6), 3330–3342 (2002).
[CrossRef] [PubMed]

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second harmonic generation from muscle sarcomeres,” Biophys. J. 90, 693–703 (2006).
[CrossRef]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three – dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002).
[CrossRef]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77(6), 3341–3349 (1999).
[CrossRef] [PubMed]

J. Biomed. Opt.

W. H. Stoothoff, B. J. Bacskai, and B. T. Hyman, “Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons,” J. Biomed. Opt. 13(6), 064039 (2008).
[CrossRef]

G. Filippidis, C. Kouloumentas, G. Voglis, F. Zacharopoulou, T. G. Papazoglou, and N. Tavernarakis, “Imaging of Caenorhabditis elegans neurons by second-harmonic generation and two-photon excitation fluorescence,” J. Biomed. Opt. 10(2), 024015–024018 (2005).
[CrossRef] [PubMed]

S. Y. Chen, C. S. Hsieh, S. W. Chu, C. Y. Lin, C. Y. Ko, Y. C. Chen, H. J. Tsai, C. H. Hu, and C. K. Sun, “Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo,” J. Biomed. Opt. 11(5), 054022–054028 (2006).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, S. Santos, I. Amat-Roldan, A. K. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001–014011 (2009).
[CrossRef] [PubMed]

A. Erikson, J. Örtegren, T. Hompland, C. de Lange Davies, and M. Lindgren, “Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope,” J. Biomed. Opt. 12(4), 044002–044010 (2007).
[CrossRef] [PubMed]

J. Cell Biol.

H. P. Erickson, “Microtubule surface lattice and subunit structure and observations on reassembly,” J. Cell Biol. 60(1), 153–167 (1974).
[CrossRef] [PubMed]

J. Chem. Phys.

S. Roth and I. Freund, “Second harmonic generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979).
[CrossRef]

J. Microsc.

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229(Pt 1), 32–38 (2008).
[CrossRef] [PubMed]

K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc. 230(Pt 1), 70–75 (2008).
[CrossRef] [PubMed]

Langmuir

A. Leray, L. Leroy, Y. Le Grand, C. Odin, A. Renault, V. Vié, D. Rouède, T. Mallegol, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, “Organization and orientation of amphiphilic push-pull chromophores deposited in Langmuir-Blodgett monolayers studied by second harmonic generation and atomic force microscopy,” Langmuir 20(19), 8165–8171 (2004).
[CrossRef] [PubMed]

Nat. Rev. Mol. Cell Biol.

A. Akhmanova and M. O. Steinmetz, “Tracking the ends: a dynamic protein network controls the fate of microtubule tips,” Nat. Rev. Mol. Cell Biol. 9(4), 309–322 (2008).
[CrossRef] [PubMed]

Opt. Express

Proc. Natl. Acad. Sci. U.S.A.

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[CrossRef] [PubMed]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[CrossRef] [PubMed]

Prog. Neurobiol.

S. Saxena and P. Caroni, “Mechanisms of axon degeneration: from development to disease,” Prog. Neurobiol. 83(3), 174–191 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Block diagram of the experimental optical setup.

Fig. 2.
Fig. 2.

Coordinates system of the theoretical model.

Fig. 3.
Fig. 3.

Polarization dependent SHG imaging microscopy of cultured primary cortical neurons. The incoming linear polarization is rotating clockwise between 0° - 160°, in steps of 20°. Arrows indicate the incoming polarization. Scale bar (on the right bottom corner of each panel) represents 10μm.

Fig. 4.
Fig. 4.

(a) Resulting image of the b parameter for those pixels with r2>90% (scale bar is 10μm). (b)-(e) Histograms of the different parameters (within the same ROI of Fig. 4(a)) for b, E, δ and φ, respectively. The red line in each figure is a Gaussian fit to each of the histograms. (f) Examples of the fit of three different pixels. The retrieved parameters are: light grey line b=4.43, E=0.05, φ=2.64, δ=0; green dashed-line b=2.46, E=0.17, φ=7.44, δ=0; blue line b=7.77, E=0.02, φ=0, δ=0.09.

Tables (1)

Tables Icon

Table 1. The values of the parameters θe δ, b, E, φ, of Eq. (3) The different values are the mean, and the standard deviation (2σ) of a Gaussian distribution fit for the obtained histograms with pixels with r2>90% in the ROI indicated in Fig. 4(a).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

χijk(2)~[0000d150000d2400d31d32d33000].
ISHG~{[sin2(αφ)]2+[sin2(αφ)+d33/d15cos2(αφ)]2} .
cos2θe=d33/d152+d33/d15.
I2ω=E{sin22(φα)+[sin2(φα)+bcos2(φα)]2}+δ ,

Metrics