Abstract

We propose a simple method to correct a large amount of spherical aberration caused by a refractive index mismatch. The method is based on inverse ray tracing and can generate correction phase patterns whose peak-to-valley values are minimized. We also demonstrated spherical aberration correction in a transparent acrylic block using a liquid-crystal-on-silicon spatial light modulator (LCOS-SLM). A distorted focal volume without correction was substantially improved with correction. This method is useful in cases where a large phase modulation is needed, such as when employing a high-NA lens or focusing a beam deep inside a sample.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Booth and T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Microsc. 200(Pt 1), 68–74 (2000).
    [CrossRef] [PubMed]
  2. Y. Roichman, A. Waldron, E. Gardel, and D. G. Grier, “Optical traps with geometric aberrations,” Appl. Opt. 45(15), 3425–3429 (2006).
    [CrossRef] [PubMed]
  3. M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
    [CrossRef]
  4. S. Taccheo, G. Della Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29(22), 2626–2628 (2004).
    [CrossRef] [PubMed]
  5. J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113–183115 (2006).
    [CrossRef]
  6. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
    [CrossRef]
  7. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30(4), 352–354 (2005).
    [CrossRef] [PubMed]
  8. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24(18), 1311–1313 (1999).
    [CrossRef]
  9. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26(1), 42–43 (2001).
    [CrossRef]
  10. E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1-3), 145–150 (2004).
    [CrossRef]
  11. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-8-5481 .
    [CrossRef] [PubMed]
  12. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(Pt 1), 65–71 (2002).
    [CrossRef] [PubMed]
  13. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192(2), 90–98 (1998).
    [CrossRef]
  14. T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
    [CrossRef]

2008

2007

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[CrossRef]

2006

Y. Roichman, A. Waldron, E. Gardel, and D. G. Grier, “Optical traps with geometric aberrations,” Appl. Opt. 45(15), 3425–3429 (2006).
[CrossRef] [PubMed]

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113–183115 (2006).
[CrossRef]

2005

2004

2002

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(Pt 1), 65–71 (2002).
[CrossRef] [PubMed]

2001

2000

M. J. Booth and T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Microsc. 200(Pt 1), 68–74 (2000).
[CrossRef] [PubMed]

1999

1998

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

1997

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[CrossRef]

Albert, O.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(Pt 1), 65–71 (2002).
[CrossRef] [PubMed]

Arlt, J.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1-3), 145–150 (2004).
[CrossRef]

Audouard, E.

Booth, M. J.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

M. J. Booth and T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Microsc. 200(Pt 1), 68–74 (2000).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

Borrelli, N. F.

Cerullo, G.

Chiodo, N.

Della Valle, G.

Fukuchi, N.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[CrossRef]

Gaeta, A. L.

Gardel, E.

Grier, D. G.

Hara, T.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[CrossRef]

Hirao, K.

N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30(4), 352–354 (2005).
[CrossRef] [PubMed]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[CrossRef]

Homoelle, D.

Hossack, W. J.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1-3), 145–150 (2004).
[CrossRef]

Huot, N.

Igasaki, Y.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[CrossRef]

Inoue, T.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[CrossRef]

Inouye, H.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[CrossRef]

Kawata, Y.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

Killi, A.

Kobayashi, Y.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[CrossRef]

Kopf, D.

Kuroiwa, Y.

Laporta, P.

Lederer, M.

Matsumoto, N.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[CrossRef]

Mauclair, C.

McDonald, J. P.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113–183115 (2006).
[CrossRef]

Mermillod-Blondin, A.

Mistry, V. R.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113–183115 (2006).
[CrossRef]

Mitsuyu, T.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[CrossRef]

Miura, K.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[CrossRef]

Miyata, S.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

Morgner, U.

Nakabayashi, M.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

Nakano, M.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

Narita, Y.

Neil, M. A. A.

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

Norris, T. B.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(Pt 1), 65–71 (2002).
[CrossRef] [PubMed]

Osellame, R.

Qiu, J.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[CrossRef]

Ray, K. E.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113–183115 (2006).
[CrossRef]

Roichman, Y.

Schwertner, M.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

Sherman, L.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(Pt 1), 65–71 (2002).
[CrossRef] [PubMed]

Smith, C.

Stoian, R.

Streltsov, A. M.

Svelto, O.

Taccheo, S.

Takeshima, N.

Takumi, M.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[CrossRef]

Tanaka, H.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[CrossRef]

Tanaka, S.

Theofanidou, E.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1-3), 145–150 (2004).
[CrossRef]

Waldron, A.

Wielandy, S.

Wilson, L.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1-3), 145–150 (2004).
[CrossRef]

Wilson, T.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

M. J. Booth and T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Microsc. 200(Pt 1), 68–74 (2000).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

Yalisove, S. M.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113–183115 (2006).
[CrossRef]

Ye, J. Y.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(Pt 1), 65–71 (2002).
[CrossRef] [PubMed]

Yoshida, N.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88(3), 031109 (2006).
[CrossRef]

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113–183115 (2006).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[CrossRef]

J. Microsc.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(Pt 1), 65–71 (2002).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

M. J. Booth and T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Microsc. 200(Pt 1), 68–74 (2000).
[CrossRef] [PubMed]

Opt. Commun.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1-3), 145–150 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE 6487, 64870Y (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Focusing geometry showing the refraction of rays at the interface between two media of different refractive indexes.

Fig. 2.
Fig. 2.

Schematic of the experimental system: LD, Laser Diode; L1, achromatic lens; PM, prism mirror; SLM, LCOS-SLM; L1, L2, plano-convex lenses; M, dielectric mirror; OL1, OL2, microscope objectives; ACR, acrylic block; ET, extension tube; EXT, extender; CCD, charge-coupled device.

Fig. 3.
Fig. 3.

Observed side views of focal spots without correction when (a) d’ = 100 μm, (b) d’ = 500 μm, and (c) d’ = 1000 μm. The intensities are normalized and the observed areas shown are 60 μm × 60 μm. Axial cross-sections at the center are overlaid.

Fig. 4.
Fig. 4.

Observed side views of focal spots with correction when (a) d’ = 100 μm, (b) d’ = 500 μm, and (c) d’ = 1000 μm using our method. The intensities are normalized and the observation areas shown are 60 μm × 60 μm. Axial cross-sections at the center are overlaid.

Fig. 5.
Fig. 5.

Pre-distortion patterns displayed on the SLM (top) and their profiles (bottom) for (a) d’ = 100 μm, (b) d’ = 500 μm, and (c) d’ = 1000 μm.

Fig. 6.
Fig. 6.

Profiles of pre-distortion patterns generated by our approach and the conventional method for a focus depth of 1 mm.

Fig. 7.
Fig. 7.

Observed side views of focal spots with correction when (a) d’ = 100 μm, (b) d’ = 500 μm, and (c) d’ = 1000 μm using the conventional method. The intensities are normalized and the observation areas shown are 60 μm × 60 μm. Axial cross-sections at the center are also overlaid.

Fig. 8.
Fig. 8.

The measured focus depths in cases where aberration was corrected by our method (solid line) and the conventional method (dashed line).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Φ(θ)=n1×AB¯ +n2×BO¯
=n1×(f×cosθd)cosθ1+n2×dcosθ2,
h1=(f×cosθd)×tanθ1,
h1=d×tan{sin1(n1n2sinθ1)},
h=h1+h2=f×sinθ.
θ=θ1+sin1 {(cosθ1f)×(dn1sinθ1n22n12sin2θ1d×tanθ1)} .

Metrics