Abstract

We propose a design that increases significantly the absorption of a thin layer of absorbing material such as amorphous silicon. This is achieved by patterning a one-dimensional photonic crystal (1DPC) in this layer. Indeed, by coupling the incident light into slow Bloch modes of the 1DPC, we can control the photon lifetime and then, enhance the absorption integrated over the whole solar spectrum. Optimal parameters of the 1DPC maximize the integrated absorption in the wavelength range of interest, up to 45% in both S and P polarization states instead of 33% for the unpatterned, 100 nm thick amorphous silicon layer. Moreover, the absorption is tolerant with respect to fabrication errors, and remains relatively stable if the angle of incidence is changed.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micrograph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
    [CrossRef]
  2. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16986 .
    [CrossRef] [PubMed]
  3. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
    [CrossRef]
  4. D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
    [CrossRef]
  5. C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
    [CrossRef]
  6. Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16(11), 7969–7975 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-7969 .
    [CrossRef] [PubMed]
  7. D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 090609114259053 (2009), doi:.
    [CrossRef] [PubMed]
  8. N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
    [CrossRef]
  9. B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
    [CrossRef]
  10. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5661 .
    [CrossRef] [PubMed]
  11. S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” Photon. Technol. Lett. 18(7), 835–837 (2006).
    [CrossRef]
  12. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [CrossRef]
  13. http://camfr.sourceforge.net/
  14. A. Fontcuberta i Morral, P. Roca i Cabarrocas, and C. Clero, “Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements,” Phys. Rev. B 69(12), 125307 (2004).
    [CrossRef]
  15. M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607 (1995).
    [CrossRef]
  16. X. Letartre, J. Mouette, J. L. Leclercq, P. R. Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystals and MOEMS structures,” J. Lightwave Technol. 21(7), 1691–1699 (2003).
    [CrossRef]

2009 (1)

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 090609114259053 (2009), doi:.
[CrossRef] [PubMed]

2008 (5)

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16(11), 7969–7975 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-7969 .
[CrossRef] [PubMed]

2007 (1)

2006 (2)

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

2004 (3)

A. Fontcuberta i Morral, P. Roca i Cabarrocas, and C. Clero, “Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements,” Phys. Rev. B 69(12), 125307 (2004).
[CrossRef]

J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micrograph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
[CrossRef]

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5661 .
[CrossRef] [PubMed]

2003 (1)

1995 (1)

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607 (1995).
[CrossRef]

1981 (1)

Bakir, B. B.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Ben Bakir, B.

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

Bermel, P.

Boutami, S.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Chang, J.-Y.

Clero, C.

A. Fontcuberta i Morral, P. Roca i Cabarrocas, and C. Clero, “Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements,” Phys. Rev. B 69(12), 125307 (2004).
[CrossRef]

Derkacs, D.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

Desimone, J. M.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 090609114259053 (2009), doi:.
[CrossRef] [PubMed]

Di Cioccio, L.

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

Ding, Y.

Drouard, E.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Duché, D.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

Escoubas, L.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

Fave, A.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Fedeli, J. M.

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

Flory, F.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

Fontcuberta i Morral, A.

A. Fontcuberta i Morral, P. Roca i Cabarrocas, and C. Clero, “Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements,” Phys. Rev. B 69(12), 125307 (2004).
[CrossRef]

Fourmond, E.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Garrigues, M.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Gaylord, T. K.

Graf, U.

J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micrograph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
[CrossRef]

Hattori, H.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Holmes, R. J.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Huang, C.-F.

Joannopoulos, J. D.

Kaminski, A.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Kimerling, L. C.

Ko, D.-H.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 090609114259053 (2009), doi:.
[CrossRef] [PubMed]

Kroll, U.

J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micrograph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
[CrossRef]

Leclercq, J. L.

Leclercq, J.-L.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Lee, Y.-C.

Lemiti, M.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Letartre, X.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

X. Letartre, J. Mouette, J. L. Leclercq, P. R. Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystals and MOEMS structures,” J. Lightwave Technol. 21(7), 1691–1699 (2003).
[CrossRef]

Lim, S. H.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

Lindquist, N. C.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Lopez, R.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 090609114259053 (2009), doi:.
[CrossRef] [PubMed]

Luhman, W. A.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Luo, C.

Magnusson, R.

Matheu, P.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

McPheeters, C.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

Meier, J.

J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micrograph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
[CrossRef]

Moharam, M. G.

Mouette, J.

Oh, S.-H.

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

Park, Y.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Roca i Cabarrocas, P.

A. Fontcuberta i Morral, P. Roca i Cabarrocas, and C. Clero, “Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements,” Phys. Rev. B 69(12), 125307 (2004).
[CrossRef]

Rojo-Rome, P.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Romeo, P. R.

Samulski, E. T.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 090609114259053 (2009), doi:.
[CrossRef] [PubMed]

Seassal, C.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

X. Letartre, J. Mouette, J. L. Leclercq, P. R. Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystals and MOEMS structures,” J. Lightwave Technol. 21(7), 1691–1699 (2003).
[CrossRef]

Shah, A.

J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micrograph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
[CrossRef]

Simon, J.-J.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

Spitznagel, J.

J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micrograph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
[CrossRef]

Strite, S.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607 (1995).
[CrossRef]

Torchio, P.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

Tumbleston, J. R.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 090609114259053 (2009), doi:.
[CrossRef] [PubMed]

Ünlü, M. S.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607 (1995).
[CrossRef]

Vallat-Sauvain, E.

J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micrograph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
[CrossRef]

Vervisch, W.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

Viktorovitch, P.

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

X. Letartre, J. Mouette, J. L. Leclercq, P. R. Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystals and MOEMS structures,” J. Lightwave Technol. 21(7), 1691–1699 (2003).
[CrossRef]

Williams, S.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 090609114259053 (2009), doi:.
[CrossRef] [PubMed]

Wu, M.-L.

Yu, E. T.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

Zeng, L.

Zhang, L.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 090609114259053 (2009), doi:.
[CrossRef] [PubMed]

Zussy, M.

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93(11), 113108 (2008).
[CrossRef]

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92(19), 193310 (2008).
[CrossRef]

N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93(12), 123308 (2008).
[CrossRef]

B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88(8), 081113 (2006).
[CrossRef]

J. Appl. Phys. (1)

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607 (1995).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Nano Lett. (1)

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. Desimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 090609114259053 (2009), doi:.
[CrossRef] [PubMed]

Opt. Express (3)

Photon. Technol. Lett. (1)

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence,” Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Phys. Rev. B (1)

A. Fontcuberta i Morral, P. Roca i Cabarrocas, and C. Clero, “Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements,” Phys. Rev. B 69(12), 125307 (2004).
[CrossRef]

Proc. SPIE (1)

C. Seassal, Y. Park, A. Fave, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre, and P. Viktorovitch, “Photonic crystal assisted ultra-thin silicon photovoltaic solar cell,” Proc. SPIE 7002, 700207 (2008).
[CrossRef]

Sol. Energy (1)

J. Meier, U. Kroll, E. Vallat-Sauvain, J. Spitznagel, U. Graf, and A. Shah, “Amorphous solar cells, the micrograph concept and the role of VHF-GD deposition technique,” Sol. Energy 77(6), 983–993 (2004).
[CrossRef]

Other (1)

http://camfr.sourceforge.net/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

General Scheme of the 1D Photonic Crystal Structure to increase the absorption

Fig. 2.
Fig. 2.

Refractive index n and extinction coefficient k of the absorbing material in the visible range, measured by ellipsometry on an amorphous silicon layer.

Fig. 3.
Fig. 3.

1D PC made of high index non absorbing material: reflectance plotted as a function of k and a/λ (a), reflectance at normal incidence (b) and electric field intensity map of a 6 PC unit cells, at the wavelength 555 nm; the a-Si rods section corresponds to the white border rectangles (c).

Fig. 4.
Fig. 4.

1D PC made of high index absorbing material: absorption plotted as a function of k and a/λ (a), absorption and reflection at normal incidence for the PC structure (b), the unpatterned layer (c) and a layer where the optical indices are mean values between a-Si and air (d). The electric field intensity map of a 6 PC unit cells, at the wavelength 547 nm, is also plotted (e); the section the unit a-Si rod corresponds to the white border rectangle.

Fig. 5.
Fig. 5.

Spectral absorption (a) and reflectance (b) of the 1DPC maximizing the integrated absorption and minimizing the sensitivity of the integrated absorption to the polarization state of the incident light.

Fig. 6.
Fig. 6.

Angle dependence of integrated absorption in 1D PC and slab

Fig. 7.
Fig. 7.

Contour map of integrated absorption in x-axis of lattice constant (L) and y-axis of material filling factor (ff)

Fig. 8.
Fig. 8.

Targeted configuration of a PV solar cell structure, including an a-Si PC, as well as contact and passivation layers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q0=2πnαλ

Metrics