Abstract

A simple scheme is proposed to generate a N-qubit W state of spatially separated single molecule magnets (SMM) in a cavity-fiber-cavity system. In the present scheme, the framework consisting of entangled qubits can be expediently designed according to our needs. By quantitatively discussing the case of N=4, we show that the effects of SMM’s spontaneous decay and photon leakage out of fiber can be suppressed in our scheme due to the presence of virtual excited processes in SMM and fiber modes. Moreover, we also show that the present scheme is robust with respect to some deviations of experimental parameters, and as a result, the present investigation provides a research clue for realizing multi-partite entanglement between distant SMMs solid-state nanostructures, which may result in a substantial impact on the progress of multi-node quantum information network.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, U.K., 2000)
  2. C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature (London) 404, 247–255 (2000).
    [Crossref]
  3. D.P. DiVincenzo, “Quantum Computation,” Science 270, 255–261 (1995).
    [Crossref]
  4. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
    [Crossref]
  5. Hiroki Takesue, “Long-distance distribution of time-bin entanglement generated in a cooled fiber,” Optics Express,  14, 3453–3460 (2006).
    [Crossref] [PubMed]
  6. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [Crossref] [PubMed]
  7. A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional Quantum Dynamics and Logic Gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
    [Crossref] [PubMed]
  8. W.-X. Yang, Z.-M. Zhan, and J.-H. Li, “Efficient scheme for multipartite entanglement and quantum information processing with trapped ions,” Phys. Rev. A 72, 062108(1-6) (2005).
    [Crossref]
  9. I. L. Chuang and Y. Yamamoto, “Simple quantum computer,” Phys. Rev. A 52, 3489–3496 (1995).
    [Crossref] [PubMed]
  10. A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998).
    [Crossref]
  11. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
    [Crossref]
  12. G. A. Durkin, C. Simon, and D. Bouwmeester, “Multiphoton Entanglement Concentration and Quantum Cryptography,” Phys. Rev. Lett. 88, 187902(1-4) (2002).
    [Crossref] [PubMed]
  13. N. Gisin and S. Massar, “Optimal Quantum Cloning Machines,” Phys. Rev. Lett. 79, 2153–2156 (1997).
    [Crossref]
  14. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
    [Crossref]
  15. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314(1-12) (2000).
    [Crossref]
  16. M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental Realization of a Three-Qubit Entangled W State,” Phys. Rev. Lett. 92, 077901(1-4) (2004).
    [Crossref] [PubMed]
  17. H. J. Briegel and R. Raussendorf, “Persistent Entanglement in Arrays of Interacting Particles,” Phys. Rev. Lett. 86, 910–913 (2001).
    [Crossref] [PubMed]
  18. J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London)  403, 515–519 (2000);D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
    [Crossref] [PubMed]
  19. R. J. Nelson, D. G. Cory, and S. Lloyd, “Experimental demonstration of Greenberger-Horne-Zeilinger correlations using nuclear magnetic resonance,” Phys. Rev. A 61, 022106(1-5) (2000).
    [Crossref]
  20. X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A 68, 024302(1-4) (2003).
    [Crossref]
  21. C. Yu, X. X. Yi, H. Song, and D. Mei, “Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301(1-4) (2007).
    [Crossref]
  22. D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger-Horne-Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312(1-13) (2008).
    [Crossref]
  23. T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, “Polarization-entangled W state using parametric downconversion,” Phys. Rev. A 66, 064301(1-4) (2002).
    [Crossref]
  24. M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental Realization of a Three-Qubit Entangled W State,” Phys. Rev. Lett. 92, 077901(1-4) (2004).
    [Crossref] [PubMed]
  25. H. Mikami, Y. Li, and T. Kobayashi, “Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion,” Phys. Rev. A 70, 052308(1-7) (2004).
    [Crossref]
  26. G.-C. Guo and Y.-S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302(1-3) (2002).
    [Crossref]
  27. B. Yu, Z.-W. Zhou, and G.-C. Guo, “The generation of multi-atom entanglement via the detection of cavity decay,” J. Opt. B: Quantum Semiclass. Opt. 6, 86–90 (2004).
    [Crossref]
  28. Y.-F. Xiao, Z.-F. Han, J. Gao, and G.-C. Guo, “Generation of multi-atom Dicke states through the detection of cavity decay,” J. Phys. B: At. Mol. Opt. Phys. 39, 485–491 (2006).
    [Crossref]
  29. Y.-F. Xiao, X.-B. Zou, and G.-C. Guo, “Generation of atomic entangled states with selective resonant interaction in cavity quantum electrodynamics,” Phys. Rev. A 75, 012310(1-5) (2007).
    [Crossref]
  30. N. Kiesel, C. Schmid, U. Weber, G. Tóth, O. Gühne, R. Ursin, and H. Weinfurter, “Experimental Analysis of a Four-Qubit Photon Cluster State,” Phys. Rev. Lett. 95, 210502(1-4) (2005).
    [Crossref] [PubMed]
  31. X. L. Zhang, K. L. Gao, and M. Feng, “Efficient and high-fidelity generation of atomic cluster states with cavity QED and linear optics,” Phys. Rev. A 75, 034308(1-4) (2007).
    [Crossref]
  32. Y.-K. Bai and Z. D. Wang, “Multipartite entanglement in four-qubit cluster-class states,” Phys. Rev. A 77, 032313(1-6) (2008).
    [Crossref]
  33. M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, “Experimental generation of four-mode continuous-variable cluster states,” Phys. Rev. A 78, 012301(1-6) (2008).
    [Crossref]
  34. Z.-R. Lin, G.-P. Guo, T. Tu, F.-Y. Zhu, and G.-C. Guo, “Generation of Quantum-Dot Cluster States with a Superconducting Transmission Line Resonator,” Phys. Rev. Lett. 101, 230501(1-4) (2008).
    [Crossref] [PubMed]
  35. Gao-xiang Li, S. Ke, and Z. Ficek, “Generation of pure continuous-variable entangled cluster states of four separate atomic ensembles in a ring cavity,” Phys. Rev. A 79, 033827(1-9) (2009).
    [Crossref]
  36. C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and Measurement of Three-Qubit Entangled States,” Science 304, 1478–1480 (2004).
    [Crossref] [PubMed]
  37. C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, and C. M. D. J. Wineland, “Experimental entanglement of four particles,” Nature (London)  404, 256–259 (2000).
    [Crossref] [PubMed]
  38. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.-M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
    [Crossref] [PubMed]
  39. F. Bodoky and M. Blaauboer, “Production of multipartite entanglement for electron spins in quantum dots,” Phys. Rev. A 76, 052309(1-7) (2007).
    [Crossref]
  40. L.-M. Duan and H. J. Kimble, “Efficient Engineering of Multiatom Entanglement through Single-Photon Detections,” Phys. Rev. Lett. 90, 253601(1-4) (2003).
    [Crossref] [PubMed]
  41. R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature (London)  365141–143 (1993).
    [Crossref]
  42. L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature (London)  383145–147 (1996).
    [Crossref]
  43. K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation,” Phys. Rev. B 75064408(1-12) (2007).
    [Crossref]
  44. M. Misiorny and J. Barna, “Magnetic switching of a single molecular magnet due to spin-polarized current,” Phys. Rev. B,  75134425(1-5) (2007).
    [Crossref]
  45. W. Wernsdorfer and R. Sessoli, “Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters,” Science 284133–135 (1999).
    [Crossref] [PubMed]
  46. M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature (London)  410789–793 (2001).
    [Crossref] [PubMed]
  47. A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromag- netically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74054416(1-6) (2006).
    [Crossref]
  48. X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75184423(1-6) (2007).
    [Crossref]
  49. Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76054425(1-6) (2007).
    [Crossref]
  50. Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91094104(1-3) (2007).
    [Crossref]
  51. X.-Y. Lü, Ji-Bing Liu, Yü Tian, Pei-Jun Song, and Zhi-Ming Zhan, “Single molecular magnets as a source of continuous-variable entanglement,” Europhys. Lett. 8264003(1-6) (2008).
    [Crossref]
  52. S. Mancini and S. Bose, “Distributed Quantum Computation via Optical Fibers,” Phys. Rev. A 70, 022307(1-4) (2004).
    [Crossref]
  53. L.-B. Chen, M.-Y. Ye, G.-W. Lin, Q.-H. Du, and X.-M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76062304(1-7) (2007).
    [Crossref]
  54. P. Peng and F.-L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A,  75, 062320(1-7) (2007).
    [Crossref]
  55. S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A,  77, 014303(1-4) (2008).
    [Crossref]
  56. X.-Y. Lü, J.-B. Liu, C.-L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A,  78, 032305(1-6) (2008);X.-Y. Lü, L.-G. Si, M. Wang, S.-Z. Zhang, and X. Yang, “Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction,” J. Phys. B: At. Mol. Opt. Phys. 41, 235502(1-6) (2008).
    [Crossref]
  57. Z. Yin and F. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324(1-11) (2007).
    [Crossref]
  58. Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67013811(1-5) (2003).
    [Crossref]
  59. Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Optics Letters 29, 1144–1146 (2004).
    [Crossref] [PubMed]
  60. Y. Wu and X. Yang, “Carrier-envelope phase-dependent atomic coherence and quantum beats,” Phys. Rev. A 76013832(1-4) (2007).
    [Crossref]
  61. Y. Wu and X. Yang, “Strong-Coupling Theory of Periodically Driven Two-Level Systems,” Phys. Rev. lett. 98013601(1-4) (2007).
    [Crossref] [PubMed]
  62. C. W. Gardiner, Quantum Noise (Springer-Verlag, Berlin, 1991).
  63. T. Pellizzari, “Quantum Networking with Optical Fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
    [Crossref]
  64. Y. Wu, “Effective Raman theory for a three-level atom in the configuration,” Phys. Rev. A 54, 1586–1592 (1996).
    [Crossref] [PubMed]
  65. Y. Wu and P. T. Leung, “Lasing threshold for whispering-gallery-mode microsphere lasers,” Phys. Rev. A 60, 630–633 (1999).
    [Crossref]
  66. J. M. Raimond, M. Brune, and S. Haroche,“Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.,  73565–582 (2001).
    [Crossref]
  67. K. J. Vahala,“Optical microcavities,” Nature,  424839–846 (2003).
    [Crossref] [PubMed]
  68. B. Min, L. Yang, and K. Vahala, “controlled transition between parameteric and Raman oscillations in ultrahigh- Q silica toroidal microcavities,” Appl. Phys. Lett. 87181109(1-3) (2005).
    [Crossref]
  69. M. Hossein-Zadeh and K. Vahala, “Free ultra-high-Q microtoroid: a tool for designing photonic devices,” Optics Express 15166–175 (2007).
    [Crossref] [PubMed]
  70. D. W. Vernooy and H. J. Kimble, “Quantum structure and dynamics for atom galleries,” Phys. Rev. A 551239 (1997).
    [Crossref]
  71. Y.-F. Xiao, Z.-F. Han, and G.-C. Guo, “Quantum computation without strict strong coupling on a silicon chip,” Phys. Rev. A 551239 (1997).
  72. P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108(1-3) (2006).
    [Crossref]
  73. P.-B. Li, Y. Gu, Q.-H. Gong, and G.-C. Guo, “Quantum-information transfer in a coupled resonator waveguide,” Phys. Rev. A 79, 042339(1-4) (2009).
    [Crossref]
  74. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91, 043902(1-4) (2003).
    [Crossref] [PubMed]

2009 (2)

Gao-xiang Li, S. Ke, and Z. Ficek, “Generation of pure continuous-variable entangled cluster states of four separate atomic ensembles in a ring cavity,” Phys. Rev. A 79, 033827(1-9) (2009).
[Crossref]

P.-B. Li, Y. Gu, Q.-H. Gong, and G.-C. Guo, “Quantum-information transfer in a coupled resonator waveguide,” Phys. Rev. A 79, 042339(1-4) (2009).
[Crossref]

2008 (7)

Y.-K. Bai and Z. D. Wang, “Multipartite entanglement in four-qubit cluster-class states,” Phys. Rev. A 77, 032313(1-6) (2008).
[Crossref]

M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, “Experimental generation of four-mode continuous-variable cluster states,” Phys. Rev. A 78, 012301(1-6) (2008).
[Crossref]

Z.-R. Lin, G.-P. Guo, T. Tu, F.-Y. Zhu, and G.-C. Guo, “Generation of Quantum-Dot Cluster States with a Superconducting Transmission Line Resonator,” Phys. Rev. Lett. 101, 230501(1-4) (2008).
[Crossref] [PubMed]

X.-Y. Lü, Ji-Bing Liu, Yü Tian, Pei-Jun Song, and Zhi-Ming Zhan, “Single molecular magnets as a source of continuous-variable entanglement,” Europhys. Lett. 8264003(1-6) (2008).
[Crossref]

S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A,  77, 014303(1-4) (2008).
[Crossref]

X.-Y. Lü, J.-B. Liu, C.-L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A,  78, 032305(1-6) (2008);X.-Y. Lü, L.-G. Si, M. Wang, S.-Z. Zhang, and X. Yang, “Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction,” J. Phys. B: At. Mol. Opt. Phys. 41, 235502(1-6) (2008).
[Crossref]

D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger-Horne-Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312(1-13) (2008).
[Crossref]

2007 (15)

C. Yu, X. X. Yi, H. Song, and D. Mei, “Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301(1-4) (2007).
[Crossref]

Y.-F. Xiao, X.-B. Zou, and G.-C. Guo, “Generation of atomic entangled states with selective resonant interaction in cavity quantum electrodynamics,” Phys. Rev. A 75, 012310(1-5) (2007).
[Crossref]

X. L. Zhang, K. L. Gao, and M. Feng, “Efficient and high-fidelity generation of atomic cluster states with cavity QED and linear optics,” Phys. Rev. A 75, 034308(1-4) (2007).
[Crossref]

Z. Yin and F. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324(1-11) (2007).
[Crossref]

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75184423(1-6) (2007).
[Crossref]

Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76054425(1-6) (2007).
[Crossref]

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91094104(1-3) (2007).
[Crossref]

F. Bodoky and M. Blaauboer, “Production of multipartite entanglement for electron spins in quantum dots,” Phys. Rev. A 76, 052309(1-7) (2007).
[Crossref]

K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation,” Phys. Rev. B 75064408(1-12) (2007).
[Crossref]

M. Misiorny and J. Barna, “Magnetic switching of a single molecular magnet due to spin-polarized current,” Phys. Rev. B,  75134425(1-5) (2007).
[Crossref]

M. Hossein-Zadeh and K. Vahala, “Free ultra-high-Q microtoroid: a tool for designing photonic devices,” Optics Express 15166–175 (2007).
[Crossref] [PubMed]

L.-B. Chen, M.-Y. Ye, G.-W. Lin, Q.-H. Du, and X.-M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76062304(1-7) (2007).
[Crossref]

P. Peng and F.-L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A,  75, 062320(1-7) (2007).
[Crossref]

Y. Wu and X. Yang, “Carrier-envelope phase-dependent atomic coherence and quantum beats,” Phys. Rev. A 76013832(1-4) (2007).
[Crossref]

Y. Wu and X. Yang, “Strong-Coupling Theory of Periodically Driven Two-Level Systems,” Phys. Rev. lett. 98013601(1-4) (2007).
[Crossref] [PubMed]

2006 (4)

A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromag- netically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74054416(1-6) (2006).
[Crossref]

Y.-F. Xiao, Z.-F. Han, J. Gao, and G.-C. Guo, “Generation of multi-atom Dicke states through the detection of cavity decay,” J. Phys. B: At. Mol. Opt. Phys. 39, 485–491 (2006).
[Crossref]

Hiroki Takesue, “Long-distance distribution of time-bin entanglement generated in a cooled fiber,” Optics Express,  14, 3453–3460 (2006).
[Crossref] [PubMed]

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108(1-3) (2006).
[Crossref]

2005 (3)

W.-X. Yang, Z.-M. Zhan, and J.-H. Li, “Efficient scheme for multipartite entanglement and quantum information processing with trapped ions,” Phys. Rev. A 72, 062108(1-6) (2005).
[Crossref]

N. Kiesel, C. Schmid, U. Weber, G. Tóth, O. Gühne, R. Ursin, and H. Weinfurter, “Experimental Analysis of a Four-Qubit Photon Cluster State,” Phys. Rev. Lett. 95, 210502(1-4) (2005).
[Crossref] [PubMed]

B. Min, L. Yang, and K. Vahala, “controlled transition between parameteric and Raman oscillations in ultrahigh- Q silica toroidal microcavities,” Appl. Phys. Lett. 87181109(1-3) (2005).
[Crossref]

2004 (7)

Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Optics Letters 29, 1144–1146 (2004).
[Crossref] [PubMed]

S. Mancini and S. Bose, “Distributed Quantum Computation via Optical Fibers,” Phys. Rev. A 70, 022307(1-4) (2004).
[Crossref]

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and Measurement of Three-Qubit Entangled States,” Science 304, 1478–1480 (2004).
[Crossref] [PubMed]

B. Yu, Z.-W. Zhou, and G.-C. Guo, “The generation of multi-atom entanglement via the detection of cavity decay,” J. Opt. B: Quantum Semiclass. Opt. 6, 86–90 (2004).
[Crossref]

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental Realization of a Three-Qubit Entangled W State,” Phys. Rev. Lett. 92, 077901(1-4) (2004).
[Crossref] [PubMed]

H. Mikami, Y. Li, and T. Kobayashi, “Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion,” Phys. Rev. A 70, 052308(1-7) (2004).
[Crossref]

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental Realization of a Three-Qubit Entangled W State,” Phys. Rev. Lett. 92, 077901(1-4) (2004).
[Crossref] [PubMed]

2003 (5)

X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A 68, 024302(1-4) (2003).
[Crossref]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67013811(1-5) (2003).
[Crossref]

L.-M. Duan and H. J. Kimble, “Efficient Engineering of Multiatom Entanglement through Single-Photon Detections,” Phys. Rev. Lett. 90, 253601(1-4) (2003).
[Crossref] [PubMed]

K. J. Vahala,“Optical microcavities,” Nature,  424839–846 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91, 043902(1-4) (2003).
[Crossref] [PubMed]

2002 (3)

T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, “Polarization-entangled W state using parametric downconversion,” Phys. Rev. A 66, 064301(1-4) (2002).
[Crossref]

G.-C. Guo and Y.-S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302(1-3) (2002).
[Crossref]

G. A. Durkin, C. Simon, and D. Bouwmeester, “Multiphoton Entanglement Concentration and Quantum Cryptography,” Phys. Rev. Lett. 88, 187902(1-4) (2002).
[Crossref] [PubMed]

2001 (3)

H. J. Briegel and R. Raussendorf, “Persistent Entanglement in Arrays of Interacting Particles,” Phys. Rev. Lett. 86, 910–913 (2001).
[Crossref] [PubMed]

J. M. Raimond, M. Brune, and S. Haroche,“Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.,  73565–582 (2001).
[Crossref]

M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature (London)  410789–793 (2001).
[Crossref] [PubMed]

2000 (6)

J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London)  403, 515–519 (2000);D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[Crossref] [PubMed]

R. J. Nelson, D. G. Cory, and S. Lloyd, “Experimental demonstration of Greenberger-Horne-Zeilinger correlations using nuclear magnetic resonance,” Phys. Rev. A 61, 022106(1-5) (2000).
[Crossref]

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature (London) 404, 247–255 (2000).
[Crossref]

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314(1-12) (2000).
[Crossref]

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, and C. M. D. J. Wineland, “Experimental entanglement of four particles,” Nature (London)  404, 256–259 (2000).
[Crossref] [PubMed]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.-M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[Crossref] [PubMed]

1999 (3)

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[Crossref]

W. Wernsdorfer and R. Sessoli, “Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters,” Science 284133–135 (1999).
[Crossref] [PubMed]

Y. Wu and P. T. Leung, “Lasing threshold for whispering-gallery-mode microsphere lasers,” Phys. Rev. A 60, 630–633 (1999).
[Crossref]

1998 (1)

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998).
[Crossref]

1997 (5)

N. Gisin and S. Massar, “Optimal Quantum Cloning Machines,” Phys. Rev. Lett. 79, 2153–2156 (1997).
[Crossref]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

D. W. Vernooy and H. J. Kimble, “Quantum structure and dynamics for atom galleries,” Phys. Rev. A 551239 (1997).
[Crossref]

Y.-F. Xiao, Z.-F. Han, and G.-C. Guo, “Quantum computation without strict strong coupling on a silicon chip,” Phys. Rev. A 551239 (1997).

T. Pellizzari, “Quantum Networking with Optical Fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
[Crossref]

1996 (2)

Y. Wu, “Effective Raman theory for a three-level atom in the configuration,” Phys. Rev. A 54, 1586–1592 (1996).
[Crossref] [PubMed]

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature (London)  383145–147 (1996).
[Crossref]

1995 (3)

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional Quantum Dynamics and Logic Gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
[Crossref] [PubMed]

I. L. Chuang and Y. Yamamoto, “Simple quantum computer,” Phys. Rev. A 52, 3489–3496 (1995).
[Crossref] [PubMed]

D.P. DiVincenzo, “Quantum Computation,” Science 270, 255–261 (1995).
[Crossref]

1993 (1)

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature (London)  365141–143 (1993).
[Crossref]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref] [PubMed]

1990 (1)

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[Crossref]

Bahr, S.

K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation,” Phys. Rev. B 75064408(1-12) (2007).
[Crossref]

Bai, Y.-K.

Y.-K. Bai and Z. D. Wang, “Multipartite entanglement in four-qubit cluster-class states,” Phys. Rev. A 77, 032313(1-6) (2008).
[Crossref]

Ballou, R.

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature (London)  383145–147 (1996).
[Crossref]

Barbara, B.

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature (London)  383145–147 (1996).
[Crossref]

Barclay, P. E.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108(1-3) (2006).
[Crossref]

Barenco, A.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional Quantum Dynamics and Logic Gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
[Crossref] [PubMed]

Barna, J.

M. Misiorny and J. Barna, “Magnetic switching of a single molecular magnet due to spin-polarized current,” Phys. Rev. B,  75134425(1-5) (2007).
[Crossref]

Barra, A.-L.

K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation,” Phys. Rev. B 75064408(1-12) (2007).
[Crossref]

Becher, C.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and Measurement of Three-Qubit Entangled States,” Science 304, 1478–1480 (2004).
[Crossref] [PubMed]

Benhelm, J.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and Measurement of Three-Qubit Entangled States,” Science 304, 1478–1480 (2004).
[Crossref] [PubMed]

Bennett, C. H.

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature (London) 404, 247–255 (2000).
[Crossref]

Bertet, P.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.-M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[Crossref] [PubMed]

Berthiaume, A.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[Crossref]

Blaauboer, M.

F. Bodoky and M. Blaauboer, “Production of multipartite entanglement for electron spins in quantum dots,” Phys. Rev. A 76, 052309(1-7) (2007).
[Crossref]

Blatt, R.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and Measurement of Three-Qubit Entangled States,” Science 304, 1478–1480 (2004).
[Crossref] [PubMed]

Bodoky, F.

F. Bodoky and M. Blaauboer, “Production of multipartite entanglement for electron spins in quantum dots,” Phys. Rev. A 76, 052309(1-7) (2007).
[Crossref]

Bose, S.

S. Mancini and S. Bose, “Distributed Quantum Computation via Optical Fibers,” Phys. Rev. A 70, 022307(1-4) (2004).
[Crossref]

Bourennane, M.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental Realization of a Three-Qubit Entangled W State,” Phys. Rev. Lett. 92, 077901(1-4) (2004).
[Crossref] [PubMed]

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental Realization of a Three-Qubit Entangled W State,” Phys. Rev. Lett. 92, 077901(1-4) (2004).
[Crossref] [PubMed]

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998).
[Crossref]

Bouwmeester, D.

G. A. Durkin, C. Simon, and D. Bouwmeester, “Multiphoton Entanglement Concentration and Quantum Cryptography,” Phys. Rev. Lett. 88, 187902(1-4) (2002).
[Crossref] [PubMed]

J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London)  403, 515–519 (2000);D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[Crossref] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Briegel, H. J.

H. J. Briegel and R. Raussendorf, “Persistent Entanglement in Arrays of Interacting Particles,” Phys. Rev. Lett. 86, 910–913 (2001).
[Crossref] [PubMed]

Brune, M.

J. M. Raimond, M. Brune, and S. Haroche,“Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.,  73565–582 (2001).
[Crossref]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.-M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[Crossref] [PubMed]

Bužek, V.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[Crossref]

Caneschi, A.

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature (London)  365141–143 (1993).
[Crossref]

Chen, L.-B.

L.-B. Chen, M.-Y. Ye, G.-W. Lin, Q.-H. Du, and X.-M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76062304(1-7) (2007).
[Crossref]

Chuang, I. L.

I. L. Chuang and Y. Yamamoto, “Simple quantum computer,” Phys. Rev. A 52, 3489–3496 (1995).
[Crossref] [PubMed]

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, U.K., 2000)

Cirac, J. I.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314(1-12) (2000).
[Crossref]

Cory, D. G.

R. J. Nelson, D. G. Cory, and S. Lloyd, “Experimental demonstration of Greenberger-Horne-Zeilinger correlations using nuclear magnetic resonance,” Phys. Rev. A 61, 022106(1-5) (2000).
[Crossref]

Daniell, M.

J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London)  403, 515–519 (2000);D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[Crossref] [PubMed]

Deng, L.

Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Optics Letters 29, 1144–1146 (2004).
[Crossref] [PubMed]

Deutsch, D.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional Quantum Dynamics and Logic Gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
[Crossref] [PubMed]

Ding, C.-L.

X.-Y. Lü, J.-B. Liu, C.-L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A,  78, 032305(1-6) (2008);X.-Y. Lü, L.-G. Si, M. Wang, S.-Z. Zhang, and X. Yang, “Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction,” J. Phys. B: At. Mol. Opt. Phys. 41, 235502(1-6) (2008).
[Crossref]

DiVincenzo, D. P.

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature (London) 404, 247–255 (2000).
[Crossref]

DiVincenzo, D.P.

D.P. DiVincenzo, “Quantum Computation,” Science 270, 255–261 (1995).
[Crossref]

Du, Q.-H.

L.-B. Chen, M.-Y. Ye, G.-W. Lin, Q.-H. Du, and X.-M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76062304(1-7) (2007).
[Crossref]

Duan, L.-M.

L.-M. Duan and H. J. Kimble, “Efficient Engineering of Multiatom Entanglement through Single-Photon Detections,” Phys. Rev. Lett. 90, 253601(1-4) (2003).
[Crossref] [PubMed]

Dür, W.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314(1-12) (2000).
[Crossref]

Durkin, G. A.

G. A. Durkin, C. Simon, and D. Bouwmeester, “Multiphoton Entanglement Concentration and Quantum Cryptography,” Phys. Rev. Lett. 88, 187902(1-4) (2002).
[Crossref] [PubMed]

Eibl, M.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental Realization of a Three-Qubit Entangled W State,” Phys. Rev. Lett. 92, 077901(1-4) (2004).
[Crossref] [PubMed]

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental Realization of a Three-Qubit Entangled W State,” Phys. Rev. Lett. 92, 077901(1-4) (2004).
[Crossref] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Ekert, A.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional Quantum Dynamics and Logic Gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
[Crossref] [PubMed]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref] [PubMed]

Feng, M.

X. L. Zhang, K. L. Gao, and M. Feng, “Efficient and high-fidelity generation of atomic cluster states with cavity QED and linear optics,” Phys. Rev. A 75, 034308(1-4) (2007).
[Crossref]

Ficek, Z.

Gao-xiang Li, S. Ke, and Z. Ficek, “Generation of pure continuous-variable entangled cluster states of four separate atomic ensembles in a ring cavity,” Phys. Rev. A 79, 033827(1-9) (2009).
[Crossref]

Fritzsche, S.

D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger-Horne-Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312(1-13) (2008).
[Crossref]

Furusawa, A.

M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, “Experimental generation of four-mode continuous-variable cluster states,” Phys. Rev. A 78, 012301(1-6) (2008).
[Crossref]

Gao, J.

Y.-F. Xiao, Z.-F. Han, J. Gao, and G.-C. Guo, “Generation of multi-atom Dicke states through the detection of cavity decay,” J. Phys. B: At. Mol. Opt. Phys. 39, 485–491 (2006).
[Crossref]

Gao, K. L.

X. L. Zhang, K. L. Gao, and M. Feng, “Efficient and high-fidelity generation of atomic cluster states with cavity QED and linear optics,” Phys. Rev. A 75, 034308(1-4) (2007).
[Crossref]

Gardiner, C. W.

C. W. Gardiner, Quantum Noise (Springer-Verlag, Berlin, 1991).

Gatteschi, D.

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature (London)  383145–147 (1996).
[Crossref]

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature (London)  365141–143 (1993).
[Crossref]

Gisin, N.

N. Gisin and S. Massar, “Optimal Quantum Cloning Machines,” Phys. Rev. Lett. 79, 2153–2156 (1997).
[Crossref]

Gong, Q.-H.

P.-B. Li, Y. Gu, Q.-H. Gong, and G.-C. Guo, “Quantum-information transfer in a coupled resonator waveguide,” Phys. Rev. A 79, 042339(1-4) (2009).
[Crossref]

Gonta, D.

D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger-Horne-Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312(1-13) (2008).
[Crossref]

Grebeneva, A. I.

A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromag- netically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74054416(1-6) (2006).
[Crossref]

Greenberger, D. M.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[Crossref]

Gu, Y.

P.-B. Li, Y. Gu, Q.-H. Gong, and G.-C. Guo, “Quantum-information transfer in a coupled resonator waveguide,” Phys. Rev. A 79, 042339(1-4) (2009).
[Crossref]

Gühne, O.

N. Kiesel, C. Schmid, U. Weber, G. Tóth, O. Gühne, R. Ursin, and H. Weinfurter, “Experimental Analysis of a Four-Qubit Photon Cluster State,” Phys. Rev. Lett. 95, 210502(1-4) (2005).
[Crossref] [PubMed]

Guo, G.-C.

P.-B. Li, Y. Gu, Q.-H. Gong, and G.-C. Guo, “Quantum-information transfer in a coupled resonator waveguide,” Phys. Rev. A 79, 042339(1-4) (2009).
[Crossref]

Z.-R. Lin, G.-P. Guo, T. Tu, F.-Y. Zhu, and G.-C. Guo, “Generation of Quantum-Dot Cluster States with a Superconducting Transmission Line Resonator,” Phys. Rev. Lett. 101, 230501(1-4) (2008).
[Crossref] [PubMed]

Y.-F. Xiao, X.-B. Zou, and G.-C. Guo, “Generation of atomic entangled states with selective resonant interaction in cavity quantum electrodynamics,” Phys. Rev. A 75, 012310(1-5) (2007).
[Crossref]

Y.-F. Xiao, Z.-F. Han, J. Gao, and G.-C. Guo, “Generation of multi-atom Dicke states through the detection of cavity decay,” J. Phys. B: At. Mol. Opt. Phys. 39, 485–491 (2006).
[Crossref]

B. Yu, Z.-W. Zhou, and G.-C. Guo, “The generation of multi-atom entanglement via the detection of cavity decay,” J. Opt. B: Quantum Semiclass. Opt. 6, 86–90 (2004).
[Crossref]

G.-C. Guo and Y.-S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302(1-3) (2002).
[Crossref]

Y.-F. Xiao, Z.-F. Han, and G.-C. Guo, “Quantum computation without strict strong coupling on a silicon chip,” Phys. Rev. A 551239 (1997).

Guo, G.-P.

Z.-R. Lin, G.-P. Guo, T. Tu, F.-Y. Zhu, and G.-C. Guo, “Generation of Quantum-Dot Cluster States with a Superconducting Transmission Line Resonator,” Phys. Rev. Lett. 101, 230501(1-4) (2008).
[Crossref] [PubMed]

Haffner, H.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and Measurement of Three-Qubit Entangled States,” Science 304, 1478–1480 (2004).
[Crossref] [PubMed]

Han, Z.-F.

Y.-F. Xiao, Z.-F. Han, J. Gao, and G.-C. Guo, “Generation of multi-atom Dicke states through the detection of cavity decay,” J. Phys. B: At. Mol. Opt. Phys. 39, 485–491 (2006).
[Crossref]

Y.-F. Xiao, Z.-F. Han, and G.-C. Guo, “Quantum computation without strict strong coupling on a silicon chip,” Phys. Rev. A 551239 (1997).

Hansel, W.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and Measurement of Three-Qubit Entangled States,” Science 304, 1478–1480 (2004).
[Crossref] [PubMed]

Haroche, S.

J. M. Raimond, M. Brune, and S. Haroche,“Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.,  73565–582 (2001).
[Crossref]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.-M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[Crossref] [PubMed]

Hillery, M.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[Crossref]

Horne, M. A.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[Crossref]

Hossein-Zadeh, M.

M. Hossein-Zadeh and K. Vahala, “Free ultra-high-Q microtoroid: a tool for designing photonic devices,” Optics Express 15166–175 (2007).
[Crossref] [PubMed]

Imoto, N.

T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, “Polarization-entangled W state using parametric downconversion,” Phys. Rev. A 66, 064301(1-4) (2002).
[Crossref]

Itano, W. M.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, and C. M. D. J. Wineland, “Experimental entanglement of four particles,” Nature (London)  404, 256–259 (2000).
[Crossref] [PubMed]

Jozsa, R.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional Quantum Dynamics and Logic Gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
[Crossref] [PubMed]

Karlsson, A.

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998).
[Crossref]

Ke, S.

Gao-xiang Li, S. Ke, and Z. Ficek, “Generation of pure continuous-variable entangled cluster states of four separate atomic ensembles in a ring cavity,” Phys. Rev. A 79, 033827(1-9) (2009).
[Crossref]

Kielpinski, D.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, and C. M. D. J. Wineland, “Experimental entanglement of four particles,” Nature (London)  404, 256–259 (2000).
[Crossref] [PubMed]

Kiesel, N.

N. Kiesel, C. Schmid, U. Weber, G. Tóth, O. Gühne, R. Ursin, and H. Weinfurter, “Experimental Analysis of a Four-Qubit Photon Cluster State,” Phys. Rev. Lett. 95, 210502(1-4) (2005).
[Crossref] [PubMed]

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental Realization of a Three-Qubit Entangled W State,” Phys. Rev. Lett. 92, 077901(1-4) (2004).
[Crossref] [PubMed]

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental Realization of a Three-Qubit Entangled W State,” Phys. Rev. Lett. 92, 077901(1-4) (2004).
[Crossref] [PubMed]

Kimble, H. J.

L.-M. Duan and H. J. Kimble, “Efficient Engineering of Multiatom Entanglement through Single-Photon Detections,” Phys. Rev. Lett. 90, 253601(1-4) (2003).
[Crossref] [PubMed]

D. W. Vernooy and H. J. Kimble, “Quantum structure and dynamics for atom galleries,” Phys. Rev. A 551239 (1997).
[Crossref]

King, B. E.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, and C. M. D. J. Wineland, “Experimental entanglement of four particles,” Nature (London)  404, 256–259 (2000).
[Crossref] [PubMed]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91, 043902(1-4) (2003).
[Crossref] [PubMed]

Koashi, M.

T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, “Polarization-entangled W state using parametric downconversion,” Phys. Rev. A 66, 064301(1-4) (2002).
[Crossref]

Kobayashi, T.

H. Mikami, Y. Li, and T. Kobayashi, “Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion,” Phys. Rev. A 70, 052308(1-7) (2004).
[Crossref]

Kurtsiefer, C.

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental Realization of a Three-Qubit Entangled W State,” Phys. Rev. Lett. 92, 077901(1-4) (2004).
[Crossref] [PubMed]

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental Realization of a Three-Qubit Entangled W State,” Phys. Rev. Lett. 92, 077901(1-4) (2004).
[Crossref] [PubMed]

Lancaster, G. P. T.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and Measurement of Three-Qubit Entangled States,” Science 304, 1478–1480 (2004).
[Crossref] [PubMed]

Langer, C.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, and C. M. D. J. Wineland, “Experimental entanglement of four particles,” Nature (London)  404, 256–259 (2000).
[Crossref] [PubMed]

Leuenberger, M. N.

M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature (London)  410789–793 (2001).
[Crossref] [PubMed]

Leung, P. T.

Y. Wu and P. T. Leung, “Lasing threshold for whispering-gallery-mode microsphere lasers,” Phys. Rev. A 60, 630–633 (1999).
[Crossref]

Lev, B.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108(1-3) (2006).
[Crossref]

Li, F.

Z. Yin and F. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324(1-11) (2007).
[Crossref]

Li, F.-L.

P. Peng and F.-L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A,  75, 062320(1-7) (2007).
[Crossref]

Li, Gao-xiang

Gao-xiang Li, S. Ke, and Z. Ficek, “Generation of pure continuous-variable entangled cluster states of four separate atomic ensembles in a ring cavity,” Phys. Rev. A 79, 033827(1-9) (2009).
[Crossref]

Li, J.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75184423(1-6) (2007).
[Crossref]

Li, J.-H.

X.-Y. Lü, J.-B. Liu, C.-L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A,  78, 032305(1-6) (2008);X.-Y. Lü, L.-G. Si, M. Wang, S.-Z. Zhang, and X. Yang, “Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction,” J. Phys. B: At. Mol. Opt. Phys. 41, 235502(1-6) (2008).
[Crossref]

W.-X. Yang, Z.-M. Zhan, and J.-H. Li, “Efficient scheme for multipartite entanglement and quantum information processing with trapped ions,” Phys. Rev. A 72, 062108(1-6) (2005).
[Crossref]

Li, P.-B.

P.-B. Li, Y. Gu, Q.-H. Gong, and G.-C. Guo, “Quantum-information transfer in a coupled resonator waveguide,” Phys. Rev. A 79, 042339(1-4) (2009).
[Crossref]

Li, W.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75184423(1-6) (2007).
[Crossref]

Li, Y.

H. Mikami, Y. Li, and T. Kobayashi, “Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion,” Phys. Rev. A 70, 052308(1-7) (2004).
[Crossref]

Lin, G.-W.

L.-B. Chen, M.-Y. Ye, G.-W. Lin, Q.-H. Du, and X.-M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76062304(1-7) (2007).
[Crossref]

Lin, X.-M.

L.-B. Chen, M.-Y. Ye, G.-W. Lin, Q.-H. Du, and X.-M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76062304(1-7) (2007).
[Crossref]

Lin, Z.-R.

Z.-R. Lin, G.-P. Guo, T. Tu, F.-Y. Zhu, and G.-C. Guo, “Generation of Quantum-Dot Cluster States with a Superconducting Transmission Line Resonator,” Phys. Rev. Lett. 101, 230501(1-4) (2008).
[Crossref] [PubMed]

Lionti, F.

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature (London)  383145–147 (1996).
[Crossref]

Liu, J.-B.

X.-Y. Lü, J.-B. Liu, C.-L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A,  78, 032305(1-6) (2008);X.-Y. Lü, L.-G. Si, M. Wang, S.-Z. Zhang, and X. Yang, “Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction,” J. Phys. B: At. Mol. Opt. Phys. 41, 235502(1-6) (2008).
[Crossref]

Liu, Ji-Bing

X.-Y. Lü, Ji-Bing Liu, Yü Tian, Pei-Jun Song, and Zhi-Ming Zhan, “Single molecular magnets as a source of continuous-variable entanglement,” Europhys. Lett. 8264003(1-6) (2008).
[Crossref]

Lloyd, S.

R. J. Nelson, D. G. Cory, and S. Lloyd, “Experimental demonstration of Greenberger-Horne-Zeilinger correlations using nuclear magnetic resonance,” Phys. Rev. A 61, 022106(1-5) (2000).
[Crossref]

Loss, D.

M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature (London)  410789–793 (2001).
[Crossref] [PubMed]

Lü, X.-Y.

X.-Y. Lü, J.-B. Liu, C.-L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A,  78, 032305(1-6) (2008);X.-Y. Lü, L.-G. Si, M. Wang, S.-Z. Zhang, and X. Yang, “Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction,” J. Phys. B: At. Mol. Opt. Phys. 41, 235502(1-6) (2008).
[Crossref]

X.-Y. Lü, Ji-Bing Liu, Yü Tian, Pei-Jun Song, and Zhi-Ming Zhan, “Single molecular magnets as a source of continuous-variable entanglement,” Europhys. Lett. 8264003(1-6) (2008).
[Crossref]

Mabuchi, H.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108(1-3) (2006).
[Crossref]

Mancini, S.

S. Mancini and S. Bose, “Distributed Quantum Computation via Optical Fibers,” Phys. Rev. A 70, 022307(1-4) (2004).
[Crossref]

Massar, S.

N. Gisin and S. Massar, “Optimal Quantum Cloning Machines,” Phys. Rev. Lett. 79, 2153–2156 (1997).
[Crossref]

Mathis, W.

X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A 68, 024302(1-4) (2003).
[Crossref]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Mei, D.

C. Yu, X. X. Yi, H. Song, and D. Mei, “Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301(1-4) (2007).
[Crossref]

Meyer, V.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, and C. M. D. J. Wineland, “Experimental entanglement of four particles,” Nature (London)  404, 256–259 (2000).
[Crossref] [PubMed]

Mikami, H.

H. Mikami, Y. Li, and T. Kobayashi, “Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion,” Phys. Rev. A 70, 052308(1-7) (2004).
[Crossref]

Min, B.

B. Min, L. Yang, and K. Vahala, “controlled transition between parameteric and Raman oscillations in ultrahigh- Q silica toroidal microcavities,” Appl. Phys. Lett. 87181109(1-3) (2005).
[Crossref]

Misiorny, M.

M. Misiorny and J. Barna, “Magnetic switching of a single molecular magnet due to spin-polarized current,” Phys. Rev. B,  75134425(1-5) (2007).
[Crossref]

Mosser, V.

K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation,” Phys. Rev. B 75064408(1-12) (2007).
[Crossref]

Myatt, C. J.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, and C. M. D. J. Wineland, “Experimental entanglement of four particles,” Nature (London)  404, 256–259 (2000).
[Crossref] [PubMed]

Nelson, R. J.

R. J. Nelson, D. G. Cory, and S. Lloyd, “Experimental demonstration of Greenberger-Horne-Zeilinger correlations using nuclear magnetic resonance,” Phys. Rev. A 61, 022106(1-5) (2000).
[Crossref]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, U.K., 2000)

Nogues, G.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.-M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[Crossref] [PubMed]

Novak, M. A.

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature (London)  365141–143 (1993).
[Crossref]

Osnaghi, S.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.-M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[Crossref] [PubMed]

Pahlke, K.

X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A 68, 024302(1-4) (2003).
[Crossref]

Painter, O.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108(1-3) (2006).
[Crossref]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91, 043902(1-4) (2003).
[Crossref] [PubMed]

Pan, J. W.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Pan, J.-W.

J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London)  403, 515–519 (2000);D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[Crossref] [PubMed]

Pellizzari, T.

T. Pellizzari, “Quantum Networking with Optical Fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
[Crossref]

Peng, P.

P. Peng and F.-L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A,  75, 062320(1-7) (2007).
[Crossref]

Petukhov, K.

K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation,” Phys. Rev. B 75064408(1-12) (2007).
[Crossref]

Radtke, T.

D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger-Horne-Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312(1-13) (2008).
[Crossref]

Raimond, J. M.

J. M. Raimond, M. Brune, and S. Haroche,“Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.,  73565–582 (2001).
[Crossref]

Raimond, J.-M.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.-M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[Crossref] [PubMed]

Rauschenbeutel, A.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.-M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[Crossref] [PubMed]

Raussendorf, R.

H. J. Briegel and R. Raussendorf, “Persistent Entanglement in Arrays of Interacting Particles,” Phys. Rev. Lett. 86, 910–913 (2001).
[Crossref] [PubMed]

Riebe, M.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and Measurement of Three-Qubit Entangled States,” Science 304, 1478–1480 (2004).
[Crossref] [PubMed]

Roos, C. F.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and Measurement of Three-Qubit Entangled States,” Science 304, 1478–1480 (2004).
[Crossref] [PubMed]

Rowe, M.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, and C. M. D. J. Wineland, “Experimental entanglement of four particles,” Nature (London)  404, 256–259 (2000).
[Crossref] [PubMed]

Sackett, C. A.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, and C. M. D. J. Wineland, “Experimental entanglement of four particles,” Nature (London)  404, 256–259 (2000).
[Crossref] [PubMed]

Saldana, J.

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67013811(1-5) (2003).
[Crossref]

Schmid, C.

N. Kiesel, C. Schmid, U. Weber, G. Tóth, O. Gühne, R. Ursin, and H. Weinfurter, “Experimental Analysis of a Four-Qubit Photon Cluster State,” Phys. Rev. Lett. 95, 210502(1-4) (2005).
[Crossref] [PubMed]

Schmidt-Kaler, F.

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and Measurement of Three-Qubit Entangled States,” Science 304, 1478–1480 (2004).
[Crossref] [PubMed]

Sessoli, R.

W. Wernsdorfer and R. Sessoli, “Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters,” Science 284133–135 (1999).
[Crossref] [PubMed]

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature (London)  383145–147 (1996).
[Crossref]

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature (London)  365141–143 (1993).
[Crossref]

Shimony, A.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[Crossref]

Shvetsov, A. V.

A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromag- netically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74054416(1-6) (2006).
[Crossref]

Simon, C.

G. A. Durkin, C. Simon, and D. Bouwmeester, “Multiphoton Entanglement Concentration and Quantum Cryptography,” Phys. Rev. Lett. 88, 187902(1-4) (2002).
[Crossref] [PubMed]

Song, H.

C. Yu, X. X. Yi, H. Song, and D. Mei, “Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301(1-4) (2007).
[Crossref]

Song, Pei-Jun

X.-Y. Lü, Ji-Bing Liu, Yü Tian, Pei-Jun Song, and Zhi-Ming Zhan, “Single molecular magnets as a source of continuous-variable entanglement,” Europhys. Lett. 8264003(1-6) (2008).
[Crossref]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91, 043902(1-4) (2003).
[Crossref] [PubMed]

Srinivasan, K.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108(1-3) (2006).
[Crossref]

Takesue, Hiroki

Hiroki Takesue, “Long-distance distribution of time-bin entanglement generated in a cooled fiber,” Optics Express,  14, 3453–3460 (2006).
[Crossref] [PubMed]

Tamaki, K.

T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, “Polarization-entangled W state using parametric downconversion,” Phys. Rev. A 66, 064301(1-4) (2002).
[Crossref]

Thomas, L.

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature (London)  383145–147 (1996).
[Crossref]

Tian, Yü

X.-Y. Lü, Ji-Bing Liu, Yü Tian, Pei-Jun Song, and Zhi-Ming Zhan, “Single molecular magnets as a source of continuous-variable entanglement,” Europhys. Lett. 8264003(1-6) (2008).
[Crossref]

Tóth, G.

N. Kiesel, C. Schmid, U. Weber, G. Tóth, O. Gühne, R. Ursin, and H. Weinfurter, “Experimental Analysis of a Four-Qubit Photon Cluster State,” Phys. Rev. Lett. 95, 210502(1-4) (2005).
[Crossref] [PubMed]

Tu, T.

Z.-R. Lin, G.-P. Guo, T. Tu, F.-Y. Zhu, and G.-C. Guo, “Generation of Quantum-Dot Cluster States with a Superconducting Transmission Line Resonator,” Phys. Rev. Lett. 101, 230501(1-4) (2008).
[Crossref] [PubMed]

Turchette, Q. A.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, and C. M. D. J. Wineland, “Experimental entanglement of four particles,” Nature (London)  404, 256–259 (2000).
[Crossref] [PubMed]

Ukai, R.

M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, “Experimental generation of four-mode continuous-variable cluster states,” Phys. Rev. A 78, 012301(1-6) (2008).
[Crossref]

Ursin, R.

N. Kiesel, C. Schmid, U. Weber, G. Tóth, O. Gühne, R. Ursin, and H. Weinfurter, “Experimental Analysis of a Four-Qubit Photon Cluster State,” Phys. Rev. Lett. 95, 210502(1-4) (2005).
[Crossref] [PubMed]

Vahala, K.

M. Hossein-Zadeh and K. Vahala, “Free ultra-high-Q microtoroid: a tool for designing photonic devices,” Optics Express 15166–175 (2007).
[Crossref] [PubMed]

B. Min, L. Yang, and K. Vahala, “controlled transition between parameteric and Raman oscillations in ultrahigh- Q silica toroidal microcavities,” Appl. Phys. Lett. 87181109(1-3) (2005).
[Crossref]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91, 043902(1-4) (2003).
[Crossref] [PubMed]

K. J. Vahala,“Optical microcavities,” Nature,  424839–846 (2003).
[Crossref] [PubMed]

van Loock, P.

M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, “Experimental generation of four-mode continuous-variable cluster states,” Phys. Rev. A 78, 012301(1-6) (2008).
[Crossref]

Vernooy, D. W.

D. W. Vernooy and H. J. Kimble, “Quantum structure and dynamics for atom galleries,” Phys. Rev. A 551239 (1997).
[Crossref]

Vidal, G.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314(1-12) (2000).
[Crossref]

Vugalter, G. A.

A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromag- netically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74054416(1-6) (2006).
[Crossref]

Wang, Z. D.

Y.-K. Bai and Z. D. Wang, “Multipartite entanglement in four-qubit cluster-class states,” Phys. Rev. A 77, 032313(1-6) (2008).
[Crossref]

Weber, U.

N. Kiesel, C. Schmid, U. Weber, G. Tóth, O. Gühne, R. Ursin, and H. Weinfurter, “Experimental Analysis of a Four-Qubit Photon Cluster State,” Phys. Rev. Lett. 95, 210502(1-4) (2005).
[Crossref] [PubMed]

Weinfurter, H.

N. Kiesel, C. Schmid, U. Weber, G. Tóth, O. Gühne, R. Ursin, and H. Weinfurter, “Experimental Analysis of a Four-Qubit Photon Cluster State,” Phys. Rev. Lett. 95, 210502(1-4) (2005).
[Crossref] [PubMed]

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental Realization of a Three-Qubit Entangled W State,” Phys. Rev. Lett. 92, 077901(1-4) (2004).
[Crossref] [PubMed]

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental Realization of a Three-Qubit Entangled W State,” Phys. Rev. Lett. 92, 077901(1-4) (2004).
[Crossref] [PubMed]

J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London)  403, 515–519 (2000);D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[Crossref] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Wernsdorfer, W.

K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation,” Phys. Rev. B 75064408(1-12) (2007).
[Crossref]

W. Wernsdorfer and R. Sessoli, “Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters,” Science 284133–135 (1999).
[Crossref] [PubMed]

Wineland, C. M. D. J.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, and C. M. D. J. Wineland, “Experimental entanglement of four particles,” Nature (London)  404, 256–259 (2000).
[Crossref] [PubMed]

Wu, Y.

Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76054425(1-6) (2007).
[Crossref]

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91094104(1-3) (2007).
[Crossref]

Y. Wu and X. Yang, “Carrier-envelope phase-dependent atomic coherence and quantum beats,” Phys. Rev. A 76013832(1-4) (2007).
[Crossref]

Y. Wu and X. Yang, “Strong-Coupling Theory of Periodically Driven Two-Level Systems,” Phys. Rev. lett. 98013601(1-4) (2007).
[Crossref] [PubMed]

Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Optics Letters 29, 1144–1146 (2004).
[Crossref] [PubMed]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67013811(1-5) (2003).
[Crossref]

Y. Wu and P. T. Leung, “Lasing threshold for whispering-gallery-mode microsphere lasers,” Phys. Rev. A 60, 630–633 (1999).
[Crossref]

Y. Wu, “Effective Raman theory for a three-level atom in the configuration,” Phys. Rev. A 54, 1586–1592 (1996).
[Crossref] [PubMed]

Xiao, Y.-F.

Y.-F. Xiao, X.-B. Zou, and G.-C. Guo, “Generation of atomic entangled states with selective resonant interaction in cavity quantum electrodynamics,” Phys. Rev. A 75, 012310(1-5) (2007).
[Crossref]

Y.-F. Xiao, Z.-F. Han, J. Gao, and G.-C. Guo, “Generation of multi-atom Dicke states through the detection of cavity decay,” J. Phys. B: At. Mol. Opt. Phys. 39, 485–491 (2006).
[Crossref]

Y.-F. Xiao, Z.-F. Han, and G.-C. Guo, “Quantum computation without strict strong coupling on a silicon chip,” Phys. Rev. A 551239 (1997).

Xie, X.-T.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75184423(1-6) (2007).
[Crossref]

Yamamoto, T.

T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, “Polarization-entangled W state using parametric downconversion,” Phys. Rev. A 66, 064301(1-4) (2002).
[Crossref]

Yamamoto, Y.

I. L. Chuang and Y. Yamamoto, “Simple quantum computer,” Phys. Rev. A 52, 3489–3496 (1995).
[Crossref] [PubMed]

Yang, L.

B. Min, L. Yang, and K. Vahala, “controlled transition between parameteric and Raman oscillations in ultrahigh- Q silica toroidal microcavities,” Appl. Phys. Lett. 87181109(1-3) (2005).
[Crossref]

Yang, W.-X.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75184423(1-6) (2007).
[Crossref]

W.-X. Yang, Z.-M. Zhan, and J.-H. Li, “Efficient scheme for multipartite entanglement and quantum information processing with trapped ions,” Phys. Rev. A 72, 062108(1-6) (2005).
[Crossref]

Yang, X.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75184423(1-6) (2007).
[Crossref]

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91094104(1-3) (2007).
[Crossref]

Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76054425(1-6) (2007).
[Crossref]

Y. Wu and X. Yang, “Strong-Coupling Theory of Periodically Driven Two-Level Systems,” Phys. Rev. lett. 98013601(1-4) (2007).
[Crossref] [PubMed]

Y. Wu and X. Yang, “Carrier-envelope phase-dependent atomic coherence and quantum beats,” Phys. Rev. A 76013832(1-4) (2007).
[Crossref]

Ye, M.-Y.

L.-B. Chen, M.-Y. Ye, G.-W. Lin, Q.-H. Du, and X.-M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76062304(1-7) (2007).
[Crossref]

Ye, S.-Y.

S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A,  77, 014303(1-4) (2008).
[Crossref]

Yi, X. X.

C. Yu, X. X. Yi, H. Song, and D. Mei, “Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301(1-4) (2007).
[Crossref]

Yin, Z.

Z. Yin and F. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324(1-11) (2007).
[Crossref]

Yu, B.

B. Yu, Z.-W. Zhou, and G.-C. Guo, “The generation of multi-atom entanglement via the detection of cavity decay,” J. Opt. B: Quantum Semiclass. Opt. 6, 86–90 (2004).
[Crossref]

Yu, C.

C. Yu, X. X. Yi, H. Song, and D. Mei, “Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301(1-4) (2007).
[Crossref]

Yuan, A.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75184423(1-6) (2007).
[Crossref]

Yukawa, M.

M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, “Experimental generation of four-mode continuous-variable cluster states,” Phys. Rev. A 78, 012301(1-6) (2008).
[Crossref]

Zeilinger, A.

J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London)  403, 515–519 (2000);D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[Crossref] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[Crossref]

Zhan, Z.-M.

W.-X. Yang, Z.-M. Zhan, and J.-H. Li, “Efficient scheme for multipartite entanglement and quantum information processing with trapped ions,” Phys. Rev. A 72, 062108(1-6) (2005).
[Crossref]

Zhan, Zhi-Ming

X.-Y. Lü, Ji-Bing Liu, Yü Tian, Pei-Jun Song, and Zhi-Ming Zhan, “Single molecular magnets as a source of continuous-variable entanglement,” Europhys. Lett. 8264003(1-6) (2008).
[Crossref]

Zhang, X. L.

X. L. Zhang, K. L. Gao, and M. Feng, “Efficient and high-fidelity generation of atomic cluster states with cavity QED and linear optics,” Phys. Rev. A 75, 034308(1-4) (2007).
[Crossref]

Zhang, Y.-S.

G.-C. Guo and Y.-S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302(1-3) (2002).
[Crossref]

Zheng, S.-B.

S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A,  77, 014303(1-4) (2008).
[Crossref]

Zhong, Z.-R.

S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A,  77, 014303(1-4) (2008).
[Crossref]

Zhou, Z.-W.

B. Yu, Z.-W. Zhou, and G.-C. Guo, “The generation of multi-atom entanglement via the detection of cavity decay,” J. Opt. B: Quantum Semiclass. Opt. 6, 86–90 (2004).
[Crossref]

Zhu, F.-Y.

Z.-R. Lin, G.-P. Guo, T. Tu, F.-Y. Zhu, and G.-C. Guo, “Generation of Quantum-Dot Cluster States with a Superconducting Transmission Line Resonator,” Phys. Rev. Lett. 101, 230501(1-4) (2008).
[Crossref] [PubMed]

Zhu, Y.

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67013811(1-5) (2003).
[Crossref]

Zou, X. B.

X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A 68, 024302(1-4) (2003).
[Crossref]

Zou, X.-B.

Y.-F. Xiao, X.-B. Zou, and G.-C. Guo, “Generation of atomic entangled states with selective resonant interaction in cavity quantum electrodynamics,” Phys. Rev. A 75, 012310(1-5) (2007).
[Crossref]

Am. J. Phys. (1)

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[Crossref]

Appl. Phys. Lett. (3)

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91094104(1-3) (2007).
[Crossref]

B. Min, L. Yang, and K. Vahala, “controlled transition between parameteric and Raman oscillations in ultrahigh- Q silica toroidal microcavities,” Appl. Phys. Lett. 87181109(1-3) (2005).
[Crossref]

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108(1-3) (2006).
[Crossref]

Europhys. Lett. (1)

X.-Y. Lü, Ji-Bing Liu, Yü Tian, Pei-Jun Song, and Zhi-Ming Zhan, “Single molecular magnets as a source of continuous-variable entanglement,” Europhys. Lett. 8264003(1-6) (2008).
[Crossref]

J. Opt. B: Quantum Semiclass. Opt. (1)

B. Yu, Z.-W. Zhou, and G.-C. Guo, “The generation of multi-atom entanglement via the detection of cavity decay,” J. Opt. B: Quantum Semiclass. Opt. 6, 86–90 (2004).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

Y.-F. Xiao, Z.-F. Han, J. Gao, and G.-C. Guo, “Generation of multi-atom Dicke states through the detection of cavity decay,” J. Phys. B: At. Mol. Opt. Phys. 39, 485–491 (2006).
[Crossref]

Nature (7)

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, and C. M. D. J. Wineland, “Experimental entanglement of four particles,” Nature (London)  404, 256–259 (2000).
[Crossref] [PubMed]

J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature (London)  403, 515–519 (2000);D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[Crossref] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature (London)  365141–143 (1993).
[Crossref]

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature (London)  383145–147 (1996).
[Crossref]

M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature (London)  410789–793 (2001).
[Crossref] [PubMed]

K. J. Vahala,“Optical microcavities,” Nature,  424839–846 (2003).
[Crossref] [PubMed]

Nature (London) (1)

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature (London) 404, 247–255 (2000).
[Crossref]

Optics Express (2)

Hiroki Takesue, “Long-distance distribution of time-bin entanglement generated in a cooled fiber,” Optics Express,  14, 3453–3460 (2006).
[Crossref] [PubMed]

M. Hossein-Zadeh and K. Vahala, “Free ultra-high-Q microtoroid: a tool for designing photonic devices,” Optics Express 15166–175 (2007).
[Crossref] [PubMed]

Optics Letters (1)

Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Optics Letters 29, 1144–1146 (2004).
[Crossref] [PubMed]

Phys. Rev. A (31)

Y. Wu and X. Yang, “Carrier-envelope phase-dependent atomic coherence and quantum beats,” Phys. Rev. A 76013832(1-4) (2007).
[Crossref]

F. Bodoky and M. Blaauboer, “Production of multipartite entanglement for electron spins in quantum dots,” Phys. Rev. A 76, 052309(1-7) (2007).
[Crossref]

D. W. Vernooy and H. J. Kimble, “Quantum structure and dynamics for atom galleries,” Phys. Rev. A 551239 (1997).
[Crossref]

Y.-F. Xiao, Z.-F. Han, and G.-C. Guo, “Quantum computation without strict strong coupling on a silicon chip,” Phys. Rev. A 551239 (1997).

P.-B. Li, Y. Gu, Q.-H. Gong, and G.-C. Guo, “Quantum-information transfer in a coupled resonator waveguide,” Phys. Rev. A 79, 042339(1-4) (2009).
[Crossref]

Y. Wu, “Effective Raman theory for a three-level atom in the configuration,” Phys. Rev. A 54, 1586–1592 (1996).
[Crossref] [PubMed]

Y. Wu and P. T. Leung, “Lasing threshold for whispering-gallery-mode microsphere lasers,” Phys. Rev. A 60, 630–633 (1999).
[Crossref]

S. Mancini and S. Bose, “Distributed Quantum Computation via Optical Fibers,” Phys. Rev. A 70, 022307(1-4) (2004).
[Crossref]

L.-B. Chen, M.-Y. Ye, G.-W. Lin, Q.-H. Du, and X.-M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76062304(1-7) (2007).
[Crossref]

P. Peng and F.-L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A,  75, 062320(1-7) (2007).
[Crossref]

S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A,  77, 014303(1-4) (2008).
[Crossref]

X.-Y. Lü, J.-B. Liu, C.-L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A,  78, 032305(1-6) (2008);X.-Y. Lü, L.-G. Si, M. Wang, S.-Z. Zhang, and X. Yang, “Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction,” J. Phys. B: At. Mol. Opt. Phys. 41, 235502(1-6) (2008).
[Crossref]

Z. Yin and F. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324(1-11) (2007).
[Crossref]

Y. Wu, J. Saldana, and Y. Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67013811(1-5) (2003).
[Crossref]

W.-X. Yang, Z.-M. Zhan, and J.-H. Li, “Efficient scheme for multipartite entanglement and quantum information processing with trapped ions,” Phys. Rev. A 72, 062108(1-6) (2005).
[Crossref]

I. L. Chuang and Y. Yamamoto, “Simple quantum computer,” Phys. Rev. A 52, 3489–3496 (1995).
[Crossref] [PubMed]

A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998).
[Crossref]

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[Crossref]

R. J. Nelson, D. G. Cory, and S. Lloyd, “Experimental demonstration of Greenberger-Horne-Zeilinger correlations using nuclear magnetic resonance,” Phys. Rev. A 61, 022106(1-5) (2000).
[Crossref]

X. B. Zou, K. Pahlke, and W. Mathis, “Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay,” Phys. Rev. A 68, 024302(1-4) (2003).
[Crossref]

C. Yu, X. X. Yi, H. Song, and D. Mei, “Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301(1-4) (2007).
[Crossref]

D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger-Horne-Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312(1-13) (2008).
[Crossref]

T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, “Polarization-entangled W state using parametric downconversion,” Phys. Rev. A 66, 064301(1-4) (2002).
[Crossref]

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314(1-12) (2000).
[Crossref]

H. Mikami, Y. Li, and T. Kobayashi, “Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion,” Phys. Rev. A 70, 052308(1-7) (2004).
[Crossref]

G.-C. Guo and Y.-S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302(1-3) (2002).
[Crossref]

Y.-F. Xiao, X.-B. Zou, and G.-C. Guo, “Generation of atomic entangled states with selective resonant interaction in cavity quantum electrodynamics,” Phys. Rev. A 75, 012310(1-5) (2007).
[Crossref]

Gao-xiang Li, S. Ke, and Z. Ficek, “Generation of pure continuous-variable entangled cluster states of four separate atomic ensembles in a ring cavity,” Phys. Rev. A 79, 033827(1-9) (2009).
[Crossref]

X. L. Zhang, K. L. Gao, and M. Feng, “Efficient and high-fidelity generation of atomic cluster states with cavity QED and linear optics,” Phys. Rev. A 75, 034308(1-4) (2007).
[Crossref]

Y.-K. Bai and Z. D. Wang, “Multipartite entanglement in four-qubit cluster-class states,” Phys. Rev. A 77, 032313(1-6) (2008).
[Crossref]

M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, “Experimental generation of four-mode continuous-variable cluster states,” Phys. Rev. A 78, 012301(1-6) (2008).
[Crossref]

Phys. Rev. B (5)

A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromag- netically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74054416(1-6) (2006).
[Crossref]

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75184423(1-6) (2007).
[Crossref]

Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76054425(1-6) (2007).
[Crossref]

K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation,” Phys. Rev. B 75064408(1-12) (2007).
[Crossref]

M. Misiorny and J. Barna, “Magnetic switching of a single molecular magnet due to spin-polarized current,” Phys. Rev. B,  75134425(1-5) (2007).
[Crossref]

Phys. Rev. Lett. (12)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91, 043902(1-4) (2003).
[Crossref] [PubMed]

L.-M. Duan and H. J. Kimble, “Efficient Engineering of Multiatom Entanglement through Single-Photon Detections,” Phys. Rev. Lett. 90, 253601(1-4) (2003).
[Crossref] [PubMed]

T. Pellizzari, “Quantum Networking with Optical Fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997).
[Crossref]

Y. Wu and X. Yang, “Strong-Coupling Theory of Periodically Driven Two-Level Systems,” Phys. Rev. lett. 98013601(1-4) (2007).
[Crossref] [PubMed]

Z.-R. Lin, G.-P. Guo, T. Tu, F.-Y. Zhu, and G.-C. Guo, “Generation of Quantum-Dot Cluster States with a Superconducting Transmission Line Resonator,” Phys. Rev. Lett. 101, 230501(1-4) (2008).
[Crossref] [PubMed]

N. Kiesel, C. Schmid, U. Weber, G. Tóth, O. Gühne, R. Ursin, and H. Weinfurter, “Experimental Analysis of a Four-Qubit Photon Cluster State,” Phys. Rev. Lett. 95, 210502(1-4) (2005).
[Crossref] [PubMed]

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental Realization of a Three-Qubit Entangled W State,” Phys. Rev. Lett. 92, 077901(1-4) (2004).
[Crossref] [PubMed]

H. J. Briegel and R. Raussendorf, “Persistent Entanglement in Arrays of Interacting Particles,” Phys. Rev. Lett. 86, 910–913 (2001).
[Crossref] [PubMed]

M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental Realization of a Three-Qubit Entangled W State,” Phys. Rev. Lett. 92, 077901(1-4) (2004).
[Crossref] [PubMed]

G. A. Durkin, C. Simon, and D. Bouwmeester, “Multiphoton Entanglement Concentration and Quantum Cryptography,” Phys. Rev. Lett. 88, 187902(1-4) (2002).
[Crossref] [PubMed]

N. Gisin and S. Massar, “Optimal Quantum Cloning Machines,” Phys. Rev. Lett. 79, 2153–2156 (1997).
[Crossref]

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref] [PubMed]

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional Quantum Dynamics and Logic Gates,” Phys. Rev. Lett. 74, 4083–4086 (1995).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Raimond, M. Brune, and S. Haroche,“Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.,  73565–582 (2001).
[Crossref]

Science (4)

W. Wernsdorfer and R. Sessoli, “Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters,” Science 284133–135 (1999).
[Crossref] [PubMed]

D.P. DiVincenzo, “Quantum Computation,” Science 270, 255–261 (1995).
[Crossref]

C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, C. Becher, F. Schmidt-Kaler, and R. Blatt, “Control and Measurement of Three-Qubit Entangled States,” Science 304, 1478–1480 (2004).
[Crossref] [PubMed]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.-M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024–2028 (2000).
[Crossref] [PubMed]

Other (2)

C. W. Gardiner, Quantum Noise (Springer-Verlag, Berlin, 1991).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, U.K., 2000)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(Color online) (a) The basal configuration for cavity-fiber-cavity system. An assistant SMM is trapped in a central cavity (cavity M) and N entangled SMMs are individually trapped in N cavities (cavity n), which connect with the central cavity together via N fibers. (b) The level configuration of each SMM.

Fig. 2.
Fig. 2.

(Color online) The four-qubitWstate in the configurations of square [panel (a)] and regular tetrahedron [panel (b)].

Fig. 3.
Fig. 3.

(Color online) The fidelity FW of realizing four-qubit W state ∣Ψ W 〉 versus time Ω M t. The parameters are chosen as Ω en =0.5Ω eM , ηn = 25ΩeM (n=1,2,3,4).

Fig. 4.
Fig. 4.

(Color online) The fidelity FW of realizing four-qubit W state ∣Ψ W 〉 versus time ΩeMt and proportional coefficient s [panel (a)] and versus s when t= 4.95ΩeM [panel (b)].

Fig. 5.
Fig. 5.

(Color online) The fidelity FW of realizing four-qubit W state ∣Ψ W 〉versus time Ω eMt and coupling constant η [panel (a)] and versus η when t= [panel (b)].

Fig. 6.
Fig. 6.

(Color online) The fidelity FW of realizing the four-qubit W state ∣Ψ W 〉 versus time γt for different decay rates κ (γa = γf = κ). The corresponding system parameters are chosen as: γn = 8γ (n=1-4), gM = 16γ, Ω n = 10γ, Ω M = 10γ, η = 25γ, and Δ M = Δ n = 100γ.

Fig. 7.
Fig. 7.

(Color online) Fidelity of realizing the W state ∣Ψ W 〉versus κ and γa [panel (a)]; versus κ and γf [panel (b)]; when γt =3.16. The other system parameters are the same as in Fig. 6

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

̂=̂0S+0F+̂,
̂0S=DŜMz2+̂trgμBŜMxH0 +n=1N(DŜnz2+̂trgμBŜnxH0),
̂0F=ħ vM âM âM +n=1Nħvnânân,
̂=[gμB2(ŜM·HMeiωMt+ŜM·MâM)
gμB2 n=1N(Ŝn·Hneiωnt+Ŝn·nân)+H.c. ] ,
HIsc=ΔM 2M2|+(ΩM2M1+GMaM0M2+H.c.)
+n=1N[Δn2n2+(Gnan2n0Ωn1n2+H.c.)],
ΩM(t)=gμBHM(t)2ħ2ŜMy1,GM=gμBM(t)ħ2ŜMx0,
Ωn(t)=gμBHn(t)2ħ2Ŝny1,Gn=gμBn(t)ħ2Ŝnx0,
Heffsc=[ΩeMaM1M1+n=1NΩenan1n0+H.c.] ,
HIcf=n=1N[ηnaMbn+ηnbnan+H.c.] ,
HI=Heffsc+HIcf
=[ΩeMaM0M1+n=1N(ηnaMbn+ηnbnan+Ωenan1n0)+H.c.].
itψ(t)=HIψ(t),
ϕ1=1M0102030400000c0000f,
ϕ2=0M0102030410000c0000f,
ϕ3=0M0102030400000c1000f,
ϕ4=0M0102030401000c0000f,
ϕ5=0M1102030400000c0000f,
ϕ6=0M0102030400000c0100f,
ϕ7=0M0102030400100c0000f,
ϕ8=0M0102030400000c0000f,
ϕ9=0M0102030400000c0010f,
ϕ10=0M0102030400010c0000f,
ϕ11=0M0102130400000c0000f,
ϕ12=0M0102030400000c0001f,
ϕ13=0M0102030400001c0000f,
ϕ14=0M0102031400000c0000f,
ρ˙w=i[HIsc+HIcf,ρ]κM2(aMaMρ2aMρaM+ρaMaM)
i=0,1γaMei2(σeeMρ2σieMρσeiM+ρσeeM)
n=14[γfn2(bnbnρ2bnρbn+ρbnbn)+κn2(ananρ2anρan+ρanan)]
n=14i=0,1γanei2(σeenρ2σienρσein+ρσeen),

Metrics