Abstract

We report a high-energy extended-cavity MgO:PPLN optical parametric oscillator, synchronously-pumped by a femtosecond Yb:fiber laser. The oscillator operated at a signal wavelength of 1530 nm with a repetition-frequency of 15.3 MHz (9.8 m length) achieved using intracavity relay-imaging optics. The signal pulses had an average power above 1.0 W, durations of 1.5 ps and energies greater than 70 nJ, making it a potential source for rapid femtosecond waveguide inscription in infrared materials.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Schaffer, A. Brodeur, J. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
    [CrossRef]
  2. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. Chen, S. Ho, and P. R. Herman, "Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides," Opt. Express 16, 9443-9458 (2008).
    [CrossRef] [PubMed]
  3. A. Killi, U. Morgner, M. J. Lederer, and D. Kopf, "Diode-pumped femtosecond laser oscillator with cavity dumping," Opt. Lett. 29, 1288-1290 (2004).
    [CrossRef] [PubMed]
  4. S. H. Cho, B. E. Bouma, E. P. Ippen, and J.G. Fujimoto, "Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:Al2O3 laser with a multiple-pass cavity," Opt. Lett. 24, 417-419 (1999).
    [CrossRef]
  5. S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. Cunningham, and W. H. Knox, "Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked Ti:Al2O3 laser operating with net positive and negative intracavity dispersion," Opt. Lett. 26, 560-562 (2001).
    [CrossRef]
  6. V. Shcheslavskiy, V. V. Yakovlev, and A. Ivanov, "High-energy self-starting femtosecond Cr4+:Mg2SiO4 oscillator operating at a low repetition rate," Opt. Lett. 26, 1999-2001 (2001).
    [CrossRef]
  7. D. N. Papadopoulos, N. Forget, M. Delaigue, F. Druon, F. Balembois, and P. Georges, "Passively mode-locked diode-pumped Nd:YVO4 oscillator operating at an ultralow repetition rate," Opt. Lett. 28, 1838-1840 (2003).
    [CrossRef] [PubMed]
  8. C. Min and T. Joo, "Near-infrared cavity-dumped femtosecond optical parametric oscillator," Opt. Lett. 30, 1855-1857 (2005).
    [CrossRef] [PubMed]
  9. T. Südmeyer, E. Innerhofer, F. Brunner, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, D. C. Hanna, and U. Keller, "High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3," Opt. Lett. 29, 1111-1113 (2004).
    [CrossRef] [PubMed]
  10. M. O'Connor, M. Watson, D. Shepherd, D. Hanna, J. Price, A. Malinowski, J. Nilsson, N. Broderick, and D. Richardson, "Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser," Opt. Lett. 27, 1052-1054 (2002).
    [CrossRef]
  11. A.E. Siegman, Lasers (University Science Books, 1986).
  12. D. S. Butterworth, S. Girard, and D. C. Hanna, "A simple technique to achieve active cavity-length stabilisation in a synchronously pumped optical parametric oscillator," Opt. Commun. 123, 577-582 (1996).
    [CrossRef]
  13. D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen and J. D. Harvey, "Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses," Appl. Opt. 37, 8142-8144 (1998).
    [CrossRef]

2008

2005

2004

2003

2002

2001

1999

1998

1996

D. S. Butterworth, S. Girard, and D. C. Hanna, "A simple technique to achieve active cavity-length stabilisation in a synchronously pumped optical parametric oscillator," Opt. Commun. 123, 577-582 (1996).
[CrossRef]

Balembois, F.

Barry, L. P.

Bouma, B. E.

Broderick, N.

Brodeur, A.

Brunner, F.

Butterworth, D. S.

D. S. Butterworth, S. Girard, and D. C. Hanna, "A simple technique to achieve active cavity-length stabilisation in a synchronously pumped optical parametric oscillator," Opt. Commun. 123, 577-582 (1996).
[CrossRef]

Chen, W.

Cho, S. H.

Cunningham, J.

Delaigue, M.

Druon, F.

Dudley, J. M.

Eaton, S. M.

Forget, N.

Fujimoto, J. G.

Fujimoto, J.G.

Garcia, J.

Georges, P.

Girard, S.

D. S. Butterworth, S. Girard, and D. C. Hanna, "A simple technique to achieve active cavity-length stabilisation in a synchronously pumped optical parametric oscillator," Opt. Commun. 123, 577-582 (1996).
[CrossRef]

Hanna, D.

Hanna, D. C.

Harvey, J. D.

Herman, P. R.

Ho, S.

Innerhofer, E.

Ippen, E. P.

Ito, H.

Ivanov, A.

Joo, T.

Kärtner, F. X.

Keller, U.

Killi, A.

Kitamura, K.

Knox, W. H.

Kopf, D.

Kurimura, S.

Lederer, M. J.

Li, J.

Malinowski, A.

Mazur, E.

Min, C.

Morgner, U.

Ng, M. L.

Nilsson, J.

O'Connor, M.

Papadopoulos, D. N.

Paschotta, R.

Price, J.

Reid, D. T.

Richardson, D.

Schaffer, C.

Shcheslavskiy, V.

Shepherd, D.

Sibbett, W.

Südmeyer, T.

Thomsen, B.

Usami, T.

Watson, M.

Yakovlev, V. V.

Zhang, H.

Appl. Opt.

Opt. Commun.

D. S. Butterworth, S. Girard, and D. C. Hanna, "A simple technique to achieve active cavity-length stabilisation in a synchronously pumped optical parametric oscillator," Opt. Commun. 123, 577-582 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

A. Killi, U. Morgner, M. J. Lederer, and D. Kopf, "Diode-pumped femtosecond laser oscillator with cavity dumping," Opt. Lett. 29, 1288-1290 (2004).
[CrossRef] [PubMed]

S. H. Cho, B. E. Bouma, E. P. Ippen, and J.G. Fujimoto, "Low-repetition-rate high-peak-power Kerr-lens mode-locked Ti:Al2O3 laser with a multiple-pass cavity," Opt. Lett. 24, 417-419 (1999).
[CrossRef]

S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. Cunningham, and W. H. Knox, "Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked Ti:Al2O3 laser operating with net positive and negative intracavity dispersion," Opt. Lett. 26, 560-562 (2001).
[CrossRef]

V. Shcheslavskiy, V. V. Yakovlev, and A. Ivanov, "High-energy self-starting femtosecond Cr4+:Mg2SiO4 oscillator operating at a low repetition rate," Opt. Lett. 26, 1999-2001 (2001).
[CrossRef]

D. N. Papadopoulos, N. Forget, M. Delaigue, F. Druon, F. Balembois, and P. Georges, "Passively mode-locked diode-pumped Nd:YVO4 oscillator operating at an ultralow repetition rate," Opt. Lett. 28, 1838-1840 (2003).
[CrossRef] [PubMed]

C. Min and T. Joo, "Near-infrared cavity-dumped femtosecond optical parametric oscillator," Opt. Lett. 30, 1855-1857 (2005).
[CrossRef] [PubMed]

T. Südmeyer, E. Innerhofer, F. Brunner, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, D. C. Hanna, and U. Keller, "High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3," Opt. Lett. 29, 1111-1113 (2004).
[CrossRef] [PubMed]

M. O'Connor, M. Watson, D. Shepherd, D. Hanna, J. Price, A. Malinowski, J. Nilsson, N. Broderick, and D. Richardson, "Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser," Opt. Lett. 27, 1052-1054 (2002).
[CrossRef]

C. Schaffer, A. Brodeur, J. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
[CrossRef]

Other

A.E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The OPO and pump optics, including a compressor (C), a variable attenuator, comprising a half-wave plate (λ/2) and polarizing beam splitter (PBS), and a focusing lens (L). X, MgO:PPLN crystal; M1 and M2, concave focusing mirrors of radii 150 mm and 200 mm respectively; M3 - M6, concave relay-imaging mirrors with radii of 2000 mm; M7 and M8, plane high-reflectivity and output coupling mirrors respectively.

Fig. 2.
Fig. 2.

Spectra of the depleted pump (gray fill) and undepleted pump (yellow fill). The intensity scale is normalized to the undepleted spectrum.

Fig. 3.
Fig. 3.

Signal output power (solid circles) as a function of pump power for a 22% output coupler, and a linear fit through the data (blue line), extended to cross the abscissa. The slope efficiency was determined to be 22% and the pump threshold was estimated to be 1.25 W.

Fig. 4.
Fig. 4.

Power spectral densities of the intensity noise on the pump (black) and the OPO signal (green) outputs, measured with Si and InGaAs photodiodes respectively. The right axis shows the cumulative intensity noise for the pump (red) and the OPO signal (blue). The mean output levels from the pump and OPO were normalized to 1 V for the analysis.

Fig. 5.
Fig. 5.

Experimental blue (a) and fitted red (b) interferometric autocorrelation, indicating a pulse duration of 1.5 ps. The temporal intensity of the pulse (c) calculated from the measured spectral intensity and fitted phase in (d). Data were obtained at 1080 mW signal power.

Fig. 6.
Fig. 6.

Experimental blue (a) and fitted red (b) interferometric autocorrelation, indicating a pulse duration of 1.56 ps. The temporal intensity of the pulse (c) calculated from the measured spectral intensity and fitted phase in (d). Data were obtained at 980 mW signal power.

Metrics