Abstract

Purpose: Our goal was to validate the accuracy, repeatability, sensitivity, and dynamic range of a Hartmann-Moiré (HM) wavefront sensor (PixelOptics, Inc.) designed for ophthalmic applications. Methods: Testing apparatus injected a 4 mm diameter monochromatic (532 nm) beam of light into the wavefront sensor for measurment. Controlled amounts of defocus and astigmatism were introduced into the beam with calibrated spherical (-20D to + 18D) and cylindrical (-8D to + 8D) lenses. Repeatability was assessed with three repeated measurements within a 2-minute period. Results: Correlation coefficients between mean wavefront measurements (n = 3) and expected wavefront vergence for both sphere and cylinder lenses were >0.999. For spherical lenses, the sensor was accurate to within 0.1D over the range from -20D to + 18D. For cylindrical lenses, the sensor was accurate to within 0.1D over the range from -8D to + 8D. The primary limitation to demonstrating an even larger dynamic range was the increasingly critical requirements for optical alignment. Sensitivity to small changes of vergence was constant over the instrument′s full dynamic range. Repeatability of measurements for fixed condition was within 0.01D. Conclusion: The Hartmann-Moiré wavefront sensor measures defocus and astigmatism accurately and repeatedly with good sensitivity over a large dynamic range required for ophthalmic applications.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  2. X. Hong, L. N. Thibos, A. Bradley, R. L. Woods, and R. A. Applegate, “Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 15–25 (2003).
    [CrossRef] [PubMed]
  3. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18(8), 1793–1803 (2001).
    [CrossRef]
  4. J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
    [CrossRef] [PubMed]
  5. L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22(5), 427–433 (2002).
    [CrossRef] [PubMed]
  6. F. Zhou, X. Hong, D. T. Miller, L. N. Thibos, and A. Bradley, “Validation of a combined corneal topographer and aberrometer based on Shack-Hartmann wave-front sensing,” J. Opt. Soc. Am. A 21(5), 683–696 (2004).
    [CrossRef]
  7. M. P. Paquin, H. Hamam, and P. Simonet, “Objective measurement of optical aberrations in myopic eyes,” Optom. Vis. Sci. 79(5), 285–291 (2002).
    [CrossRef] [PubMed]
  8. S. A. Klein, “Optimal corneal ablation for eyes with arbitrary Hartmann-Shack aberrations,” J. Opt. Soc. Am. A 15(9), 2580–2588 (1998).
    [CrossRef]
  9. X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vis. Sci. 80(1), 43–49 (2003).
    [CrossRef] [PubMed]
  10. J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
    [PubMed]
  11. S. Pantanelli, S. MacRae, T. M. Jeong, and G. Yoon, “Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor,” Ophthalmology 114(11), 2013–2021 (2007).
    [CrossRef] [PubMed]
  12. L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76(12), 817–825 (1999).
    [CrossRef] [PubMed]
  13. K. Munson, X. Hong, and L. N. Thibos, “Use of a Shack-Hartmann aberrometer to assess the optical outcome of corneal transplantation in a keratoconic eye,” Optom. Vis. Sci. 78(12), 866–871 (2001).
    [CrossRef]
  14. Z. Z. Nagy, I. Palágyi-Deak, A. Kovács, E. Kelemen, and W. Förster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18(5), S620–S623 (2002).
    [PubMed]
  15. J. M. Miller, R. Anwaruddin, J. Straub, and J. Schwiegerling, “Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas,” J. Refract. Surg. 18(5), S579–S583 (2002).
    [PubMed]
  16. X. Hong and L. N. Thibos, “Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery,” J. Refract. Surg. 16(5), S647–S650 (2000).
    [PubMed]
  17. Z. Z. Nagy, I. Palágyi-Deák, E. Kelemen, and A. Kovács, “Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism,” J. Refract. Surg. 18(5), S615–S619 (2002).
    [PubMed]
  18. N. López-Gil, J. F. Castejón-Mochón, A. Benito, J. M. Marín, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Château, and P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18(5), S603–S609 (2002).
    [PubMed]
  19. X. Hong, N. Himebaugh, and L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vis. Sci. 78(12), 872–880 (2001).
    [CrossRef]
  20. D. A. Atchison, D. H. Scott, and W. N. Charman, “Hartmann-Shack technique and refraction across the horizontal visual field,” J. Opt. Soc. Am. A 20(6), 965–973 (2003).
    [CrossRef]
  21. X. Wei and L. Thibos, “Modeling the eye’s optical system by ocular wavefront tomography,” Opt. Express 16(25), 20490–20502 (2008).
    [CrossRef] [PubMed]
  22. X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
    [CrossRef] [PubMed]
  23. G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11(3), 030502 (2006).
    [CrossRef]
  24. N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology 109(11), 1996–2003 (2002).
    [CrossRef] [PubMed]
  25. T. Van Heugten, and Y. Anthony, “Wavefront sensor,” US patent application No. 11/945,028 (2007).
  26. D. Malacara, “Hartmann, Hartmann Shack, and other screen tests” in Optical Shop Testing, 3rd ed. (Wiley-Interscience, 2007).
  27. R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).
  28. J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38(6), 974–982 (1999).
    [CrossRef]
  29. E. J. Sarver, T. Y. Van Heugten, T. D. Padrick, and M. T. Hall, “Astigmatic refraction using peaks of the interferogram Fourier transform for a Talbot Moiré interferometer,” J. Refract. Surg. 23(9), 972–977 (2007).
    [PubMed]
  30. D. R. Neal, D. M. Topa, and J. Copland, “The effects of lenslet resolution on the accuracy of ocular wavefront measurements,” SPIE Proc. 4245, 78–91 (2001).
    [CrossRef]
  31. G. Yoon, S. Pantanelli, and S. MacRae, 'Optimizing the Shack Hartmann wavefront sensor' in Wavefront Customized Visual Correction: The Quest Super Vision II (SLACK Inc., Thorofare, NJ, 2004).
  32. E. Keren and O. Kafri, “Diffraction effects in moire deflectometry,” J. Opt. Soc. Am. A 2(2), 111–120 (1985).
    [CrossRef]

2008 (1)

2007 (2)

E. J. Sarver, T. Y. Van Heugten, T. D. Padrick, and M. T. Hall, “Astigmatic refraction using peaks of the interferogram Fourier transform for a Talbot Moiré interferometer,” J. Refract. Surg. 23(9), 972–977 (2007).
[PubMed]

S. Pantanelli, S. MacRae, T. M. Jeong, and G. Yoon, “Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor,” Ophthalmology 114(11), 2013–2021 (2007).
[CrossRef] [PubMed]

2006 (1)

G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11(3), 030502 (2006).
[CrossRef]

2004 (1)

2003 (4)

D. A. Atchison, D. H. Scott, and W. N. Charman, “Hartmann-Shack technique and refraction across the horizontal visual field,” J. Opt. Soc. Am. A 20(6), 965–973 (2003).
[CrossRef]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

X. Hong, L. N. Thibos, A. Bradley, R. L. Woods, and R. A. Applegate, “Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 15–25 (2003).
[CrossRef] [PubMed]

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vis. Sci. 80(1), 43–49 (2003).
[CrossRef] [PubMed]

2002 (9)

J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

Z. Z. Nagy, I. Palágyi-Deak, A. Kovács, E. Kelemen, and W. Förster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18(5), S620–S623 (2002).
[PubMed]

J. M. Miller, R. Anwaruddin, J. Straub, and J. Schwiegerling, “Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas,” J. Refract. Surg. 18(5), S579–S583 (2002).
[PubMed]

Z. Z. Nagy, I. Palágyi-Deák, E. Kelemen, and A. Kovács, “Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism,” J. Refract. Surg. 18(5), S615–S619 (2002).
[PubMed]

N. López-Gil, J. F. Castejón-Mochón, A. Benito, J. M. Marín, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Château, and P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18(5), S603–S609 (2002).
[PubMed]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22(5), 427–433 (2002).
[CrossRef] [PubMed]

M. P. Paquin, H. Hamam, and P. Simonet, “Objective measurement of optical aberrations in myopic eyes,” Optom. Vis. Sci. 79(5), 285–291 (2002).
[CrossRef] [PubMed]

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology 109(11), 1996–2003 (2002).
[CrossRef] [PubMed]

2001 (4)

K. Munson, X. Hong, and L. N. Thibos, “Use of a Shack-Hartmann aberrometer to assess the optical outcome of corneal transplantation in a keratoconic eye,” Optom. Vis. Sci. 78(12), 866–871 (2001).
[CrossRef]

X. Hong, N. Himebaugh, and L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vis. Sci. 78(12), 872–880 (2001).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18(8), 1793–1803 (2001).
[CrossRef]

D. R. Neal, D. M. Topa, and J. Copland, “The effects of lenslet resolution on the accuracy of ocular wavefront measurements,” SPIE Proc. 4245, 78–91 (2001).
[CrossRef]

2000 (1)

X. Hong and L. N. Thibos, “Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery,” J. Refract. Surg. 16(5), S647–S650 (2000).
[PubMed]

1999 (2)

L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76(12), 817–825 (1999).
[CrossRef] [PubMed]

J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38(6), 974–982 (1999).
[CrossRef]

1998 (1)

1994 (1)

1985 (1)

1971 (1)

R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).

Anwaruddin, R.

J. M. Miller, R. Anwaruddin, J. Straub, and J. Schwiegerling, “Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas,” J. Refract. Surg. 18(5), S579–S583 (2002).
[PubMed]

Applegate, R. A.

X. Hong, L. N. Thibos, A. Bradley, R. L. Woods, and R. A. Applegate, “Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 15–25 (2003).
[CrossRef] [PubMed]

Artal, P.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
[CrossRef] [PubMed]

N. López-Gil, J. F. Castejón-Mochón, A. Benito, J. M. Marín, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Château, and P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18(5), S603–S609 (2002).
[PubMed]

Atchison, D. A.

Benito, A.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
[CrossRef] [PubMed]

N. López-Gil, J. F. Castejón-Mochón, A. Benito, J. M. Marín, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Château, and P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18(5), S603–S609 (2002).
[PubMed]

Bernabeu, E.

J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38(6), 974–982 (1999).
[CrossRef]

Bille, J. F.

Bradley, A.

F. Zhou, X. Hong, D. T. Miller, L. N. Thibos, and A. Bradley, “Validation of a combined corneal topographer and aberrometer based on Shack-Hartmann wave-front sensing,” J. Opt. Soc. Am. A 21(5), 683–696 (2004).
[CrossRef]

X. Hong, L. N. Thibos, A. Bradley, R. L. Woods, and R. A. Applegate, “Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 15–25 (2003).
[CrossRef] [PubMed]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vis. Sci. 80(1), 43–49 (2003).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22(5), 427–433 (2002).
[CrossRef] [PubMed]

Castejón-Mochón, J. F.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
[CrossRef] [PubMed]

N. López-Gil, J. F. Castejón-Mochón, A. Benito, J. M. Marín, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Château, and P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18(5), S603–S609 (2002).
[PubMed]

Charman, W. N.

Château, N.

N. López-Gil, J. F. Castejón-Mochón, A. Benito, J. M. Marín, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Château, and P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18(5), S603–S609 (2002).
[PubMed]

Cheng, X.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vis. Sci. 80(1), 43–49 (2003).
[CrossRef] [PubMed]

Copland, J.

D. R. Neal, D. M. Topa, and J. Copland, “The effects of lenslet resolution on the accuracy of ocular wavefront measurements,” SPIE Proc. 4245, 78–91 (2001).
[CrossRef]

Cox, I. G.

Crespo, D.

J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38(6), 974–982 (1999).
[CrossRef]

Fermigier, B.

N. López-Gil, J. F. Castejón-Mochón, A. Benito, J. M. Marín, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Château, and P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18(5), S603–S609 (2002).
[PubMed]

Förster, W.

Z. Z. Nagy, I. Palágyi-Deak, A. Kovács, E. Kelemen, and W. Förster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18(5), S620–S623 (2002).
[PubMed]

Fujikado, T.

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology 109(11), 1996–2003 (2002).
[CrossRef] [PubMed]

Goelz, S.

Grimm, B.

Guirao, A.

Hall, M. T.

E. J. Sarver, T. Y. Van Heugten, T. D. Padrick, and M. T. Hall, “Astigmatic refraction using peaks of the interferogram Fourier transform for a Talbot Moiré interferometer,” J. Refract. Surg. 23(9), 972–977 (2007).
[PubMed]

Hamam, H.

M. P. Paquin, H. Hamam, and P. Simonet, “Objective measurement of optical aberrations in myopic eyes,” Optom. Vis. Sci. 79(5), 285–291 (2002).
[CrossRef] [PubMed]

Himebaugh, N.

X. Hong, N. Himebaugh, and L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vis. Sci. 78(12), 872–880 (2001).
[CrossRef]

Himebaugh, N. L.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

Hirohara, Y.

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology 109(11), 1996–2003 (2002).
[CrossRef] [PubMed]

Hong, X.

F. Zhou, X. Hong, D. T. Miller, L. N. Thibos, and A. Bradley, “Validation of a combined corneal topographer and aberrometer based on Shack-Hartmann wave-front sensing,” J. Opt. Soc. Am. A 21(5), 683–696 (2004).
[CrossRef]

X. Hong, L. N. Thibos, A. Bradley, R. L. Woods, and R. A. Applegate, “Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 15–25 (2003).
[CrossRef] [PubMed]

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vis. Sci. 80(1), 43–49 (2003).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22(5), 427–433 (2002).
[CrossRef] [PubMed]

K. Munson, X. Hong, and L. N. Thibos, “Use of a Shack-Hartmann aberrometer to assess the optical outcome of corneal transplantation in a keratoconic eye,” Optom. Vis. Sci. 78(12), 866–871 (2001).
[CrossRef]

X. Hong, N. Himebaugh, and L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vis. Sci. 78(12), 872–880 (2001).
[CrossRef]

X. Hong and L. N. Thibos, “Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery,” J. Refract. Surg. 16(5), S647–S650 (2000).
[PubMed]

L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76(12), 817–825 (1999).
[CrossRef] [PubMed]

Jeong, T. M.

S. Pantanelli, S. MacRae, T. M. Jeong, and G. Yoon, “Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor,” Ophthalmology 114(11), 2013–2021 (2007).
[CrossRef] [PubMed]

Joyeux, D.

N. López-Gil, J. F. Castejón-Mochón, A. Benito, J. M. Marín, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Château, and P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18(5), S603–S609 (2002).
[PubMed]

Kafri, O.

Kelemen, E.

Z. Z. Nagy, I. Palágyi-Deak, A. Kovács, E. Kelemen, and W. Förster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18(5), S620–S623 (2002).
[PubMed]

Z. Z. Nagy, I. Palágyi-Deák, E. Kelemen, and A. Kovács, “Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism,” J. Refract. Surg. 18(5), S615–S619 (2002).
[PubMed]

Keren, E.

Klein, S. A.

Kollbaum, P. S.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

Kovács, A.

Z. Z. Nagy, I. Palágyi-Deák, E. Kelemen, and A. Kovács, “Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism,” J. Refract. Surg. 18(5), S615–S619 (2002).
[PubMed]

Z. Z. Nagy, I. Palágyi-Deak, A. Kovács, E. Kelemen, and W. Förster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18(5), S620–S623 (2002).
[PubMed]

Kuroda, T.

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology 109(11), 1996–2003 (2002).
[CrossRef] [PubMed]

Leach, N.

J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

Liang, J.

Lo-a-Foe, G.

N. López-Gil, J. F. Castejón-Mochón, A. Benito, J. M. Marín, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Château, and P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18(5), S603–S609 (2002).
[PubMed]

López-Gil, N.

N. López-Gil, J. F. Castejón-Mochón, A. Benito, J. M. Marín, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Château, and P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18(5), S603–S609 (2002).
[PubMed]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
[CrossRef] [PubMed]

MacRae, S.

S. Pantanelli, S. MacRae, T. M. Jeong, and G. Yoon, “Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor,” Ophthalmology 114(11), 2013–2021 (2007).
[CrossRef] [PubMed]

Maeda, N.

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology 109(11), 1996–2003 (2002).
[CrossRef] [PubMed]

Marin, G.

N. López-Gil, J. F. Castejón-Mochón, A. Benito, J. M. Marín, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Château, and P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18(5), S603–S609 (2002).
[PubMed]

Marín, J. M.

N. López-Gil, J. F. Castejón-Mochón, A. Benito, J. M. Marín, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Château, and P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18(5), S603–S609 (2002).
[PubMed]

Marsack, J.

J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

Mihashi, T.

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology 109(11), 1996–2003 (2002).
[CrossRef] [PubMed]

Miller, D. T.

Miller, J. M.

J. M. Miller, R. Anwaruddin, J. Straub, and J. Schwiegerling, “Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas,” J. Refract. Surg. 18(5), S579–S583 (2002).
[PubMed]

Milner, T.

J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

Munson, K.

K. Munson, X. Hong, and L. N. Thibos, “Use of a Shack-Hartmann aberrometer to assess the optical outcome of corneal transplantation in a keratoconic eye,” Optom. Vis. Sci. 78(12), 866–871 (2001).
[CrossRef]

Nagy, L. J.

G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11(3), 030502 (2006).
[CrossRef]

Nagy, Z. Z.

Z. Z. Nagy, I. Palágyi-Deak, A. Kovács, E. Kelemen, and W. Förster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18(5), S620–S623 (2002).
[PubMed]

Z. Z. Nagy, I. Palágyi-Deák, E. Kelemen, and A. Kovács, “Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism,” J. Refract. Surg. 18(5), S615–S619 (2002).
[PubMed]

Neal, D. R.

D. R. Neal, D. M. Topa, and J. Copland, “The effects of lenslet resolution on the accuracy of ocular wavefront measurements,” SPIE Proc. 4245, 78–91 (2001).
[CrossRef]

Nishida, K.

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology 109(11), 1996–2003 (2002).
[CrossRef] [PubMed]

Padrick, T. D.

E. J. Sarver, T. Y. Van Heugten, T. D. Padrick, and M. T. Hall, “Astigmatic refraction using peaks of the interferogram Fourier transform for a Talbot Moiré interferometer,” J. Refract. Surg. 23(9), 972–977 (2007).
[PubMed]

Palágyi-Deak, I.

Z. Z. Nagy, I. Palágyi-Deak, A. Kovács, E. Kelemen, and W. Förster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18(5), S620–S623 (2002).
[PubMed]

Palágyi-Deák, I.

Z. Z. Nagy, I. Palágyi-Deák, E. Kelemen, and A. Kovács, “Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism,” J. Refract. Surg. 18(5), S615–S619 (2002).
[PubMed]

Pantanelli, S.

S. Pantanelli, S. MacRae, T. M. Jeong, and G. Yoon, “Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor,” Ophthalmology 114(11), 2013–2021 (2007).
[CrossRef] [PubMed]

G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11(3), 030502 (2006).
[CrossRef]

Paquin, M. P.

M. P. Paquin, H. Hamam, and P. Simonet, “Objective measurement of optical aberrations in myopic eyes,” Optom. Vis. Sci. 79(5), 285–291 (2002).
[CrossRef] [PubMed]

Platt, B. C.

R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).

Porter, J.

Quiroga, J. A.

J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38(6), 974–982 (1999).
[CrossRef]

Renard, D.

N. López-Gil, J. F. Castejón-Mochón, A. Benito, J. M. Marín, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Château, and P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18(5), S603–S609 (2002).
[PubMed]

Roorda, A.

J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

Rylander, G.

J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

Sarver, E. J.

E. J. Sarver, T. Y. Van Heugten, T. D. Padrick, and M. T. Hall, “Astigmatic refraction using peaks of the interferogram Fourier transform for a Talbot Moiré interferometer,” J. Refract. Surg. 23(9), 972–977 (2007).
[PubMed]

Schwiegerling, J.

J. M. Miller, R. Anwaruddin, J. Straub, and J. Schwiegerling, “Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas,” J. Refract. Surg. 18(5), S579–S583 (2002).
[PubMed]

Scott, D. H.

Shack, R. V.

R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).

Simonet, P.

M. P. Paquin, H. Hamam, and P. Simonet, “Objective measurement of optical aberrations in myopic eyes,” Optom. Vis. Sci. 79(5), 285–291 (2002).
[CrossRef] [PubMed]

Straub, J.

J. M. Miller, R. Anwaruddin, J. Straub, and J. Schwiegerling, “Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas,” J. Refract. Surg. 18(5), S579–S583 (2002).
[PubMed]

Tano, Y.

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology 109(11), 1996–2003 (2002).
[CrossRef] [PubMed]

Thibos, L.

Thibos, L. N.

F. Zhou, X. Hong, D. T. Miller, L. N. Thibos, and A. Bradley, “Validation of a combined corneal topographer and aberrometer based on Shack-Hartmann wave-front sensing,” J. Opt. Soc. Am. A 21(5), 683–696 (2004).
[CrossRef]

X. Hong, L. N. Thibos, A. Bradley, R. L. Woods, and R. A. Applegate, “Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 15–25 (2003).
[CrossRef] [PubMed]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vis. Sci. 80(1), 43–49 (2003).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22(5), 427–433 (2002).
[CrossRef] [PubMed]

K. Munson, X. Hong, and L. N. Thibos, “Use of a Shack-Hartmann aberrometer to assess the optical outcome of corneal transplantation in a keratoconic eye,” Optom. Vis. Sci. 78(12), 866–871 (2001).
[CrossRef]

X. Hong, N. Himebaugh, and L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vis. Sci. 78(12), 872–880 (2001).
[CrossRef]

X. Hong and L. N. Thibos, “Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery,” J. Refract. Surg. 16(5), S647–S650 (2000).
[PubMed]

L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76(12), 817–825 (1999).
[CrossRef] [PubMed]

Topa, D. M.

D. R. Neal, D. M. Topa, and J. Copland, “The effects of lenslet resolution on the accuracy of ocular wavefront measurements,” SPIE Proc. 4245, 78–91 (2001).
[CrossRef]

Van Heugten, T. Y.

E. J. Sarver, T. Y. Van Heugten, T. D. Padrick, and M. T. Hall, “Astigmatic refraction using peaks of the interferogram Fourier transform for a Talbot Moiré interferometer,” J. Refract. Surg. 23(9), 972–977 (2007).
[PubMed]

Watanabe, H.

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology 109(11), 1996–2003 (2002).
[CrossRef] [PubMed]

Wei, X.

Williams, D. R.

Woods, R. L.

X. Hong, L. N. Thibos, A. Bradley, R. L. Woods, and R. A. Applegate, “Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 15–25 (2003).
[CrossRef] [PubMed]

Yoon, G.

S. Pantanelli, S. MacRae, T. M. Jeong, and G. Yoon, “Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor,” Ophthalmology 114(11), 2013–2021 (2007).
[CrossRef] [PubMed]

G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11(3), 030502 (2006).
[CrossRef]

Zhou, F.

Biomed. Sci. Instrum. (1)

J. Marsack, T. Milner, G. Rylander, N. Leach, and A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

J. Biomed. Opt. (1)

G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11(3), 030502 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656 (1971).

J. Opt. Soc. Am. A (6)

J. Refract. Surg. (6)

E. J. Sarver, T. Y. Van Heugten, T. D. Padrick, and M. T. Hall, “Astigmatic refraction using peaks of the interferogram Fourier transform for a Talbot Moiré interferometer,” J. Refract. Surg. 23(9), 972–977 (2007).
[PubMed]

Z. Z. Nagy, I. Palágyi-Deak, A. Kovács, E. Kelemen, and W. Förster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18(5), S620–S623 (2002).
[PubMed]

J. M. Miller, R. Anwaruddin, J. Straub, and J. Schwiegerling, “Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas,” J. Refract. Surg. 18(5), S579–S583 (2002).
[PubMed]

X. Hong and L. N. Thibos, “Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery,” J. Refract. Surg. 16(5), S647–S650 (2000).
[PubMed]

Z. Z. Nagy, I. Palágyi-Deák, E. Kelemen, and A. Kovács, “Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism,” J. Refract. Surg. 18(5), S615–S619 (2002).
[PubMed]

N. López-Gil, J. F. Castejón-Mochón, A. Benito, J. M. Marín, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Château, and P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18(5), S603–S609 (2002).
[PubMed]

Ophthalmic Physiol. Opt. (1)

L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22(5), 427–433 (2002).
[CrossRef] [PubMed]

Ophthalmology (2)

S. Pantanelli, S. MacRae, T. M. Jeong, and G. Yoon, “Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor,” Ophthalmology 114(11), 2013–2021 (2007).
[CrossRef] [PubMed]

N. Maeda, T. Fujikado, T. Kuroda, T. Mihashi, Y. Hirohara, K. Nishida, H. Watanabe, and Y. Tano, “Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus,” Ophthalmology 109(11), 1996–2003 (2002).
[CrossRef] [PubMed]

Opt. Eng. (1)

J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38(6), 974–982 (1999).
[CrossRef]

Opt. Express (1)

Optom. Vis. Sci. (7)

M. P. Paquin, H. Hamam, and P. Simonet, “Objective measurement of optical aberrations in myopic eyes,” Optom. Vis. Sci. 79(5), 285–291 (2002).
[CrossRef] [PubMed]

X. Hong, L. N. Thibos, A. Bradley, R. L. Woods, and R. A. Applegate, “Comparison of monochromatic ocular aberrations measured with an objective cross-cylinder aberroscope and a Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 15–25 (2003).
[CrossRef] [PubMed]

X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vis. Sci. 80(1), 43–49 (2003).
[CrossRef] [PubMed]

L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76(12), 817–825 (1999).
[CrossRef] [PubMed]

K. Munson, X. Hong, and L. N. Thibos, “Use of a Shack-Hartmann aberrometer to assess the optical outcome of corneal transplantation in a keratoconic eye,” Optom. Vis. Sci. 78(12), 866–871 (2001).
[CrossRef]

X. Hong, N. Himebaugh, and L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vis. Sci. 78(12), 872–880 (2001).
[CrossRef]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

SPIE Proc. (1)

D. R. Neal, D. M. Topa, and J. Copland, “The effects of lenslet resolution on the accuracy of ocular wavefront measurements,” SPIE Proc. 4245, 78–91 (2001).
[CrossRef]

Vision Res. (1)

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42(13), 1611–1617 (2002).
[CrossRef] [PubMed]

Other (3)

G. Yoon, S. Pantanelli, and S. MacRae, 'Optimizing the Shack Hartmann wavefront sensor' in Wavefront Customized Visual Correction: The Quest Super Vision II (SLACK Inc., Thorofare, NJ, 2004).

T. Van Heugten, and Y. Anthony, “Wavefront sensor,” US patent application No. 11/945,028 (2007).

D. Malacara, “Hartmann, Hartmann Shack, and other screen tests” in Optical Shop Testing, 3rd ed. (Wiley-Interscience, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

A recorded moiré deflectogram for a -5 D spherical wavefront over 4 mm pupil.

Fig. 2.
Fig. 2.

Single-pass apparatus to validate the dynamic range and sensitivity of HM wavefront sensor. BE = beam expander, ND = neutral density filter, EP = entrance pupil, T1-T2 = Relay lenses, HM = Hartmann Moiré wavefront sensor.

Fig. 3.
Fig. 3.

Comparison between HM wavefront sensor measurements of defocus and the calibrated (lensometer measurments) power of 77 spherical trial lenses introduced into a collimated laser beam. Each symbol represents the mean of 3 measurements and solid line represents the least-squares regression.

Fig. 4.
Fig. 4.

Comparison between HM wavefront sensor measurements of astigmatism and the calibrated (lensometer measurments) power of 16 cylindrical trial lens introduced into a collimated laser beam. Each symbol represents the mean of 3 measurements and solid line represents the least-squares regression.

Fig. 5.
Fig. 5.

The sensitivity test of HM wavefront sensor for (a) -20D baseline, (b) -10D baseline, and (c) + 10D baseline. Symbols show mean of 3 measurements and solid line is a least-squares regression.

Metrics