Abstract

We have integrated magneto-optical traps (MOTs) into an atom chip by etching pyramids into a silicon wafer. These have been used to trap atoms on the chip, directly from a room temperature vapor of rubidium. This new atom trapping method provides a simple way to integrate several atom sources on the same chip. It represents a substantial advance in atom chip technology and offers new possibilities for atom chip applications such as integrated single atom or photon sources and molecules on a chip.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Hinds and I. G. Hughes, “A pyramidal magneto-optical trap as a source of slow atoms,” J.Phys. D 18, R119–R146 (1999).
    [CrossRef]
  2. R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At., Mol. Opt. Phys. 48, 263–356 (2002).
  3. J. Fortágh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).
    [CrossRef]
  4. W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
    [CrossRef] [PubMed]
  5. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein ondensation in a surface microtrap,” Phys. Rev. Lett. 87, 230,401 (2001).
    [CrossRef]
  6. C. D. J. Sinclair, E. A. Curtis, I. Llorente-Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein Condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 03,160(R) (2005).
    [CrossRef]
  7. J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83(17), 3398–3401 (1999).
    [CrossRef]
  8. A. Grabowski and T. Pfau, “A lattice of magneto-optical and magnetic traps for cold atoms,” Eur. Phys. J. D 22, 347–354 (2003).
  9. M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” App. Phys. Letts. 88, 071,116 (2006).
  10. K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, “Single-beam atom trap in a pyramidal and conical hollow mirror,” Opt. Letts. 21, 1177 (1996).
    [CrossRef]
  11. G. N. Lewis, Z. Moktdir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, “Fabrication of Magnetooptical Atom Traps on a Chip,” J. MEMS 18, 347 (2009).
  12. A. S. Louro and J. R. Senna, “Real-time, in-situ microscopic observation of bubbles and roughening in KOH etching of silicon,” in Micromachining and Microfabrication Process Technology VII (2001).
  13. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
    [CrossRef]
  14. K. P. Larsen, J. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15, 873–882 (2005).
    [CrossRef]
  15. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
    [CrossRef]
  16. G. Ritt, G. Cennini, C. Geckeler, and M. Weitz, “Laser frequency offset locking using a side of filter technique,” App. Phys. B 79, 363–365 (2004).
    [CrossRef]
  17. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-Stabilized Diode Laser with the Zeeman Shift in an Atomic Vapor,” App. Opt. 37, 3295–3298 (1998).
    [CrossRef]
  18. K. Lindquist, M. Stephens, and C. Wieman, “Experimental and Theoretical-Study of the Vapor-Cell Zeeman Optical Trap,” Phys. Rev. A 46(7), 4082–4090 (1992).
    [CrossRef] [PubMed]
  19. M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom Detection and Photon Production in a Scalable, Open, Optical Microcavity,” Phys. Rev. Lett. 99, 063,601 (2007).
    [CrossRef]
  20. K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Reviews of Modern Physics 78(2), 483 (2006).
    [CrossRef]

2009 (1)

G. N. Lewis, Z. Moktdir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, “Fabrication of Magnetooptical Atom Traps on a Chip,” J. MEMS 18, 347 (2009).

2007 (2)

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom Detection and Photon Production in a Scalable, Open, Optical Microcavity,” Phys. Rev. Lett. 99, 063,601 (2007).
[CrossRef]

J. Fortágh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).
[CrossRef]

2006 (2)

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” App. Phys. Letts. 88, 071,116 (2006).

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Reviews of Modern Physics 78(2), 483 (2006).
[CrossRef]

2005 (2)

K. P. Larsen, J. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15, 873–882 (2005).
[CrossRef]

C. D. J. Sinclair, E. A. Curtis, I. Llorente-Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein Condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 03,160(R) (2005).
[CrossRef]

2004 (1)

G. Ritt, G. Cennini, C. Geckeler, and M. Weitz, “Laser frequency offset locking using a side of filter technique,” App. Phys. B 79, 363–365 (2004).
[CrossRef]

2003 (1)

A. Grabowski and T. Pfau, “A lattice of magneto-optical and magnetic traps for cold atoms,” Eur. Phys. J. D 22, 347–354 (2003).

2002 (2)

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
[CrossRef]

R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At., Mol. Opt. Phys. 48, 263–356 (2002).

2001 (3)

W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef] [PubMed]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein ondensation in a surface microtrap,” Phys. Rev. Lett. 87, 230,401 (2001).
[CrossRef]

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
[CrossRef]

1999 (2)

E. A. Hinds and I. G. Hughes, “A pyramidal magneto-optical trap as a source of slow atoms,” J.Phys. D 18, R119–R146 (1999).
[CrossRef]

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83(17), 3398–3401 (1999).
[CrossRef]

1998 (1)

K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-Stabilized Diode Laser with the Zeeman Shift in an Atomic Vapor,” App. Opt. 37, 3295–3298 (1998).
[CrossRef]

1996 (1)

K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, “Single-beam atom trap in a pyramidal and conical hollow mirror,” Opt. Letts. 21, 1177 (1996).
[CrossRef]

1992 (1)

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and Theoretical-Study of the Vapor-Cell Zeeman Optical Trap,” Phys. Rev. A 46(7), 4082–4090 (1992).
[CrossRef] [PubMed]

Adams, C. S.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
[CrossRef]

Ashmore, J.

G. N. Lewis, Z. Moktdir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, “Fabrication of Magnetooptical Atom Traps on a Chip,” J. MEMS 18, 347 (2009).

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom Detection and Photon Production in a Scalable, Open, Optical Microcavity,” Phys. Rev. Lett. 99, 063,601 (2007).
[CrossRef]

Ashmore, J. P.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” App. Phys. Letts. 88, 071,116 (2006).

Baumberg, J. J.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” App. Phys. Letts. 88, 071,116 (2006).

Cennini, G.

G. Ritt, G. Cennini, C. Geckeler, and M. Weitz, “Laser frequency offset locking using a side of filter technique,” App. Phys. B 79, 363–365 (2004).
[CrossRef]

Cerrina, F.

Corwin, K. L.

K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-Stabilized Diode Laser with the Zeeman Shift in an Atomic Vapor,” App. Opt. 37, 3295–3298 (1998).
[CrossRef]

Cox, S. G.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
[CrossRef]

Curtis, E. A.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” App. Phys. Letts. 88, 071,116 (2006).

C. D. J. Sinclair, E. A. Curtis, I. Llorente-Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein Condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 03,160(R) (2005).
[CrossRef]

Darquié, B.

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom Detection and Photon Production in a Scalable, Open, Optical Microcavity,” Phys. Rev. Lett. 99, 063,601 (2007).
[CrossRef]

Denschlag, J.

R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At., Mol. Opt. Phys. 48, 263–356 (2002).

Dutier, G.

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom Detection and Photon Production in a Scalable, Open, Optical Microcavity,” Phys. Rev. Lett. 99, 063,601 (2007).
[CrossRef]

Epstein, R. J.

K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-Stabilized Diode Laser with the Zeeman Shift in an Atomic Vapor,” App. Opt. 37, 3295–3298 (1998).
[CrossRef]

Eriksson, S.

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom Detection and Photon Production in a Scalable, Open, Optical Microcavity,” Phys. Rev. Lett. 99, 063,601 (2007).
[CrossRef]

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” App. Phys. Letts. 88, 071,116 (2006).

C. D. J. Sinclair, E. A. Curtis, I. Llorente-Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein Condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 03,160(R) (2005).
[CrossRef]

Folman, R.

R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At., Mol. Opt. Phys. 48, 263–356 (2002).

Fortagh, J.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein ondensation in a surface microtrap,” Phys. Rev. Lett. 87, 230,401 (2001).
[CrossRef]

Fortágh, J.

J. Fortágh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).
[CrossRef]

Geckeler, C.

G. Ritt, G. Cennini, C. Geckeler, and M. Weitz, “Laser frequency offset locking using a side of filter technique,” App. Phys. B 79, 363–365 (2004).
[CrossRef]

Goldwin, J.

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom Detection and Photon Production in a Scalable, Open, Optical Microcavity,” Phys. Rev. Lett. 99, 063,601 (2007).
[CrossRef]

Gollasch, C.

G. N. Lewis, Z. Moktdir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, “Fabrication of Magnetooptical Atom Traps on a Chip,” J. MEMS 18, 347 (2009).

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” App. Phys. Letts. 88, 071,116 (2006).

Grabowski, A.

A. Grabowski and T. Pfau, “A lattice of magneto-optical and magnetic traps for cold atoms,” Eur. Phys. J. D 22, 347–354 (2003).

Griffin, P. F.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
[CrossRef]

Grossmann, A.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein ondensation in a surface microtrap,” Phys. Rev. Lett. 87, 230,401 (2001).
[CrossRef]

Hall, B. V.

C. D. J. Sinclair, E. A. Curtis, I. Llorente-Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein Condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 03,160(R) (2005).
[CrossRef]

Hand, C. F.

K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-Stabilized Diode Laser with the Zeeman Shift in an Atomic Vapor,” App. Opt. 37, 3295–3298 (1998).
[CrossRef]

Hansch, T. W.

W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef] [PubMed]

Hänsch, T. W.

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83(17), 3398–3401 (1999).
[CrossRef]

Hansel, W.

W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef] [PubMed]

Hänsel, W.

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83(17), 3398–3401 (1999).
[CrossRef]

Hansen, O.

K. P. Larsen, J. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15, 873–882 (2005).
[CrossRef]

Henkel, C.

R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At., Mol. Opt. Phys. 48, 263–356 (2002).

Hinds, E. A.

G. N. Lewis, Z. Moktdir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, “Fabrication of Magnetooptical Atom Traps on a Chip,” J. MEMS 18, 347 (2009).

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom Detection and Photon Production in a Scalable, Open, Optical Microcavity,” Phys. Rev. Lett. 99, 063,601 (2007).
[CrossRef]

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” App. Phys. Letts. 88, 071,116 (2006).

C. D. J. Sinclair, E. A. Curtis, I. Llorente-Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein Condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 03,160(R) (2005).
[CrossRef]

E. A. Hinds and I. G. Hughes, “A pyramidal magneto-optical trap as a source of slow atoms,” J.Phys. D 18, R119–R146 (1999).
[CrossRef]

Hommelhoff, P.

W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef] [PubMed]

Hughes, I. G.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
[CrossRef]

E. A. Hinds and I. G. Hughes, “A pyramidal magneto-optical trap as a source of slow atoms,” J.Phys. D 18, R119–R146 (1999).
[CrossRef]

Jhe, W.

K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, “Single-beam atom trap in a pyramidal and conical hollow mirror,” Opt. Letts. 21, 1177 (1996).
[CrossRef]

Jones, K. M.

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Reviews of Modern Physics 78(2), 483 (2006).
[CrossRef]

Julienne, P. S.

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Reviews of Modern Physics 78(2), 483 (2006).
[CrossRef]

Kim, J. A.

K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, “Single-beam atom trap in a pyramidal and conical hollow mirror,” Opt. Letts. 21, 1177 (1996).
[CrossRef]

Kimerling, L. C.

Kraft, M.

G. N. Lewis, Z. Moktdir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, “Fabrication of Magnetooptical Atom Traps on a Chip,” J. MEMS 18, 347 (2009).

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” App. Phys. Letts. 88, 071,116 (2006).

Kruger, P.

R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At., Mol. Opt. Phys. 48, 263–356 (2002).

Laliotis, A.

G. N. Lewis, Z. Moktdir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, “Fabrication of Magnetooptical Atom Traps on a Chip,” J. MEMS 18, 347 (2009).

Larsen, K. P.

K. P. Larsen, J. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15, 873–882 (2005).
[CrossRef]

Lee, K. I.

K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, “Single-beam atom trap in a pyramidal and conical hollow mirror,” Opt. Letts. 21, 1177 (1996).
[CrossRef]

Lee, K. K.

Lett, P. D.

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Reviews of Modern Physics 78(2), 483 (2006).
[CrossRef]

Lewis, G. N.

G. N. Lewis, Z. Moktdir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, “Fabrication of Magnetooptical Atom Traps on a Chip,” J. MEMS 18, 347 (2009).

Lim, D. R.

Lindquist, K.

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and Theoretical-Study of the Vapor-Cell Zeeman Optical Trap,” Phys. Rev. A 46(7), 4082–4090 (1992).
[CrossRef] [PubMed]

Llorente-Garcia, I.

C. D. J. Sinclair, E. A. Curtis, I. Llorente-Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein Condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 03,160(R) (2005).
[CrossRef]

Louro, A. S.

A. S. Louro and J. R. Senna, “Real-time, in-situ microscopic observation of bubbles and roughening in KOH etching of silicon,” in Micromachining and Microfabrication Process Technology VII (2001).

Lu, Z.-T.

K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-Stabilized Diode Laser with the Zeeman Shift in an Atomic Vapor,” App. Opt. 37, 3295–3298 (1998).
[CrossRef]

Moktadir, Z.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” App. Phys. Letts. 88, 071,116 (2006).

Moktdir, Z.

G. N. Lewis, Z. Moktdir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, “Fabrication of Magnetooptical Atom Traps on a Chip,” J. MEMS 18, 347 (2009).

Noh, H. R.

K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, “Single-beam atom trap in a pyramidal and conical hollow mirror,” Opt. Letts. 21, 1177 (1996).
[CrossRef]

Ott, H.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein ondensation in a surface microtrap,” Phys. Rev. Lett. 87, 230,401 (2001).
[CrossRef]

Pearman, C. P.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
[CrossRef]

Pfau, T.

A. Grabowski and T. Pfau, “A lattice of magneto-optical and magnetic traps for cold atoms,” Eur. Phys. J. D 22, 347–354 (2003).

Pollock, S.

G. N. Lewis, Z. Moktdir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, “Fabrication of Magnetooptical Atom Traps on a Chip,” J. MEMS 18, 347 (2009).

Prakash, G. V.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” App. Phys. Letts. 88, 071,116 (2006).

Ramirez-Martinez, F.

G. N. Lewis, Z. Moktdir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, “Fabrication of Magnetooptical Atom Traps on a Chip,” J. MEMS 18, 347 (2009).

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” App. Phys. Letts. 88, 071,116 (2006).

Ravnkilde, J.

K. P. Larsen, J. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15, 873–882 (2005).
[CrossRef]

Reichel, J.

W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef] [PubMed]

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83(17), 3398–3401 (1999).
[CrossRef]

Retter, J. A.

C. D. J. Sinclair, E. A. Curtis, I. Llorente-Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein Condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 03,160(R) (2005).
[CrossRef]

Ritt, G.

G. Ritt, G. Cennini, C. Geckeler, and M. Weitz, “Laser frequency offset locking using a side of filter technique,” App. Phys. B 79, 363–365 (2004).
[CrossRef]

Sauer, B. E.

C. D. J. Sinclair, E. A. Curtis, I. Llorente-Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein Condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 03,160(R) (2005).
[CrossRef]

Schlotterbeck, G.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein ondensation in a surface microtrap,” Phys. Rev. Lett. 87, 230,401 (2001).
[CrossRef]

Schmiedmayer, J.

R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At., Mol. Opt. Phys. 48, 263–356 (2002).

Senna, J. R.

A. S. Louro and J. R. Senna, “Real-time, in-situ microscopic observation of bubbles and roughening in KOH etching of silicon,” in Micromachining and Microfabrication Process Technology VII (2001).

Shin, J.

Sinclair, C. D. J.

C. D. J. Sinclair, E. A. Curtis, I. Llorente-Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein Condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 03,160(R) (2005).
[CrossRef]

Smith, D. A.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
[CrossRef]

Stephens, M.

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and Theoretical-Study of the Vapor-Cell Zeeman Optical Trap,” Phys. Rev. A 46(7), 4082–4090 (1992).
[CrossRef] [PubMed]

Tiesinga, E.

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Reviews of Modern Physics 78(2), 483 (2006).
[CrossRef]

Trupke, M.

G. N. Lewis, Z. Moktdir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, “Fabrication of Magnetooptical Atom Traps on a Chip,” J. MEMS 18, 347 (2009).

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom Detection and Photon Production in a Scalable, Open, Optical Microcavity,” Phys. Rev. Lett. 99, 063,601 (2007).
[CrossRef]

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” App. Phys. Letts. 88, 071,116 (2006).

Weitz, M.

G. Ritt, G. Cennini, C. Geckeler, and M. Weitz, “Laser frequency offset locking using a side of filter technique,” App. Phys. B 79, 363–365 (2004).
[CrossRef]

Wieman, C.

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and Theoretical-Study of the Vapor-Cell Zeeman Optical Trap,” Phys. Rev. A 46(7), 4082–4090 (1992).
[CrossRef] [PubMed]

Wieman, C. E.

K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-Stabilized Diode Laser with the Zeeman Shift in an Atomic Vapor,” App. Opt. 37, 3295–3298 (1998).
[CrossRef]

Zimmermann, C.

J. Fortágh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).
[CrossRef]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein ondensation in a surface microtrap,” Phys. Rev. Lett. 87, 230,401 (2001).
[CrossRef]

Adv. At., Mol. Opt. Phys. (1)

R. Folman, P. Kruger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At., Mol. Opt. Phys. 48, 263–356 (2002).

App. Opt. (1)

K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-Stabilized Diode Laser with the Zeeman Shift in an Atomic Vapor,” App. Opt. 37, 3295–3298 (1998).
[CrossRef]

App. Phys. B (1)

G. Ritt, G. Cennini, C. Geckeler, and M. Weitz, “Laser frequency offset locking using a side of filter technique,” App. Phys. B 79, 363–365 (2004).
[CrossRef]

App. Phys. Letts. (1)

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, “Pyramidal micromirrors for microsystems and atom chips,” App. Phys. Letts. 88, 071,116 (2006).

Eur. Phys. J. D (1)

A. Grabowski and T. Pfau, “A lattice of magneto-optical and magnetic traps for cold atoms,” Eur. Phys. J. D 22, 347–354 (2003).

J. MEMS (1)

G. N. Lewis, Z. Moktdir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, “Fabrication of Magnetooptical Atom Traps on a Chip,” J. MEMS 18, 347 (2009).

J. Micromech. Microeng. (1)

K. P. Larsen, J. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15, 873–882 (2005).
[CrossRef]

J. Phys. B (1)

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35(24), 5141–5151 (2002).
[CrossRef]

J.Phys. D (1)

E. A. Hinds and I. G. Hughes, “A pyramidal magneto-optical trap as a source of slow atoms,” J.Phys. D 18, R119–R146 (1999).
[CrossRef]

Nature (1)

W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, “Bose-Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Letts. (1)

K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, “Single-beam atom trap in a pyramidal and conical hollow mirror,” Opt. Letts. 21, 1177 (1996).
[CrossRef]

Phys. Rev. A (2)

C. D. J. Sinclair, E. A. Curtis, I. Llorente-Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, “Bose-Einstein Condensation on a permanent-magnet atom chip,” Phys. Rev. A 72, 03,160(R) (2005).
[CrossRef]

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and Theoretical-Study of the Vapor-Cell Zeeman Optical Trap,” Phys. Rev. A 46(7), 4082–4090 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom Detection and Photon Production in a Scalable, Open, Optical Microcavity,” Phys. Rev. Lett. 99, 063,601 (2007).
[CrossRef]

J. Reichel, W. Hänsel, and T. W. Hänsch, “Atomic Micromanipulation with Magnetic Surface Traps,” Phys. Rev. Lett. 83(17), 3398–3401 (1999).
[CrossRef]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose-Einstein ondensation in a surface microtrap,” Phys. Rev. Lett. 87, 230,401 (2001).
[CrossRef]

Rev. Mod. Phys. (1)

J. Fortágh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).
[CrossRef]

Reviews of Modern Physics (1)

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Reviews of Modern Physics 78(2), 483 (2006).
[CrossRef]

Other (1)

A. S. Louro and J. R. Senna, “Real-time, in-situ microscopic observation of bubbles and roughening in KOH etching of silicon,” in Micromachining and Microfabrication Process Technology VII (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Pyramids after various stages of processing. Top row: photographs. Bottom row: optical microscope images of an internal pyramid face. (a, d) Array of pyramids 2.8mm deep, etched without agitation. (b, e) Single pyramid 2.1mm deep, formed with air bubbling through etchant. (c, f) Pyramid 2.8mm deep, etched with agitation, then polished by 30 minutes of ICP etching. This particular wafer was diced to make the individual pyramid shown.

Fig. 2.
Fig. 2.

The complete chip package consisting of a 3 × 3 array of silicon pyramid MOTs mounted in a rectangular PEEK holder 25 × 30 mm2. The necessary magnetic fields are generated using a copper zig-zag array, which forms part of the package, above and below the chip.

Fig. 3.
Fig. 3.

Fluorescence image of 2000 cold 85Rb atoms in a 2.5mm-deep pyramid. Reflections of the MOT are just visible in two of the internal faces.

Metrics