Abstract

A number of useful fiber optic devices depend on being able to predict and manipulate the radiation field emitted by tilted fiber Bragg gratings. Previously we demonstrated analytically the manner in which this radiation field is directionally dependent on the phase matching characteristics of a grating’s three-dimensional structure as well as the polarization dependent dipole response of the medium itself. In this paper, for the first time, experimental measurements of the out-tapped field are presented which clearly illustrate and confirm the existence of the predicted trends associated with each of these physical mechanisms. Using an infrared camera and commercially available beam profiling software, these findings were gathered from a number of tilted fiber Bragg gratings written with an ultraviolet excimer laser at a variety of blaze angles.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
    [CrossRef]
  2. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibres by transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
    [CrossRef] [PubMed]
  3. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [CrossRef]
  4. K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
    [CrossRef]
  5. G. Meltz, and W. W. Morey, “Design and performance of bidirectional fiber Bragg grating taps,” Optical Fiber Communication Conference, 1991 Technical Digest Series 4, (Optical Society of America, Washington, DC, 1991), p. 44.
  6. T. Erdogan and J. E. Sipe, “Tilted fiber phase gratings,” J. Opt. Soc. Am. A 13(2), 296–313 (1996).
    [CrossRef]
  7. P.-Y. Fonjallaz, H. G. Limberger, and R. P. Salathé, “Bragg gratings with efficient and wavelength-selective fiber out-coupling,” J. Lightwave Technol. 15(2), 371–376 (1997).
    [CrossRef]
  8. T. Erdogan, T. A. Strasser, and P. S. Westbrook, “In-line polarimeter using blazed fiber gratings,” IEEE Photon. Technol. Lett. 12(10), 1352–1354 (2000).
    [CrossRef]
  9. K. S. Lee and J. Y. Cho, “Polarization-mode coupling in birefringent fiber gratings,” J. Opt. Soc. Am. A 19(8), 1621–1631 (2002).
    [CrossRef]
  10. J. M. Battiato and R. K. Kostuk, “45° slanted fibre Bragg grating design with prism coupled holographic exposure,” Electron. Lett. 38(22), 1323–1324 (2002).
    [CrossRef]
  11. K. Zhou, A. G. Simpson, L. Zhang, and I. Bennion, “Side detection of strong radiation-mode out-coupling from blazed FBGs in single-mode and multimode fibers,” IEEE Photon. Technol. Lett. 15(7), 936–938 (2003).
    [CrossRef]
  12. R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29(2), 154–156 (1993).
    [CrossRef]
  13. S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: Application of a PDL equaliser,” IEE Proc., Optoelectron. 149(5–6), 211–216 (2002).
    [CrossRef]
  14. P. S. Westbrook, T. A. Strasser, and T. Erdogan, “Compact, in-line, all-fiber polarimeter using fiber gratings,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, Washington, DC, 2000), PD22, pp. 233–235.
  15. J. L. Wagener, T. A. Strasser, J. R. Pedrazzani, J. DeMarco, and D. J. DiGiovanni, “Fibre grating optical spectrum analyzer tap,” in the 23rd European Conference on Optical Communications, IEE Conference Publication 448/5, (Institution of Electrical Engineers, Stevenage, England, 1997), pp. 65–68.
  16. P. Jänes, J. Pejnefors, R. Vogt, M. A. Grishin, W. An, S. Helmfrid, B. Johansson, and B. Sahlgren, “A novel tunable ROADM concept based on tilted fiber Bragg gratings and MEMS technology,” in the 34th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, Piscataway, NJ, USA, 2008), paper Th2C3.
  17. C. Jáuregui, J. Miguel López-Higuera, and A. Quintela, “Interrogation of interferometric sensors with a tilted fiber Bragg grating,” Opt. Express 12(23), 5646–5654 (2004).
    [CrossRef] [PubMed]
  18. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25(4), 481–490 (2008).
    [CrossRef]
  19. J. Peupelmann, E. Krause, A. Bandemer, and C. Schäffer, “Fibre-polarimeter based on grating taps,” Electron. Lett. 38(21), 1248–1250 (2002).
    [CrossRef]
  20. R. B. Walker, S. J. Mihailov, P. Lu and D. Grobnic, “Optimizing grating based devices with the Volume Current Method,” paper 5577–35, presented at Photonics North 2004, Ottawa, Canada, 27–29 Sept. 2004.
  21. R. B. Walker, S. J. Mihailov, P. Lu, and D. Grobnic, “Shaping the radiation field of tilted fiber Bragg gratings,” J. Opt. Soc. Am. B 22(5), 962–975 (2005).
    [CrossRef]
  22. Y. Li, M. Froggatt, and T. Erdogan, “Volume Current Method for analysis of tilted fiber gratings,” J. Lightwave Technol. 19(10), 1580–1591 (2001).
    [CrossRef]
  23. Y. Li and T. G. Brown, “Radiation modes and tilted fiber gratings,” J. Opt. Soc. Am. B 23(8), 1544–1555 (2006).
    [CrossRef]
  24. M. Kuznetsov and H. A. Haus, “Radiation loss in Dielectric waveguide structures by the Volume Current Method,” IEEE J. Quantum Electron. QE-19(10), 1505–1514 (1983).
    [CrossRef]
  25. A. W. Snyder, “Radiation losses due to variations of radius on dielectric or optical fibers,” IEEE Trans. Microw. Theory Tech. MTT-18(9), 608–615 (1970).
    [CrossRef]
  26. M. J. Holmes, R. Kashyap, and R. Wyatt, “Physical properties of optical fiber sidetap grating filters: Free-Space Model,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1353–1365 (1999).
    [CrossRef]
  27. Y. Li, S. Wielandy, G. E. Carver, H. L. Durko, and P. S. Westbrook, “Influence of the longitudinal mode field in grating scattering from weakly guided optical fiber waveguides,” Opt. Lett. 29(7), 691–693 (2004).
    [CrossRef] [PubMed]
  28. Y. Li, S. Wielandy, G. E. Carver, P. I. Reyes, and P. S. Westbrook, “Scattering from nonuniform tilted fiber gratings,” Opt. Lett. 29(12), 1330–1332 (2004).
    [CrossRef] [PubMed]
  29. N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28(10), 789–791 (2003).
    [CrossRef] [PubMed]
  30. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19(16), 1260–1262 (1994).
    [CrossRef] [PubMed]
  31. M. O. Berendt, A. Bjarklev, L. Grüner-Nielsen, and C. E. Soccolich, “Reduction of Bragg grating-induced coupling to cladding modes,” Fiber Integr. Opt. 18, 255–272 (1999).
    [CrossRef]
  32. L. Kotačka, J. Chauve and R. Kashyap, “Angular and azimuthal distribution of side scattered light from fiber Bragg gratings,” paper 5577–34, presented at Photonics North, Ottawa, Canada, 27–29 Sept. 2004.
  33. Fibercore datasheet. http://www.fibercore.com/uploaded_files/PS%20Fiber.pdf .
  34. P. Govind, Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley-Interscience, New York, 2002).
  35. M. Parent, J. Bures, S. Lacroix, and J. Lapierre, “Proprietes de polarisation des reflecteurs de Bragg induits par photosensibilite dans les fibres optiques monomodes,” Appl. Opt. 24(3), 354–357 (1985).
    [CrossRef] [PubMed]
  36. F. Ouellette, D. Gagnon, and M. Poirier, “Permanent photoinduced birefringence in a Ge-doped fiber,” Appl. Phys. Lett. 58(17), 1813–1815 (1991).
    [CrossRef]
  37. K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fiber: Application to external writing of rocking filters,” Electron. Lett. 27(17), 1548–1550 (1991).
    [CrossRef]
  38. J. Albert, B. Malo, D. C. Johnson, F. Bilodeau, K. O. Hill, J. L. Brebner, and G. Kajrys, “Dichroism in the absorption spectrum of photobleached ion-implanted silica,” Opt. Lett. 18(14), 1126–1128 (1993).
    [CrossRef] [PubMed]
  39. T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11(10), 2100–2105 (1994).
    [CrossRef]
  40. K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45 ° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005).
    [CrossRef] [PubMed]

2008 (1)

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25(4), 481–490 (2008).
[CrossRef]

2006 (1)

2005 (2)

2004 (3)

2003 (2)

N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28(10), 789–791 (2003).
[CrossRef] [PubMed]

K. Zhou, A. G. Simpson, L. Zhang, and I. Bennion, “Side detection of strong radiation-mode out-coupling from blazed FBGs in single-mode and multimode fibers,” IEEE Photon. Technol. Lett. 15(7), 936–938 (2003).
[CrossRef]

2002 (4)

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: Application of a PDL equaliser,” IEE Proc., Optoelectron. 149(5–6), 211–216 (2002).
[CrossRef]

J. Peupelmann, E. Krause, A. Bandemer, and C. Schäffer, “Fibre-polarimeter based on grating taps,” Electron. Lett. 38(21), 1248–1250 (2002).
[CrossRef]

K. S. Lee and J. Y. Cho, “Polarization-mode coupling in birefringent fiber gratings,” J. Opt. Soc. Am. A 19(8), 1621–1631 (2002).
[CrossRef]

J. M. Battiato and R. K. Kostuk, “45° slanted fibre Bragg grating design with prism coupled holographic exposure,” Electron. Lett. 38(22), 1323–1324 (2002).
[CrossRef]

2001 (1)

2000 (1)

T. Erdogan, T. A. Strasser, and P. S. Westbrook, “In-line polarimeter using blazed fiber gratings,” IEEE Photon. Technol. Lett. 12(10), 1352–1354 (2000).
[CrossRef]

1999 (2)

M. J. Holmes, R. Kashyap, and R. Wyatt, “Physical properties of optical fiber sidetap grating filters: Free-Space Model,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1353–1365 (1999).
[CrossRef]

M. O. Berendt, A. Bjarklev, L. Grüner-Nielsen, and C. E. Soccolich, “Reduction of Bragg grating-induced coupling to cladding modes,” Fiber Integr. Opt. 18, 255–272 (1999).
[CrossRef]

1997 (1)

P.-Y. Fonjallaz, H. G. Limberger, and R. P. Salathé, “Bragg gratings with efficient and wavelength-selective fiber out-coupling,” J. Lightwave Technol. 15(2), 371–376 (1997).
[CrossRef]

1996 (1)

1994 (2)

1993 (3)

J. Albert, B. Malo, D. C. Johnson, F. Bilodeau, K. O. Hill, J. L. Brebner, and G. Kajrys, “Dichroism in the absorption spectrum of photobleached ion-implanted silica,” Opt. Lett. 18(14), 1126–1128 (1993).
[CrossRef] [PubMed]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29(2), 154–156 (1993).
[CrossRef]

1991 (2)

F. Ouellette, D. Gagnon, and M. Poirier, “Permanent photoinduced birefringence in a Ge-doped fiber,” Appl. Phys. Lett. 58(17), 1813–1815 (1991).
[CrossRef]

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fiber: Application to external writing of rocking filters,” Electron. Lett. 27(17), 1548–1550 (1991).
[CrossRef]

1990 (1)

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
[CrossRef]

1989 (1)

1985 (1)

1983 (1)

M. Kuznetsov and H. A. Haus, “Radiation loss in Dielectric waveguide structures by the Volume Current Method,” IEEE J. Quantum Electron. QE-19(10), 1505–1514 (1983).
[CrossRef]

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

1970 (1)

A. W. Snyder, “Radiation losses due to variations of radius on dielectric or optical fibers,” IEEE Trans. Microw. Theory Tech. MTT-18(9), 608–615 (1970).
[CrossRef]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

J. Albert, B. Malo, D. C. Johnson, F. Bilodeau, K. O. Hill, J. L. Brebner, and G. Kajrys, “Dichroism in the absorption spectrum of photobleached ion-implanted silica,” Opt. Lett. 18(14), 1126–1128 (1993).
[CrossRef] [PubMed]

Allsop, T.

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25(4), 481–490 (2008).
[CrossRef]

Bandemer, A.

J. Peupelmann, E. Krause, A. Bandemer, and C. Schäffer, “Fibre-polarimeter based on grating taps,” Electron. Lett. 38(21), 1248–1250 (2002).
[CrossRef]

Battiato, J. M.

J. M. Battiato and R. K. Kostuk, “45° slanted fibre Bragg grating design with prism coupled holographic exposure,” Electron. Lett. 38(22), 1323–1324 (2002).
[CrossRef]

Baxter, G. W.

Bennion, I.

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25(4), 481–490 (2008).
[CrossRef]

K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45 ° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005).
[CrossRef] [PubMed]

K. Zhou, A. G. Simpson, L. Zhang, and I. Bennion, “Side detection of strong radiation-mode out-coupling from blazed FBGs in single-mode and multimode fibers,” IEEE Photon. Technol. Lett. 15(7), 936–938 (2003).
[CrossRef]

Berendt, M. O.

M. O. Berendt, A. Bjarklev, L. Grüner-Nielsen, and C. E. Soccolich, “Reduction of Bragg grating-induced coupling to cladding modes,” Fiber Integr. Opt. 18, 255–272 (1999).
[CrossRef]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

J. Albert, B. Malo, D. C. Johnson, F. Bilodeau, K. O. Hill, J. L. Brebner, and G. Kajrys, “Dichroism in the absorption spectrum of photobleached ion-implanted silica,” Opt. Lett. 18(14), 1126–1128 (1993).
[CrossRef] [PubMed]

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fiber: Application to external writing of rocking filters,” Electron. Lett. 27(17), 1548–1550 (1991).
[CrossRef]

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
[CrossRef]

Bjarklev, A.

M. O. Berendt, A. Bjarklev, L. Grüner-Nielsen, and C. E. Soccolich, “Reduction of Bragg grating-induced coupling to cladding modes,” Fiber Integr. Opt. 18, 255–272 (1999).
[CrossRef]

Brebner, J. L.

Brown, T. G.

Bures, J.

Campbell, R. J.

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29(2), 154–156 (1993).
[CrossRef]

Carver, G. E.

Chen, L.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: Application of a PDL equaliser,” IEE Proc., Optoelectron. 149(5–6), 211–216 (2002).
[CrossRef]

Chen, X.

Cho, J. Y.

Collins, S. F.

Dai, X.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: Application of a PDL equaliser,” IEE Proc., Optoelectron. 149(5–6), 211–216 (2002).
[CrossRef]

Ding, H.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: Application of a PDL equaliser,” IEE Proc., Optoelectron. 149(5–6), 211–216 (2002).
[CrossRef]

Dragomir, N. M.

Durko, H. L.

Erdogan, T.

Farrell, P. M.

Fonjallaz, P.-Y.

P.-Y. Fonjallaz, H. G. Limberger, and R. P. Salathé, “Bragg gratings with efficient and wavelength-selective fiber out-coupling,” J. Lightwave Technol. 15(2), 371–376 (1997).
[CrossRef]

Froggatt, M.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Gagnon, D.

F. Ouellette, D. Gagnon, and M. Poirier, “Permanent photoinduced birefringence in a Ge-doped fiber,” Appl. Phys. Lett. 58(17), 1813–1815 (1991).
[CrossRef]

Glenn, W. H.

Grobnic, D.

Grüner-Nielsen, L.

M. O. Berendt, A. Bjarklev, L. Grüner-Nielsen, and C. E. Soccolich, “Reduction of Bragg grating-induced coupling to cladding modes,” Fiber Integr. Opt. 18, 255–272 (1999).
[CrossRef]

Haus, H. A.

M. Kuznetsov and H. A. Haus, “Radiation loss in Dielectric waveguide structures by the Volume Current Method,” IEEE J. Quantum Electron. QE-19(10), 1505–1514 (1983).
[CrossRef]

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

J. Albert, B. Malo, D. C. Johnson, F. Bilodeau, K. O. Hill, J. L. Brebner, and G. Kajrys, “Dichroism in the absorption spectrum of photobleached ion-implanted silica,” Opt. Lett. 18(14), 1126–1128 (1993).
[CrossRef] [PubMed]

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fiber: Application to external writing of rocking filters,” Electron. Lett. 27(17), 1548–1550 (1991).
[CrossRef]

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Holmes, M. J.

M. J. Holmes, R. Kashyap, and R. Wyatt, “Physical properties of optical fiber sidetap grating filters: Free-Space Model,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1353–1365 (1999).
[CrossRef]

Inniss, D.

Jáuregui, C.

Johnson, D. C.

J. Albert, B. Malo, D. C. Johnson, F. Bilodeau, K. O. Hill, J. L. Brebner, and G. Kajrys, “Dichroism in the absorption spectrum of photobleached ion-implanted silica,” Opt. Lett. 18(14), 1126–1128 (1993).
[CrossRef] [PubMed]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fiber: Application to external writing of rocking filters,” Electron. Lett. 27(17), 1548–1550 (1991).
[CrossRef]

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Kajrys, G.

Kashyap, R.

M. J. Holmes, R. Kashyap, and R. Wyatt, “Physical properties of optical fiber sidetap grating filters: Free-Space Model,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1353–1365 (1999).
[CrossRef]

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29(2), 154–156 (1993).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Kosinski, S. G.

Kostuk, R. K.

J. M. Battiato and R. K. Kostuk, “45° slanted fibre Bragg grating design with prism coupled holographic exposure,” Electron. Lett. 38(22), 1323–1324 (2002).
[CrossRef]

Krause, E.

J. Peupelmann, E. Krause, A. Bandemer, and C. Schäffer, “Fibre-polarimeter based on grating taps,” Electron. Lett. 38(21), 1248–1250 (2002).
[CrossRef]

Kuznetsov, M.

M. Kuznetsov and H. A. Haus, “Radiation loss in Dielectric waveguide structures by the Volume Current Method,” IEEE J. Quantum Electron. QE-19(10), 1505–1514 (1983).
[CrossRef]

Lacroix, S.

Lapierre, J.

Lee, K. S.

Lemaire, P. J.

Li, Y.

Limberger, H. G.

P.-Y. Fonjallaz, H. G. Limberger, and R. P. Salathé, “Bragg gratings with efficient and wavelength-selective fiber out-coupling,” J. Lightwave Technol. 15(2), 371–376 (1997).
[CrossRef]

Lu, P.

R. B. Walker, S. J. Mihailov, P. Lu, and D. Grobnic, “Shaping the radiation field of tilted fiber Bragg gratings,” J. Opt. Soc. Am. B 22(5), 962–975 (2005).
[CrossRef]

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: Application of a PDL equaliser,” IEE Proc., Optoelectron. 149(5–6), 211–216 (2002).
[CrossRef]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

J. Albert, B. Malo, D. C. Johnson, F. Bilodeau, K. O. Hill, J. L. Brebner, and G. Kajrys, “Dichroism in the absorption spectrum of photobleached ion-implanted silica,” Opt. Lett. 18(14), 1126–1128 (1993).
[CrossRef] [PubMed]

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fiber: Application to external writing of rocking filters,” Electron. Lett. 27(17), 1548–1550 (1991).
[CrossRef]

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
[CrossRef]

Mapps, D.

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25(4), 481–490 (2008).
[CrossRef]

Meltz, G.

Miguel López-Higuera, J.

Mihailov, S. J.

R. B. Walker, S. J. Mihailov, P. Lu, and D. Grobnic, “Shaping the radiation field of tilted fiber Bragg gratings,” J. Opt. Soc. Am. B 22(5), 962–975 (2005).
[CrossRef]

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: Application of a PDL equaliser,” IEE Proc., Optoelectron. 149(5–6), 211–216 (2002).
[CrossRef]

Mizrahi, V.

Morey, W. W.

Neal, R.

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25(4), 481–490 (2008).
[CrossRef]

Ouellette, F.

F. Ouellette, D. Gagnon, and M. Poirier, “Permanent photoinduced birefringence in a Ge-doped fiber,” Appl. Phys. Lett. 58(17), 1813–1815 (1991).
[CrossRef]

Parent, M.

Peupelmann, J.

J. Peupelmann, E. Krause, A. Bandemer, and C. Schäffer, “Fibre-polarimeter based on grating taps,” Electron. Lett. 38(21), 1248–1250 (2002).
[CrossRef]

Poirier, M.

F. Ouellette, D. Gagnon, and M. Poirier, “Permanent photoinduced birefringence in a Ge-doped fiber,” Appl. Phys. Lett. 58(17), 1813–1815 (1991).
[CrossRef]

Quintela, A.

Reed, W. A.

Rehman, S.

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25(4), 481–490 (2008).
[CrossRef]

Reyes, P. I.

Roberts, A.

Rollinson, C.

Salathé, R. P.

P.-Y. Fonjallaz, H. G. Limberger, and R. P. Salathé, “Bragg gratings with efficient and wavelength-selective fiber out-coupling,” J. Lightwave Technol. 15(2), 371–376 (1997).
[CrossRef]

Schäffer, C.

J. Peupelmann, E. Krause, A. Bandemer, and C. Schäffer, “Fibre-polarimeter based on grating taps,” Electron. Lett. 38(21), 1248–1250 (2002).
[CrossRef]

Simpson, A. G.

K. Zhou, A. G. Simpson, L. Zhang, and I. Bennion, “Side detection of strong radiation-mode out-coupling from blazed FBGs in single-mode and multimode fibers,” IEEE Photon. Technol. Lett. 15(7), 936–938 (2003).
[CrossRef]

Simpson, G.

Sipe, J. E.

Skinner, I.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
[CrossRef]

Smelser, C.

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: Application of a PDL equaliser,” IEE Proc., Optoelectron. 149(5–6), 211–216 (2002).
[CrossRef]

Snyder, A. W.

A. W. Snyder, “Radiation losses due to variations of radius on dielectric or optical fibers,” IEEE Trans. Microw. Theory Tech. MTT-18(9), 608–615 (1970).
[CrossRef]

Soccolich, C. E.

M. O. Berendt, A. Bjarklev, L. Grüner-Nielsen, and C. E. Soccolich, “Reduction of Bragg grating-induced coupling to cladding modes,” Fiber Integr. Opt. 18, 255–272 (1999).
[CrossRef]

Stevenson, A. J.

Strasser, T. A.

T. Erdogan, T. A. Strasser, and P. S. Westbrook, “In-line polarimeter using blazed fiber gratings,” IEEE Photon. Technol. Lett. 12(10), 1352–1354 (2000).
[CrossRef]

Vengsarkar, A. M.

Vineberg, K. A.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
[CrossRef]

Wade, S. A.

Walker, R. B.

R. B. Walker, S. J. Mihailov, P. Lu, and D. Grobnic, “Shaping the radiation field of tilted fiber Bragg gratings,” J. Opt. Soc. Am. B 22(5), 962–975 (2005).
[CrossRef]

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: Application of a PDL equaliser,” IEE Proc., Optoelectron. 149(5–6), 211–216 (2002).
[CrossRef]

Webb, D. J.

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25(4), 481–490 (2008).
[CrossRef]

Westbrook, P. S.

Wielandy, S.

Wyatt, R.

M. J. Holmes, R. Kashyap, and R. Wyatt, “Physical properties of optical fiber sidetap grating filters: Free-Space Model,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1353–1365 (1999).
[CrossRef]

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29(2), 154–156 (1993).
[CrossRef]

Zhang, L.

K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45 ° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005).
[CrossRef] [PubMed]

K. Zhou, A. G. Simpson, L. Zhang, and I. Bennion, “Side detection of strong radiation-mode out-coupling from blazed FBGs in single-mode and multimode fibers,” IEEE Photon. Technol. Lett. 15(7), 936–938 (2003).
[CrossRef]

Zhong, Q.

Zhou, K.

K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45 ° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005).
[CrossRef] [PubMed]

K. Zhou, A. G. Simpson, L. Zhang, and I. Bennion, “Side detection of strong radiation-mode out-coupling from blazed FBGs in single-mode and multimode fibers,” IEEE Photon. Technol. Lett. 15(7), 936–938 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

F. Ouellette, D. Gagnon, and M. Poirier, “Permanent photoinduced birefringence in a Ge-doped fiber,” Appl. Phys. Lett. 58(17), 1813–1815 (1991).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Electron. Lett. (5)

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
[CrossRef]

R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating,” Electron. Lett. 29(2), 154–156 (1993).
[CrossRef]

J. M. Battiato and R. K. Kostuk, “45° slanted fibre Bragg grating design with prism coupled holographic exposure,” Electron. Lett. 38(22), 1323–1324 (2002).
[CrossRef]

K. O. Hill, F. Bilodeau, B. Malo, and D. C. Johnson, “Birefringent photosensitivity in monomode optical fiber: Application to external writing of rocking filters,” Electron. Lett. 27(17), 1548–1550 (1991).
[CrossRef]

J. Peupelmann, E. Krause, A. Bandemer, and C. Schäffer, “Fibre-polarimeter based on grating taps,” Electron. Lett. 38(21), 1248–1250 (2002).
[CrossRef]

Fiber Integr. Opt. (1)

M. O. Berendt, A. Bjarklev, L. Grüner-Nielsen, and C. E. Soccolich, “Reduction of Bragg grating-induced coupling to cladding modes,” Fiber Integr. Opt. 18, 255–272 (1999).
[CrossRef]

IEE Proc., Optoelectron. (1)

S. J. Mihailov, R. B. Walker, P. Lu, H. Ding, X. Dai, C. Smelser, and L. Chen, “UV-induced polarisation-dependent loss (PDL) in tilted fibre Bragg gratings: Application of a PDL equaliser,” IEE Proc., Optoelectron. 149(5–6), 211–216 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Kuznetsov and H. A. Haus, “Radiation loss in Dielectric waveguide structures by the Volume Current Method,” IEEE J. Quantum Electron. QE-19(10), 1505–1514 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. Holmes, R. Kashyap, and R. Wyatt, “Physical properties of optical fiber sidetap grating filters: Free-Space Model,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1353–1365 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Zhou, A. G. Simpson, L. Zhang, and I. Bennion, “Side detection of strong radiation-mode out-coupling from blazed FBGs in single-mode and multimode fibers,” IEEE Photon. Technol. Lett. 15(7), 936–938 (2003).
[CrossRef]

T. Erdogan, T. A. Strasser, and P. S. Westbrook, “In-line polarimeter using blazed fiber gratings,” IEEE Photon. Technol. Lett. 12(10), 1352–1354 (2000).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

A. W. Snyder, “Radiation losses due to variations of radius on dielectric or optical fibers,” IEEE Trans. Microw. Theory Tech. MTT-18(9), 608–615 (1970).
[CrossRef]

J. Lightwave Technol. (2)

P.-Y. Fonjallaz, H. G. Limberger, and R. P. Salathé, “Bragg gratings with efficient and wavelength-selective fiber out-coupling,” J. Lightwave Technol. 15(2), 371–376 (1997).
[CrossRef]

Y. Li, M. Froggatt, and T. Erdogan, “Volume Current Method for analysis of tilted fiber gratings,” J. Lightwave Technol. 19(10), 1580–1591 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25(4), 481–490 (2008).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (3)

Opt. Express (1)

Opt. Lett. (7)

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibres by transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
[CrossRef] [PubMed]

Y. Li, S. Wielandy, G. E. Carver, H. L. Durko, and P. S. Westbrook, “Influence of the longitudinal mode field in grating scattering from weakly guided optical fiber waveguides,” Opt. Lett. 29(7), 691–693 (2004).
[CrossRef] [PubMed]

Y. Li, S. Wielandy, G. E. Carver, P. I. Reyes, and P. S. Westbrook, “Scattering from nonuniform tilted fiber gratings,” Opt. Lett. 29(12), 1330–1332 (2004).
[CrossRef] [PubMed]

N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28(10), 789–791 (2003).
[CrossRef] [PubMed]

A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, P. J. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19(16), 1260–1262 (1994).
[CrossRef] [PubMed]

J. Albert, B. Malo, D. C. Johnson, F. Bilodeau, K. O. Hill, J. L. Brebner, and G. Kajrys, “Dichroism in the absorption spectrum of photobleached ion-implanted silica,” Opt. Lett. 18(14), 1126–1128 (1993).
[CrossRef] [PubMed]

K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45 ° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005).
[CrossRef] [PubMed]

Other (8)

L. Kotačka, J. Chauve and R. Kashyap, “Angular and azimuthal distribution of side scattered light from fiber Bragg gratings,” paper 5577–34, presented at Photonics North, Ottawa, Canada, 27–29 Sept. 2004.

Fibercore datasheet. http://www.fibercore.com/uploaded_files/PS%20Fiber.pdf .

P. Govind, Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley-Interscience, New York, 2002).

R. B. Walker, S. J. Mihailov, P. Lu and D. Grobnic, “Optimizing grating based devices with the Volume Current Method,” paper 5577–35, presented at Photonics North 2004, Ottawa, Canada, 27–29 Sept. 2004.

G. Meltz, and W. W. Morey, “Design and performance of bidirectional fiber Bragg grating taps,” Optical Fiber Communication Conference, 1991 Technical Digest Series 4, (Optical Society of America, Washington, DC, 1991), p. 44.

P. S. Westbrook, T. A. Strasser, and T. Erdogan, “Compact, in-line, all-fiber polarimeter using fiber gratings,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, Washington, DC, 2000), PD22, pp. 233–235.

J. L. Wagener, T. A. Strasser, J. R. Pedrazzani, J. DeMarco, and D. J. DiGiovanni, “Fibre grating optical spectrum analyzer tap,” in the 23rd European Conference on Optical Communications, IEE Conference Publication 448/5, (Institution of Electrical Engineers, Stevenage, England, 1997), pp. 65–68.

P. Jänes, J. Pejnefors, R. Vogt, M. A. Grishin, W. An, S. Helmfrid, B. Johansson, and B. Sahlgren, “A novel tunable ROADM concept based on tilted fiber Bragg gratings and MEMS technology,” in the 34th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, Piscataway, NJ, USA, 2008), paper Th2C3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Normalized grating response to a polarized guided mode [21]. f 1, f 2 and S are plotted for a single grating (f 2) subjected to four different polarization states (δ).

Fig. 2.
Fig. 2.

Variation of f 2norm azimuthal distribution (au=1.5, kt/u=8) [21]. Decreasing ∣Kt/kt∣ corresponds with increased detuning.

Fig. 3.
Fig. 3.

Measurement setups used to quantify (a) the azimuthal distribution of radiated power and (b) the polarization dependence of radiation model coupling.

Fig. 4.
Fig. 4.

Longitudinal tap angle as a function of grating blaze. Comparison between experimental measurements and VCM predictions.

Fig. 5.
Fig. 5.

Photographic examples of longitudinal variations in the radiated power. (a) Uniform Talbot response from device K and (b) significantly periodic Talbot response from device G. (c) Higher contrast and (d) lower contrast periodic Ideal responses measured at different azimuthal angles of device G.

Fig. 6.
Fig. 6.

Radiated Power vs. Fiber Azimuthal Angle (Ideal Resonances). Responses offset proportionally to phase mask tilt θ used to write each device. VCM plots display two results for each device, black curves [22] and white curves [27] which are almost completely superposed.

Fig. 7.
Fig. 7.

Radiated Power vs. Fiber Azimuthal Angle (Talbot Resonances). Responses offset proportionally to phase mask tilt θ used to write each device. VCM plots display two results for each device, black curves [22] and white curves [27] which are almost completely superposed.

Fig. 8.
Fig. 8.

Normalized radiated power for Device F - Talbot response, measured as a function of (a) azimuthal angle for random polarization and (b) incident polarization angle for 1st and 2nd azimuthal tap locations.

Tables (2)

Tables Icon

Table 1. Relevant Fiber Properties

Tables Icon

Table 2. Fabricated Grating Properties

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

SC·f1·f2·(r̂+Δktẑ)
f1=Δ2+kt2sin2(δφ)
f2=(KnewaJ0(ua)J1(Knewa)uaJ1(ua)J0(Knewa)Knew2u2)2

Metrics