Abstract

THz-sensing is an emerging technology that would be advantageous for a variety of applications in industry, biology, biochemistry and security, if small and convenient to use sources and detectors would be readily available. However, most of them are bulky, complicate to operate, and need cryogenic cooling. Here we present a new detection scheme that is versatile enough to detect electro-magnetic radiation within the whole spectrum, can be easily applied to the THz-range, and operates at room temperature. The mechanism is based on the resonant excitation of a quartz tuning fork.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [CrossRef] [PubMed]
  2. A. Tredicucci, and R. Köhler, “Terahertz Quantum Cascade Lasers in Intersubband Transitions in Quantum Structures,” (McGraw-Hill, New York), pp. 45–105 (2006)
  3. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
    [CrossRef]
  4. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285–287 (1995).
    [CrossRef]
  5. M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
    [CrossRef]
  6. N. Chimot, J. Mangeney, P. Crozat, J. M. Lourtioz, K. Blary, J. F. Lampin, G. Mouret, D. Bigourd, and E. Fertein, “Photomixing at 1.55 μm in ion-irradiated In(0.53)Ga(0.47)As on InP,” Opt. Express 14(5), 1856–1861 (2006).
    [CrossRef] [PubMed]
  7. A. J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13(8), 1235–1245 (2000).
    [CrossRef]
  8. P. Lebedew, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. 311(11), 433–458 (1901).
    [CrossRef]
  9. E. F. Nichols and G. F. Hull, “Über Strahlungsdruck,” Ann. Phys. 317(10), 225–263 (1903).
    [CrossRef]
  10. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
    [CrossRef]
  11. F. J. Giessibl, “Atomic resolution on Si(111)-(7x7) by noncontact atomic force microscopy with a force sensor based on quartz tuning fork,” Appl. Phys. Lett. 76(11), 1470–1472 (2000).
    [CrossRef]
  12. A. Pohlkötter, U. Willer, C. Bauer, and W. Schade, “Resonant tuning fork detector for electromagnetic radiation,” Appl. Opt. 48(4), B119–B125 (2009).
    [CrossRef]
  13. T. Losco, J. Xu, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “THz quantum cascade designs for optimized injection,” Physica E 40(6), 2207–2209 (2008).
    [CrossRef]
  14. J.-M. Friedt and É. Carry, “Introduction to the quartz tuning fork,” Am. J. Phys. 75(5), 415–422 (2007).
    [CrossRef]
  15. X. Jun, Y. Bo, L. Xin, and C. Juan, “Theoretical model and optimization of a novel temperature sensor based on quartz tuning fork resonators,” Phys. Scr. T 129, 316–320 (2007).
    [CrossRef]
  16. A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
    [CrossRef] [PubMed]
  17. A. Pohlkötter, U. Willer, C. Bauer, and W. Schade, “Resonant tuning fork detector for electromagnetic radiation,” Appl. Opt. 48(4), B119–B125 (2009).

2009 (2)

2008 (1)

T. Losco, J. Xu, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “THz quantum cascade designs for optimized injection,” Physica E 40(6), 2207–2209 (2008).
[CrossRef]

2007 (3)

J.-M. Friedt and É. Carry, “Introduction to the quartz tuning fork,” Am. J. Phys. 75(5), 415–422 (2007).
[CrossRef]

X. Jun, Y. Bo, L. Xin, and C. Juan, “Theoretical model and optimization of a novel temperature sensor based on quartz tuning fork resonators,” Phys. Scr. T 129, 316–320 (2007).
[CrossRef]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[CrossRef]

2006 (1)

2005 (1)

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
[CrossRef] [PubMed]

2002 (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

2000 (3)

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

A. J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13(8), 1235–1245 (2000).
[CrossRef]

F. J. Giessibl, “Atomic resolution on Si(111)-(7x7) by noncontact atomic force microscopy with a force sensor based on quartz tuning fork,” Appl. Phys. Lett. 76(11), 1470–1472 (2000).
[CrossRef]

1995 (2)

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[CrossRef]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285–287 (1995).
[CrossRef]

1903 (1)

E. F. Nichols and G. F. Hull, “Über Strahlungsdruck,” Ann. Phys. 317(10), 225–263 (1903).
[CrossRef]

1901 (1)

P. Lebedew, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. 311(11), 433–458 (1901).
[CrossRef]

Bakhirkin, Y. A.

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
[CrossRef] [PubMed]

Bauer, C.

Beere, H. E.

T. Losco, J. Xu, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “THz quantum cascade designs for optimized injection,” Physica E 40(6), 2207–2209 (2008).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Bigourd, D.

Blary, K.

Bo, Y.

X. Jun, Y. Bo, L. Xin, and C. Juan, “Theoretical model and optimization of a novel temperature sensor based on quartz tuning fork resonators,” Phys. Scr. T 129, 316–320 (2007).
[CrossRef]

Brown, E. R.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285–287 (1995).
[CrossRef]

Carry, É.

J.-M. Friedt and É. Carry, “Introduction to the quartz tuning fork,” Am. J. Phys. 75(5), 415–422 (2007).
[CrossRef]

Chimot, N.

Crozat, P.

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Dennis, C. L.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285–287 (1995).
[CrossRef]

Fertein, E.

Friedt, J.-M.

J.-M. Friedt and É. Carry, “Introduction to the quartz tuning fork,” Am. J. Phys. 75(5), 415–422 (2007).
[CrossRef]

Gaugue, A.

A. J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13(8), 1235–1245 (2000).
[CrossRef]

Giessibl, F. J.

F. J. Giessibl, “Atomic resolution on Si(111)-(7x7) by noncontact atomic force microscopy with a force sensor based on quartz tuning fork,” Appl. Phys. Lett. 76(11), 1470–1472 (2000).
[CrossRef]

Green, R. P.

T. Losco, J. Xu, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “THz quantum cascade designs for optimized injection,” Physica E 40(6), 2207–2209 (2008).
[CrossRef]

Grober, R. D.

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[CrossRef]

Gu, P.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Hidaka, T.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Hull, G. F.

E. F. Nichols and G. F. Hull, “Über Strahlungsdruck,” Ann. Phys. 317(10), 225–263 (1903).
[CrossRef]

Hyodo, M.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Juan, C.

X. Jun, Y. Bo, L. Xin, and C. Juan, “Theoretical model and optimization of a novel temperature sensor based on quartz tuning fork resonators,” Phys. Scr. T 129, 316–320 (2007).
[CrossRef]

Jun, X.

X. Jun, Y. Bo, L. Xin, and C. Juan, “Theoretical model and optimization of a novel temperature sensor based on quartz tuning fork resonators,” Phys. Scr. T 129, 316–320 (2007).
[CrossRef]

Karrai, K.

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[CrossRef]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Kosterev, A. A.

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
[CrossRef] [PubMed]

Kreisler, A. J.

A. J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13(8), 1235–1245 (2000).
[CrossRef]

Lampin, J. F.

Lebedew, P.

P. Lebedew, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. 311(11), 433–458 (1901).
[CrossRef]

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Losco, T.

T. Losco, J. Xu, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “THz quantum cascade designs for optimized injection,” Physica E 40(6), 2207–2209 (2008).
[CrossRef]

Lourtioz, J. M.

Mangeney, J.

McIntosh, K. A.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285–287 (1995).
[CrossRef]

Mouret, G.

Nichols, E. F.

E. F. Nichols and G. F. Hull, “Über Strahlungsdruck,” Ann. Phys. 317(10), 225–263 (1903).
[CrossRef]

Nichols, K. B.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285–287 (1995).
[CrossRef]

Pohlkötter, A.

Ritchie, D. A.

T. Losco, J. Xu, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “THz quantum cascade designs for optimized injection,” Physica E 40(6), 2207–2209 (2008).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Sakai, K.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Schade, W.

Tani, M.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Tittel, F. K.

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
[CrossRef] [PubMed]

Tredicucci, A.

T. Losco, J. Xu, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “THz quantum cascade designs for optimized injection,” Physica E 40(6), 2207–2209 (2008).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Willer, U.

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[CrossRef]

Xin, L.

X. Jun, Y. Bo, L. Xin, and C. Juan, “Theoretical model and optimization of a novel temperature sensor based on quartz tuning fork resonators,” Phys. Scr. T 129, 316–320 (2007).
[CrossRef]

Xu, J.

T. Losco, J. Xu, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “THz quantum cascade designs for optimized injection,” Physica E 40(6), 2207–2209 (2008).
[CrossRef]

Am. J. Phys. (1)

J.-M. Friedt and É. Carry, “Introduction to the quartz tuning fork,” Am. J. Phys. 75(5), 415–422 (2007).
[CrossRef]

Ann. Phys. (2)

P. Lebedew, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. 311(11), 433–458 (1901).
[CrossRef]

E. F. Nichols and G. F. Hull, “Über Strahlungsdruck,” Ann. Phys. 317(10), 225–263 (1903).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66(14), 1842–1844 (1995).
[CrossRef]

F. J. Giessibl, “Atomic resolution on Si(111)-(7x7) by noncontact atomic force microscopy with a force sensor based on quartz tuning fork,” Appl. Phys. Lett. 76(11), 1470–1472 (2000).
[CrossRef]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66(3), 285–287 (1995).
[CrossRef]

Nat. Photonics (1)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[CrossRef]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Quantum Electron. (1)

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Phys. Scr. (1)

X. Jun, Y. Bo, L. Xin, and C. Juan, “Theoretical model and optimization of a novel temperature sensor based on quartz tuning fork resonators,” Phys. Scr. T 129, 316–320 (2007).
[CrossRef]

Physica E (1)

T. Losco, J. Xu, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “THz quantum cascade designs for optimized injection,” Physica E 40(6), 2207–2209 (2008).
[CrossRef]

Supercond. Sci. Technol. (1)

A. J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range,” Supercond. Sci. Technol. 13(8), 1235–1245 (2000).
[CrossRef]

Other (1)

A. Tredicucci, and R. Köhler, “Terahertz Quantum Cascade Lasers in Intersubband Transitions in Quantum Structures,” (McGraw-Hill, New York), pp. 45–105 (2006)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Simulation of the deflection of one prong of the tuning fork: a) buildup of the oscillation, b) forced oscillation for driving of the tuning fork with a quasi cw power of P = 1W.

Fig. 2.
Fig. 2.

Calculated deflection per W of incident quasi cw power as function of the pulse width of the driving electromagnetic wave.

Fig. 3.
Fig. 3.

Schematic of the experimental setup.

Fig. 4.
Fig. 4.

(a) Signal of the photon momentum detector while the THz radiation is only incident in the second 30s and initially blocked; (b). Linear power characteristics of the photon momentum detector.

Fig. 5.
Fig. 5.

Dependence of the tuning fork detector signal on pulse width: (a) measured signal and background data for different pulse widths, (b) quasi cw power measured with a Golay cell, (c) calculated responsivity of the tuning fork detector.

Fig. 6.
Fig. 6.

Scanned images of a sample of aluminum foil with cut out letters and leaves: (a) taken with Golay cell, (b) taken with TF detector, (c) photograph, (d) taken with TF detector.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F=Ф·δp=Фη·hfc·î=Фη·ηc·P.
x(t)ω2+γx.(t)+x..(t)=1mF(t).
F(t)=A·(Ω·τ+j=12j·πsin(j·π·τ·Ω)cos(2π·Ω·(t12Ω)·j)).

Metrics