Abstract

A novel reconfigurable optical add-drop multiplexer (ROADM) structure is proposed and demonstrated experimentally. The ROADM structure employs two arrayed waveguide gratings (AWGs), an array of optical fiber pairs, an array of 4-f imaging microlenses that are offset in relation to the axis of symmetry of the fiber pairs, and a reconfigurable Opto-VLSI processor that switches various wavelength channels between the fiber pairs to achieve add or drop multiplexing. Experimental results are shown, which demonstrate the principle of add/drop multiplexing with crosstalk of less than -27dB and insertion loss of less than 8dB over the C-band for drop and through operation modes.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, G. Raybon, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, D. A. Fishman, C. R. Doerr, S. Chandrasekhar, L. L. Buhl, T. J. Xia, G. Wellbrock, W. Lee, B. Basch, T. Kawanishi, K. Higuma, and Y. Painchaud, "100-Gb/s DQPSK transmission: from laboratory experiments to field trials," J. Lightwave Technol. 26(20), 3388-3402 (2008).
    [CrossRef]
  2. R. S. Bernhey, M. Kanaan, "ROADM deployment, challenges, and applications," Proc. OFC/NFOEC, 1-3 (2007).
  3. M. Muha, B. Chiang, and R. Schleicher, "MEMS based channelized ROADM platform," Proc. OFC/NFOEC, 1-3 (2008).
  4. L. Eldada, J. Fujita, A. Radojevic, T. Izuhara, R. Gerhardt, J. Shi, D. Pant, F. Wang, and A. Malek, "40-channel ultra-low-power compact PLC-based ROADM subsystem," Proc. OFC/NFOEC, NThC4, (2008).
  5. B. Fracasso, J. L. de Bougrenet de la Tocnaye, M. Razzak, and C. Uche, "Design and performance of a versatile holographic liquid-crystal wavelength-selective optical switch," J. Lightwave Technol. 21(10), 2405-2411 (2003).
    [CrossRef]
  6. G. Baxter, S. Frisken, D. Abakoumov, H. Zhu, I. Clark, A. Bartos and S. Poole, "Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements," Proc. OFC/NFOEC, OTuF2, (2006).
  7. F. Xiao, B. Juswardy, K. Alameh, and Y. T. Lee, "Novel broadband reconfigurable optical add-drop multiplexer employing custom fiber arrays and Opto-VLSI processors," Opt. Express 16(16), 11703-11708 (2008).
    [CrossRef]
  8. J. Stockley and S. Serati, "Advances in liquid crystal beam steering," Boulder Nonlinear Systems, www.bnonliner.com, (2004).
  9. K. M. Johnson, D. J. McKnight, and I. Underwood, "Smart spatial light modulators using liquid crystals on silicon," IEEE J. Quantum Electron. 29(2), 699-714 (1993).
    [CrossRef]
  10. J. W. Goodman and A. M. Silvestri, "Some effects of Fourier-domain phase quantization," IBM J. Rev. Develop. 14(9), 478-484 (1970).
    [CrossRef]
  11. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, "Dispersion trimming in a reconfigurable wavelength selective switch," J. Lightwave Technol. 26(1), 73-78 (2008).
    [CrossRef]

2008

2003

1993

K. M. Johnson, D. J. McKnight, and I. Underwood, "Smart spatial light modulators using liquid crystals on silicon," IEEE J. Quantum Electron. 29(2), 699-714 (1993).
[CrossRef]

1970

J. W. Goodman and A. M. Silvestri, "Some effects of Fourier-domain phase quantization," IBM J. Rev. Develop. 14(9), 478-484 (1970).
[CrossRef]

Abakoumov, D.

Adamiecki, A.

Alameh, K.

Basch, B.

Baxter, G.

Bolger, J. A.

Buhl, L. L.

Chandrasekhar, S.

Corteselli, S.

Doerr, C. R.

Eggleton, B. J.

Fishman, D. A.

Fracasso, B.

Frisken, S.

Gnauck, A. H.

Goodman, J. W.

J. W. Goodman and A. M. Silvestri, "Some effects of Fourier-domain phase quantization," IBM J. Rev. Develop. 14(9), 478-484 (1970).
[CrossRef]

Higuma, K.

Johnson, K. M.

K. M. Johnson, D. J. McKnight, and I. Underwood, "Smart spatial light modulators using liquid crystals on silicon," IEEE J. Quantum Electron. 29(2), 699-714 (1993).
[CrossRef]

Juswardy, B.

Kawanishi, T.

Lee, W.

Lee, Y. T.

McKnight, D. J.

K. M. Johnson, D. J. McKnight, and I. Underwood, "Smart spatial light modulators using liquid crystals on silicon," IEEE J. Quantum Electron. 29(2), 699-714 (1993).
[CrossRef]

Painchaud, Y.

Poole, S.

Raybon, G.

Roelens, M. A. F.

Silvestri, A. M.

J. W. Goodman and A. M. Silvestri, "Some effects of Fourier-domain phase quantization," IBM J. Rev. Develop. 14(9), 478-484 (1970).
[CrossRef]

Song, H.

Underwood, I.

K. M. Johnson, D. J. McKnight, and I. Underwood, "Smart spatial light modulators using liquid crystals on silicon," IEEE J. Quantum Electron. 29(2), 699-714 (1993).
[CrossRef]

Wellbrock, G.

Winzer, P. J.

Xia, T. J.

Xiao, F.

IBM J. Rev. Develop.

J. W. Goodman and A. M. Silvestri, "Some effects of Fourier-domain phase quantization," IBM J. Rev. Develop. 14(9), 478-484 (1970).
[CrossRef]

IEEE J. Quantum Electron.

K. M. Johnson, D. J. McKnight, and I. Underwood, "Smart spatial light modulators using liquid crystals on silicon," IEEE J. Quantum Electron. 29(2), 699-714 (1993).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

G. Baxter, S. Frisken, D. Abakoumov, H. Zhu, I. Clark, A. Bartos and S. Poole, "Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements," Proc. OFC/NFOEC, OTuF2, (2006).

R. S. Bernhey, M. Kanaan, "ROADM deployment, challenges, and applications," Proc. OFC/NFOEC, 1-3 (2007).

M. Muha, B. Chiang, and R. Schleicher, "MEMS based channelized ROADM platform," Proc. OFC/NFOEC, 1-3 (2008).

L. Eldada, J. Fujita, A. Radojevic, T. Izuhara, R. Gerhardt, J. Shi, D. Pant, F. Wang, and A. Malek, "40-channel ultra-low-power compact PLC-based ROADM subsystem," Proc. OFC/NFOEC, NThC4, (2008).

J. Stockley and S. Serati, "Advances in liquid crystal beam steering," Boulder Nonlinear Systems, www.bnonliner.com, (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Gray level versus pixel number of different blazed gratings; (b) Corresponding steering phase holograms; (c) Principle of beam steering using an Opto-VLSI processor. The steering angle is inversely proportional to the blazed grating period.

Fig. 2.
Fig. 2.

The Opto-VLSI based ROADM structure using two AWGs, arrayed fiber pairs and a lens array realizing any reconfigurable add-drop and through operations of wavelength signals.

Fig. 3.
Fig. 3.

Illustration of the principle of drop and thru operations. The upper and lower fibers are offset from the optical axis of their associated imaging lens for achieving optical switching between the fibers with minimum crosstalk. (a) Without a phase hologram, the collimated optical beam reflects back and focuses on a spot between the two fibers; (b) With a drop hologram on, a + 1st order diffracted beam is focused on and coupled into the fiber 2; (c) With a thru hologram on, a -1st order diffracted beam is focused on and coupled back into the fiber 1.

Fig. 4.
Fig. 4.

Experimental setup demonstrating the add/drop and thru operations of the Opto-VLSI-based ROADM structure.

Fig. 5.
Fig. 5.

Optimized “drop” and “thru” phase holograms for channels λ 1 and λ 2. The horizontal axis is in units of pixels and the vertical axis is in gray level from 0 to 256.

Fig. 6.
Fig. 6.

Experimental results showing the drop and thru operations for λ 1 and λ 2 channels. Measured optical spectra on (a) OSA1 and (b) OSA2, when λ 1 is passed thru and λ 2 is dropped. Measured optical spectra on (c) OSA1 and (d) OSA2, when λ 1 is dropped and λ 2 is passed thru.

Fig. 7.
Fig. 7.

Measured intensities of the drop and thru signals (top curves) and crosstalk (bottom curves) around λ 1 and λ 2 wavebands. (a) and (b) λ 1 channel signals are passed thru and dropped, respectively; (c) and (d) λ 2 channel signals are passed thru and dropped, respectively.

Tables (1)

Tables Icon

Table 1. Intensity values of measured drop, through signals and crosstalk for the two wavelength signals.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θx/y=λpx/y=λ(Sx/y)(Nx/y)
φn=n2πM,n=1,...,M
η(M)=[sin(π/M)(π/M)]2

Metrics