Abstract

We propose a method of optical data storage that exploits the small dimensions of metallic nano-particles and/or nano-structures to achieve high storage densities. The resonant behavior of these particles (both individually and in small clusters) in the presence of ultraviolet, visible, and near-infrared light may be used to retrieve pre-recorded information by far-field spectroscopic optical detection. In plasmonic data storage, a very short (~ few femtoseconds) laser pulse is focused to a diffraction-limited spot over a small region of an optical disk containing metallic nano-structures. The digital data stored in each bit-cell, comprising multiple bits of information, modifies the spectrum of the incident light pulse. This spectrum is subsequently detected, upon reflection/transmission, with the aid of an optical spectrum analyzer. We present theoretical as well as preliminary experimental results that confirm the potential of plasmonic nano-structures for high-density optical data storage applications.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391(6668), 667-669 (1998).
    [CrossRef]
  2. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20(12), 4813-4815 (2004).
    [CrossRef]
  3. L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, "Spectral sensitivity of two-dimensional nano-hole array surface plasmon polariton resonance sensor," Appl. Phys. Lett. 91(12), 123112 (2007).
    [CrossRef]
  4. A. Lesuffleur, L. K. S. Kumar, and R. Gordon, "Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film," Appl. Phys. Lett. 88(26), 261104 (2006).
    [CrossRef]
  5. A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90(24), 243110 (2007).
    [CrossRef]
  6. J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, "Composite Plasmon Resonant Nanowires," Nano Lett. 2(5), 465-469 (2002).
    [CrossRef]
  7. H. Liu, and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452(7188), 728-731 (2008).
    [CrossRef] [PubMed]
  8. A. R. Zakharian, M. Mansuripur, and J. V. Moloney, "Transmission of light through small elliptical apertures," Opt. Express 12(12), 2631-2648 (2004).
    [CrossRef] [PubMed]
  9. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through slit apertures in metallic films," Opt. Express 12(25), 6106-6121 (2004).
    [CrossRef] [PubMed]
  10. N. C. Lindquist, A. Lesuffleur, H. Im, and S.-H. Oh, "Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation," Lab Chip 9(3), 382-387 (2009).
    [CrossRef] [PubMed]
  11. M. Mansuripur, The Physical Principles of Magneto-optical Recording, Cambridge University Press, Cambridge, United Kingdom, 1995.
    [CrossRef]
  12. J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Volume holographic storage and retrieval of digital data," Science 265(5173), 749-752 (1994).
    [CrossRef] [PubMed]
  13. W. E. Moerner, Persistent Spectral Hole-Burning: Science and Applications, Springer (1988).
  14. J. Strickler and W. Webb, "Three-dimensional optical data storage in refractive media by two-photon point excitation," Opt. Lett. 16(22), 1780-1782 (1991).
    [CrossRef] [PubMed]
  15. S. Kawata and Y. Kawata, "Three-dimensional optical data storage using photochromic materials," Chem. Rev. 100(5), 1777-1788 (2000).
    [CrossRef]
  16. D. Day, M. Gu, and A. Smallridge, "Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer," Adv. Mater. 13(12-13), 1005-1007 (2001).
    [CrossRef]
  17. P. Zijlstra, J. W. M. Chon, and M. Gu, "Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning," Opt. Express 15(19), 12151-12160 (2007).
    [CrossRef] [PubMed]
  18. P. Zijlstra, J. W. M. Chon, and M. Gu, "Five-dimensional optical recording mediated by surface plasmons in gold nano-rods," Nature08053 (2009).
  19. M. Mansuripur, A. R. Zakharian, A. Kobyakov and J. V. Moloney, "Plasmonic nano-structures for optical data storage," Paper WA2, Abstracts Booklet, ISOM/ODS’08, Hawaii, July 2008.
  20. M. Mansuripur, A. R. Zakharian, Sang-Hyun Oh, R. J.  Jones, A. Lesuffleur, N. C. Lindquist, Hyungsoon Im, A. Kobyakov, and J. V. Moloney, "Plasmonic Optical Data Storage," Paper TuA3, Abstracts Booklet, ODS’09, Orlando, Florida, May 2009.
  21. J. Chou, D. R. Solli, and B. Jalali, "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation," Appl. Phys. Lett. 92(11), 111102 (2008).
    [CrossRef]

2009 (2)

N. C. Lindquist, A. Lesuffleur, H. Im, and S.-H. Oh, "Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation," Lab Chip 9(3), 382-387 (2009).
[CrossRef] [PubMed]

P. Zijlstra, J. W. M. Chon, and M. Gu, "Five-dimensional optical recording mediated by surface plasmons in gold nano-rods," Nature08053 (2009).

2008 (2)

J. Chou, D. R. Solli, and B. Jalali, "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation," Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

H. Liu, and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452(7188), 728-731 (2008).
[CrossRef] [PubMed]

2007 (3)

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, "Spectral sensitivity of two-dimensional nano-hole array surface plasmon polariton resonance sensor," Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, "Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning," Opt. Express 15(19), 12151-12160 (2007).
[CrossRef] [PubMed]

2006 (1)

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, "Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film," Appl. Phys. Lett. 88(26), 261104 (2006).
[CrossRef]

2004 (3)

2002 (1)

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, "Composite Plasmon Resonant Nanowires," Nano Lett. 2(5), 465-469 (2002).
[CrossRef]

2001 (1)

D. Day, M. Gu, and A. Smallridge, "Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer," Adv. Mater. 13(12-13), 1005-1007 (2001).
[CrossRef]

2000 (1)

S. Kawata and Y. Kawata, "Three-dimensional optical data storage using photochromic materials," Chem. Rev. 100(5), 1777-1788 (2000).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391(6668), 667-669 (1998).
[CrossRef]

1994 (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Volume holographic storage and retrieval of digital data," Science 265(5173), 749-752 (1994).
[CrossRef] [PubMed]

1991 (1)

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Volume holographic storage and retrieval of digital data," Science 265(5173), 749-752 (1994).
[CrossRef] [PubMed]

Brolo, A. G.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20(12), 4813-4815 (2004).
[CrossRef]

Chon, J. W. M.

Chou, J.

J. Chou, D. R. Solli, and B. Jalali, "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation," Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

Day, D.

D. Day, M. Gu, and A. Smallridge, "Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer," Adv. Mater. 13(12-13), 1005-1007 (2001).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391(6668), 667-669 (1998).
[CrossRef]

Fainman, Y.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, "Spectral sensitivity of two-dimensional nano-hole array surface plasmon polariton resonance sensor," Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391(6668), 667-669 (1998).
[CrossRef]

Gordon, R.

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, "Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film," Appl. Phys. Lett. 88(26), 261104 (2006).
[CrossRef]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20(12), 4813-4815 (2004).
[CrossRef]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, "Five-dimensional optical recording mediated by surface plasmons in gold nano-rods," Nature08053 (2009).

P. Zijlstra, J. W. M. Chon, and M. Gu, "Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning," Opt. Express 15(19), 12151-12160 (2007).
[CrossRef] [PubMed]

D. Day, M. Gu, and A. Smallridge, "Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer," Adv. Mater. 13(12-13), 1005-1007 (2001).
[CrossRef]

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Volume holographic storage and retrieval of digital data," Science 265(5173), 749-752 (1994).
[CrossRef] [PubMed]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Volume holographic storage and retrieval of digital data," Science 265(5173), 749-752 (1994).
[CrossRef] [PubMed]

Hwang, G. M.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, "Spectral sensitivity of two-dimensional nano-hole array surface plasmon polariton resonance sensor," Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Im, H.

N. C. Lindquist, A. Lesuffleur, H. Im, and S.-H. Oh, "Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation," Lab Chip 9(3), 382-387 (2009).
[CrossRef] [PubMed]

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

Jalali, B.

J. Chou, D. R. Solli, and B. Jalali, "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation," Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20(12), 4813-4815 (2004).
[CrossRef]

Kawata, S.

S. Kawata and Y. Kawata, "Three-dimensional optical data storage using photochromic materials," Chem. Rev. 100(5), 1777-1788 (2000).
[CrossRef]

Kawata, Y.

S. Kawata and Y. Kawata, "Three-dimensional optical data storage using photochromic materials," Chem. Rev. 100(5), 1777-1788 (2000).
[CrossRef]

Kumar, L. K. S.

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, "Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film," Appl. Phys. Lett. 88(26), 261104 (2006).
[CrossRef]

Lalanne, P.

H. Liu, and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452(7188), 728-731 (2008).
[CrossRef] [PubMed]

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20(12), 4813-4815 (2004).
[CrossRef]

Lesuffleur, A.

N. C. Lindquist, A. Lesuffleur, H. Im, and S.-H. Oh, "Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation," Lab Chip 9(3), 382-387 (2009).
[CrossRef] [PubMed]

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, "Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film," Appl. Phys. Lett. 88(26), 261104 (2006).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391(6668), 667-669 (1998).
[CrossRef]

Lindquist, N. C.

N. C. Lindquist, A. Lesuffleur, H. Im, and S.-H. Oh, "Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation," Lab Chip 9(3), 382-387 (2009).
[CrossRef] [PubMed]

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

Liu, H.

H. Liu, and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452(7188), 728-731 (2008).
[CrossRef] [PubMed]

Mansuripur, M.

Mock, J. J.

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, "Composite Plasmon Resonant Nanowires," Nano Lett. 2(5), 465-469 (2002).
[CrossRef]

Moloney, J. V.

Oh, S.-H.

N. C. Lindquist, A. Lesuffleur, H. Im, and S.-H. Oh, "Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation," Lab Chip 9(3), 382-387 (2009).
[CrossRef] [PubMed]

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

Oldenburg, S. J.

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, "Composite Plasmon Resonant Nanowires," Nano Lett. 2(5), 465-469 (2002).
[CrossRef]

Pang, L.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, "Spectral sensitivity of two-dimensional nano-hole array surface plasmon polariton resonance sensor," Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Schultz, D. A.

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, "Composite Plasmon Resonant Nanowires," Nano Lett. 2(5), 465-469 (2002).
[CrossRef]

Schultz, S.

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, "Composite Plasmon Resonant Nanowires," Nano Lett. 2(5), 465-469 (2002).
[CrossRef]

Slutsky, B.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, "Spectral sensitivity of two-dimensional nano-hole array surface plasmon polariton resonance sensor," Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Smallridge, A.

D. Day, M. Gu, and A. Smallridge, "Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer," Adv. Mater. 13(12-13), 1005-1007 (2001).
[CrossRef]

Smith, D. R.

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, "Composite Plasmon Resonant Nanowires," Nano Lett. 2(5), 465-469 (2002).
[CrossRef]

Solli, D. R.

J. Chou, D. R. Solli, and B. Jalali, "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation," Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

Strickler, J.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391(6668), 667-669 (1998).
[CrossRef]

Webb, W.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391(6668), 667-669 (1998).
[CrossRef]

Xie, Y.

Zakharian, A. R.

Zijlstra, P.

Adv. Mater. (1)

D. Day, M. Gu, and A. Smallridge, "Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer," Adv. Mater. 13(12-13), 1005-1007 (2001).
[CrossRef]

Appl. Phys. Lett. (4)

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, "Spectral sensitivity of two-dimensional nano-hole array surface plasmon polariton resonance sensor," Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, "Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film," Appl. Phys. Lett. 88(26), 261104 (2006).
[CrossRef]

A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

J. Chou, D. R. Solli, and B. Jalali, "Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation," Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

Chem. Rev. (1)

S. Kawata and Y. Kawata, "Three-dimensional optical data storage using photochromic materials," Chem. Rev. 100(5), 1777-1788 (2000).
[CrossRef]

Lab Chip (1)

N. C. Lindquist, A. Lesuffleur, H. Im, and S.-H. Oh, "Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation," Lab Chip 9(3), 382-387 (2009).
[CrossRef] [PubMed]

Langmuir (1)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20(12), 4813-4815 (2004).
[CrossRef]

Nano Lett. (1)

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, "Composite Plasmon Resonant Nanowires," Nano Lett. 2(5), 465-469 (2002).
[CrossRef]

Nature (3)

H. Liu, and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452(7188), 728-731 (2008).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391(6668), 667-669 (1998).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, "Five-dimensional optical recording mediated by surface plasmons in gold nano-rods," Nature08053 (2009).

Opt. Express (3)

Opt. Lett. (1)

Science (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Volume holographic storage and retrieval of digital data," Science 265(5173), 749-752 (1994).
[CrossRef] [PubMed]

Other (4)

W. E. Moerner, Persistent Spectral Hole-Burning: Science and Applications, Springer (1988).

M. Mansuripur, A. R. Zakharian, A. Kobyakov and J. V. Moloney, "Plasmonic nano-structures for optical data storage," Paper WA2, Abstracts Booklet, ISOM/ODS’08, Hawaii, July 2008.

M. Mansuripur, A. R. Zakharian, Sang-Hyun Oh, R. J.  Jones, A. Lesuffleur, N. C. Lindquist, Hyungsoon Im, A. Kobyakov, and J. V. Moloney, "Plasmonic Optical Data Storage," Paper TuA3, Abstracts Booklet, ODS’09, Orlando, Florida, May 2009.

M. Mansuripur, The Physical Principles of Magneto-optical Recording, Cambridge University Press, Cambridge, United Kingdom, 1995.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

In one realization of the proposed concept, plasmonic features are nano-holes and/or nano-slits in a thin metallic film. A group of such features constitutes a bit-cell, within which several bits of information are encoded in a small (micron-sized) region of the storage medium. Much like the organization of data on a conventional optical disk, these bit-cells are arranged sequentially along parallel data tracks.

Fig. 2.
Fig. 2.

Computed transmissivity versus the vacuum wavelength λ for (a) nano-holes and (b) nano-slits in a silver slab. The Finite Difference Time Domain (FDTD) method has been used to solve Maxwell’s equations; transmissivity is defined as the fraction of total incident optical power at each wavelength. The regions on both the incidence and transmission sides of the silver slab are free-space (n = 1), and the Drude model is used to simulate the dispersion of the complex dielectric constant ε(ω)) of silver.

Fig. 3.
Fig. 3.

(a) The red curve is the transmission spectrum of a single, 100nm-diameter hole filled with n o = 2.0 dielectric in a 250nm-thick, free-standing silver slab; this is the same curve as that shown in Fig.2(a) - also in red. The blue curve is similar, except for the silver film being deposited on an n sub = 1.5 glass substrate (the hole continues to be filled with n o=2.0 dielectric). The green curve at the bottom of the frame corresponds to a 124 nm-diameter hole in a 200 nm silver film deposited atop an n sub = 1.5 substrate. (b) Plot of instantaneous Ez in the xy-plane at ∆z = 5nm below the bottom facet of a silver film containing a pair of nano-holes. The plot reveals the excitation of SPP on both sides of the nano-hole pair along the direction y of incident polarization.

Fig. 4.
Fig. 4.

Proposed readout scheme for the plasmonic disk depicted in Fig. 1. A very short laser pulse (duration ~ few femtoseconds) is focused by a diffraction-limited objective onto the disk surface. The pulse has a broad spectrum, covering the entire visible range (λ = 400nm to 700nm) and possibly beyond. The size of the focused spot at the disk surface, ~0.5μm, is comparable to the bit-cell dimensions. Although the nano-holes within a given cell are not individually resolved in a conventional sense, their collective signature, imprinted upon the spectrum of the transmitted light, can be used to identify the presence or absence of various holes within a cell. With a maximum of 10 nano-holes placed in each cell, for example, the total number of distinct spectral patterns will be 210 = 1024. The spectral patterns can be further optimized by adjusting the nano-holes’ shape/size/position relative to each other and also relative to the direction of polarization of the incident beam.

Fig. 5.
Fig. 5.

(a) Cross-sectional diagram and (b) FIB images showing nano-holes drilled into a freestanding 200 nm-thick silver film on a 300 nm-thick silicon nitride membrane. The silicon substrate and the nitride layer are etched away from the region directly beneath the nano-holes. The FIB images show single, double, and triple nano-holes, each having a diameter of ~100nm. (c) Circular hole-pairs have diameter d and edge-to-edge separation s. (d) Elliptical hole-pairs have diameters (d 1, d 2) and edge-to-edge separation s.

Fig. 6.
Fig. 6.

Measured transmission spectra through single, double, and triple circular nano-holes in the suspended 200 nm silver film depicted in Fig. 5. The white-light source used in these measurements was unpolarized, the holes were air-filled, and an incident optical power density of unity/μm2 was assumed. In the absence of nano-holes, the film’s transmissivity is below 0.3% (dotted gray curve). Hole diameters are 100 nm in (a) and 150 nm in (b).

Fig. 7.
Fig. 7.

Measured transmission spectra through single and double circular apertures in the suspended 200 nm silver film depicted in Fig. 5. The white-light source was unpolarized. The spectra are normalized by the transmissivity of a 2 μm -diameter aperture milled in the silver film. Blue: single hole, d=150nm. Green: hole pair, d=120nm, s = 90nm. Red: hole pair, d=150nm, s = 60nm. Black: hole pair, d= 150nm, s=100nm.

Fig. 8.
Fig. 8.

Measured transmission spectra through single and double elliptical nano-holes in the suspended 200 nm-thick silver film depicted in Fig. 5. The white-light source used in these measurements was linearly polarized (a) parallel to the short axis, (b) parallel to the long axis of the elliptical apertures. The spectra, labeled by aperture diameters (d 1, d 2) and pair separation s, are normalized by the transmissivity of a 2 μm-diameter aperture milled in the silver film.

Fig. 9.
Fig. 9.

Transmission spectra through nano-apertures measured with a super continuum source. (a) Pairs of air-filled circular and elliptical apertures in a suspended 200nm-thick silver film. The circular holes (red) have d=150nm. In the case of elliptical holes, major and minor diameters (d 1, d 2) are (175nm × 120nm) (blue) and (220nm × 140nm) (green). Separation between the apertures is s=100nm in all cases. (b) Single and double circular holes having diameter d = 100 nm. The 200nm-thick silver film is deposited on a glass substrate. A droplet of index-matching fluid (n o~1.5) is placed atop the silver surface prior to measurements. Vertical scale is not normalized. While transmission through the single hole (black curve) is relatively weak, double holes exhibit progressively stronger transmission with increasing hole separation. The spectra of double-holes with separation ≥150nm extend as far as λ~700nm. In both (a) and (b), the various spectra are clearly distinguishable from each other, each representing a unique signature for the corresponding hole pattern.

Fig. 10.
Fig. 10.

An alternative realization of the concept of plasmonic data storage. Each bit-cell is a collection of metallic nano-rods (diameter ~ 20-100nm, height ~ 1.0μm) embedded in a transparent substrate. Identical rods appear in different cells, although a given cell may or may not contain a specific-sized rod. Each cell stores m information bits in the form of the presence or absence of a given rod (0 or 1). The incident beam is a diffraction-limited cone of light with a spot diameter of ~0.5μm and a duration of a few femtoseconds. Since nano-rods of differing dimensions resonate at different wavelengths, the scattering cross-section of each rod is a strong function of the incident wavelength. Provided that attenuation is not too severe, the light pulse may pass through several layers of nano-rods before focusing on a specific cell. The transmitted spectrum thus carries the signature of the bit-cell located within the focal volume.

Fig. 11.
Fig. 11.

Plots of amplitude and phase in the xz cross-sectional plane for a 500nm-long silver nano-rod (cylinder radius r = 40 nm) at the resonance wavelength of λ = 458nm. The incident beam is a focused Gaussian having FWHM = 1μm, located at ∆z = 55nm above the upper surface of the nano-rod and linearly polarized along the y-axis. From left to right: Ex, Ey, Ez components of the electric field. Top row: amplitude; bottom row: phase.

Fig. 12.
Fig. 12.

Computed transmission spectra of 500 nm-long cylindrical nano-rods of differing diameters (d = 60, 80, 100 nm), embedded in a dielectric host of refractive index n = 1.5. The incident focused spot has FWHM=1.0 μm and is linearly polarized along the y-axis. The spectra of individual nano-rods are plotted in black, red and green. The dark-blue curve corresponds to a pair of 80 nm-diameter nano-rods, while the light-blue curve represents the transmission spectrum of three 80 nm-diameter rods placed at the vertices of a triangle.

Fig. A1.
Fig. A1.

Amplitude and phase plots on the bottom facet of a 250 nm-thick silver film when a focused beam goes through a triplet of 80nm-diameter holes. The holes are filled with n o =2.0 dielectric, their separation along the sides of an equilateral triangle is 150 nm, and λ = 473 nm. From left to right: x, y, z components of the E-field at ∆z= 5 nm below the bottom facet.

Fig. A2.
Fig. A2.

Amplitude and phase distributions within the cross-sectional yz-plane for transmission through a triplet of 80 nm-diameter holes in a 250nm-thick silver film. Simulation parameters are the same as those of Fig. A1.

Metrics