Abstract

Characteristics of a multiple-teeth-shaped plasmonic filter are analyzed. As an extension of this structure, an asymmetrical multiple-teeth-shaped structure is proposed and numerically simulated by using the finite difference time domain method with perfectly matched layer absorbing boundary condition. It is found that the asymmetrical structure can realize the function of a narrow-passband filter. The central wavelength of the passband linearly increases with the simultaneous increasing of d 1 and d 2.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Rotman, “A study of single surface corrugated guides,” Proc. IRE 39, 952–959 (1951).
    [CrossRef]
  2. R. A. Hurd, “The propagation of an electromagnetic wave along an infinite corrugated surface,” Can. J. Phys. 32, 727–734 (1954).
    [CrossRef]
  3. R. S. Elliott, “On the theory of corrugated plane surfaces,” IRE Trans AP-2 0.71–81 (1954).
  4. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  5. J. C. Weeber, A. Dereu, C. Griard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritions of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60(12), 9061–9068 (1999).
    [CrossRef]
  6. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
    [CrossRef]
  7. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
    [CrossRef]
  8. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [CrossRef] [PubMed]
  9. T. W. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13(24), 9652–9659 (2005).
    [CrossRef] [PubMed]
  10. G. Veronis and S. Fan, “Bend and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
    [CrossRef]
  11. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005).
    [CrossRef] [PubMed]
  12. Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278(1), 199–203 (2007).
    [CrossRef]
  13. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyia, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833 (2004).
    [CrossRef]
  14. H. Zhao, X. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40(10), 3025–3029 (2008).
    [CrossRef]
  15. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
    [CrossRef] [PubMed]
  16. Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
    [CrossRef]
  17. B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
    [CrossRef]
  18. W. Lin and G. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91(14), 143121 (2007).
    [CrossRef]
  19. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008).
    [CrossRef] [PubMed]
  20. X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
    [CrossRef] [PubMed]
  21. Z. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in Metal-Insulator-Metal Waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
    [CrossRef]
  22. Q. Zhang, X.-G. Huang, X.-S. Lin, J. Tao, and X.-P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17(9), 7549–7555 (2009).
    [CrossRef]

2009 (1)

2008 (3)

2007 (3)

Z. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in Metal-Insulator-Metal Waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278(1), 199–203 (2007).
[CrossRef]

W. Lin and G. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91(14), 143121 (2007).
[CrossRef]

2006 (1)

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
[CrossRef]

2005 (4)

B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[CrossRef]

T. W. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13(24), 9652–9659 (2005).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Bend and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13(26), 10795–10800 (2005).
[CrossRef] [PubMed]

2004 (3)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyia, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833 (2004).
[CrossRef]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
[CrossRef] [PubMed]

2003 (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

2000 (1)

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
[CrossRef]

1999 (1)

J. C. Weeber, A. Dereu, C. Griard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritions of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60(12), 9061–9068 (1999).
[CrossRef]

1998 (1)

1954 (1)

R. A. Hurd, “The propagation of an electromagnetic wave along an infinite corrugated surface,” Can. J. Phys. 32, 727–734 (1954).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Aussenegg, F. R.

Bozhevolnyia, S. I.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyia, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833 (2004).
[CrossRef]

Deng, Q.

Dereu, A.

J. C. Weeber, A. Dereu, C. Griard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritions of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60(12), 9061–9068 (1999).
[CrossRef]

Dickson, R. M.

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
[CrossRef]

Du, C.

Fan, S.

G. Veronis and S. Fan, “Bend and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Forsberg, E.

Z. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in Metal-Insulator-Metal Waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
[CrossRef]

Fukui, M.

Gao, H.

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Goudonnet, J. P.

J. C. Weeber, A. Dereu, C. Griard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritions of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60(12), 9061–9068 (1999).
[CrossRef]

Gray, S.

Griard, C.

J. C. Weeber, A. Dereu, C. Griard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritions of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60(12), 9061–9068 (1999).
[CrossRef]

Guang, X.

H. Zhao, X. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40(10), 3025–3029 (2008).
[CrossRef]

Han, Z.

Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278(1), 199–203 (2007).
[CrossRef]

Z. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in Metal-Insulator-Metal Waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
[CrossRef]

Haraguchi, M.

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

He, S.

Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278(1), 199–203 (2007).
[CrossRef]

Z. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in Metal-Insulator-Metal Waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

Huang, J.

H. Zhao, X. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40(10), 3025–3029 (2008).
[CrossRef]

Huang, X.-G.

Hurd, R. A.

R. A. Hurd, “The propagation of an electromagnetic wave along an infinite corrugated surface,” Can. J. Phys. 32, 727–734 (1954).
[CrossRef]

Jin, X.-P.

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Krenn, J. R.

J. C. Weeber, A. Dereu, C. Griard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritions of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60(12), 9061–9068 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
[CrossRef]

Lee, T. W.

Leitner, A.

Leosson, K.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyia, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833 (2004).
[CrossRef]

Lin, W.

W. Lin and G. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91(14), 143121 (2007).
[CrossRef]

Lin, X.

Lin, X.-S.

Liu, L.

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
[CrossRef]

Luo, X.

Lv, Y.

Lyon, L. A.

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Matsuzaki, Y.

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Nakagaki, M.

Nikolajsen, T.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyia, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833 (2004).
[CrossRef]

Okamoto, T.

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Quinten, M.

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Shi, H.

Tao, J.

Veronis, G.

G. Veronis and S. Fan, “Bend and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Wang, B.

B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[CrossRef]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
[CrossRef] [PubMed]

Wang, C.

Wang, G.

W. Lin and G. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91(14), 143121 (2007).
[CrossRef]

B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[CrossRef]

Wang, G. P.

Weeber, J. C.

J. C. Weeber, A. Dereu, C. Griard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritions of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60(12), 9061–9068 (1999).
[CrossRef]

Yao, H.

Zhang, Q.

Zhao, H.

H. Zhao, X. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40(10), 3025–3029 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

G. Veronis and S. Fan, “Bend and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyia, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833 (2004).
[CrossRef]

B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(1), 013107 (2005).
[CrossRef]

W. Lin and G. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91(14), 143121 (2007).
[CrossRef]

Can. J. Phys. (1)

R. A. Hurd, “The propagation of an electromagnetic wave along an infinite corrugated surface,” Can. J. Phys. 32, 727–734 (1954).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in Metal-Insulator-Metal Waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

J. Phys. Chem. B (1)

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
[CrossRef]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259(2), 690–695 (2006).
[CrossRef]

Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278(1), 199–203 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (1)

J. C. Weeber, A. Dereu, C. Griard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritions of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60(12), 9061–9068 (1999).
[CrossRef]

Physica E (1)

H. Zhao, X. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40(10), 3025–3029 (2008).
[CrossRef]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Other (2)

W. Rotman, “A study of single surface corrugated guides,” Proc. IRE 39, 952–959 (1951).
[CrossRef]

R. S. Elliott, “On the theory of corrugated plane surfaces,” IRE Trans AP-2 0.71–81 (1954).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic of a multiple-teeth-shaped MIM waveguide structure. (b) The transmission spectrum of the multiple-teeth-shaped waveguide filter with wt = 50nm, Λ = 150nm, d = 260.5nm and N = 4.

Fig. 2.
Fig. 2.

The central wavelength of the bandgap as a function of the teeth depth of d at teeth width of 50nm.

Fig. 3.
Fig. 3.

Transmission spectra of multi-teeth filters consisting of different numbers of rectangular teeth with a fixed Λ = 150nm.

Fig. 4.
Fig. 4.

(a) Schematic of an asymmetrical multiple-teeth structure consisted of two sets with different teeth depths. (b) The transmission spectrum of the asymmetrical multiple-teeth-shaped waveguide filter with d 1 = 148nm, d 2 = 340nm, wgap = ws = 84nm, N 1 = 3, and N 2 = 4.

Fig. 5.
Fig. 5.

The transmission spectra of the single-set of multiple-teeth structure with d 1 = 148nm, N 1 = 3 and the single set of multiple-teeth structure with d 2 = 340nm and N 2 = 4, respectively.

Fig. 6.
Fig. 6.

Central wavelength of the narrow-band as a function of the variation Δd = Δd 1 = Δd 2, Δd 1, and Δd 2 are respectively the increments of d 1 and d 2.

Fig. 7.
Fig. 7.

Dependence of transmission characteristic on separation between the 3rd short tooth and the 1st long tooth with d 1 = 148nm, N 1 = 3, d 2 = 340nm, and N 2 = 4, respectively.

Metrics