Abstract

A simple and effective displacement sensor based on external birefringent feedback in Nd:YAG lasers is demonstrated. The measurement is based on the principle that, when linearly polarized light passes through the birefringent external cavity and then is fed back into laser resonator by external object, a phase difference is generated between laser sinusoidal-modulated intensities in the two orthogonal directions. These two sinusoidal intensities with λ/2 period can be subdivided to λ/8 after 4-fold evaluation. Moreover, the directional discrimination can be easily obtained according to the phase relationship between them. The chief advantages of the sensor are that it is compact, small size, flexible, low cost, and robust. Experimental results have shown that the standard deviation of displacement measurement is 0.093µm in a 7mm range and 0.34µm in a 20mm range.

© 2009 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. H. Peek, P. T. Bolwjin, and C. Th. Alkemade, “Axial mode number of gas lasers from moving-mirror experiments,” Am. J. Phys. 35(9), 820–831 (1967).
    [CrossRef]
  2. W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
    [CrossRef]
  3. G. Giulian, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
    [CrossRef]
  4. R. Kawai, Y. Asakawa, and K. Otsuka, “Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diodepumped microchip LiNdP4O12 lasers,” IEEE Photon. Technol. Lett. 11(6), 706–708 (1999).
    [CrossRef]
  5. S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, “Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode,” Appl. Opt. 25(9), 1417–1419 (1986).
    [CrossRef]
  6. A. Bearden, M. P. O’Neill, L. C. Osborne, and T. L. Wong, “Imaging and vibrational analysis with laser-feedback interferometry,” Opt. Lett. 18(3), 238–240 (1993).
    [CrossRef]
  7. E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24(11), 744–746 (1999).
    [CrossRef]
  8. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback lasers,” J. Lightwave Technol. LT-4(11), 1655–1661 (1986).
    [CrossRef]
  9. Y. Tan, S. Zhang, W. Liu, and W. Mao, “Intensity modulation in single-mode microchip Nd:YAG lasers with asymmetric external cavity,” Chin. Phys. 16(4), 1020–1026 (2007).
    [CrossRef]
  10. B. Ovryn and J. H. Andrews, “Phase-shifted laser feedback interferometry,” Opt. Lett. 23(14), 1078–1080 (1998).
    [CrossRef]
  11. E. Lacot and O. Hugon, “Phase-sensitive laser detection by frequency-shifted optical feedback,” Phys. Rev. A 70(5), 053824 (2004).
    [CrossRef]
  12. X. Wan, D. Li, and S. Zhang, “Quasi-common-path laser feedback interferometry based on frequency shifting and multiplexing,” Opt. Lett. 32(4), 367–369 (2007).
    [CrossRef]
  13. Y. Tan and S. Zhang, “Self-mixing interference effects of microchip Nd:YAG laser with a wave plate in the external cavity,” Appl. Opt. 46(24), 6064–6068 (2007).
    [CrossRef]
  14. M. J. Downs and K. W. Raine, “An unmodulated bi-directional fringe-counting interferometer system for measuring displacement,” Precis. Eng. 1(2), 85–88 (1979).
    [CrossRef]
  15. G. Liu, S. Zhang, J. Zhu, and Y. Li, “Optical feedback laser with a quartz crystal plate in the external cavity,” Appl. Opt. 42(33), 6636–6639 (2003).
    [CrossRef]
  16. L. Fei, S. Zhang, and X. Zong, “Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity,” Opt. Commun. 246(4-6), 505–510 (2005).
    [CrossRef]

2007 (3)

2005 (1)

L. Fei, S. Zhang, and X. Zong, “Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity,” Opt. Commun. 246(4-6), 505–510 (2005).
[CrossRef]

2004 (1)

E. Lacot and O. Hugon, “Phase-sensitive laser detection by frequency-shifted optical feedback,” Phys. Rev. A 70(5), 053824 (2004).
[CrossRef]

2003 (1)

2002 (1)

G. Giulian, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

1999 (2)

R. Kawai, Y. Asakawa, and K. Otsuka, “Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diodepumped microchip LiNdP4O12 lasers,” IEEE Photon. Technol. Lett. 11(6), 706–708 (1999).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24(11), 744–746 (1999).
[CrossRef]

1998 (1)

1994 (1)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[CrossRef]

1993 (1)

1986 (2)

S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, “Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode,” Appl. Opt. 25(9), 1417–1419 (1986).
[CrossRef]

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback lasers,” J. Lightwave Technol. LT-4(11), 1655–1661 (1986).
[CrossRef]

1979 (1)

M. J. Downs and K. W. Raine, “An unmodulated bi-directional fringe-counting interferometer system for measuring displacement,” Precis. Eng. 1(2), 85–88 (1979).
[CrossRef]

1967 (1)

Th. H. Peek, P. T. Bolwjin, and C. Th. Alkemade, “Axial mode number of gas lasers from moving-mirror experiments,” Am. J. Phys. 35(9), 820–831 (1967).
[CrossRef]

Alkemade, C. Th.

Th. H. Peek, P. T. Bolwjin, and C. Th. Alkemade, “Axial mode number of gas lasers from moving-mirror experiments,” Am. J. Phys. 35(9), 820–831 (1967).
[CrossRef]

Andrews, J. H.

Asakawa, Y.

R. Kawai, Y. Asakawa, and K. Otsuka, “Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diodepumped microchip LiNdP4O12 lasers,” IEEE Photon. Technol. Lett. 11(6), 706–708 (1999).
[CrossRef]

Bearden, A.

Bolwjin, P. T.

Th. H. Peek, P. T. Bolwjin, and C. Th. Alkemade, “Axial mode number of gas lasers from moving-mirror experiments,” Am. J. Phys. 35(9), 820–831 (1967).
[CrossRef]

Bosch, T.

G. Giulian, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

Boyle, W. J. O.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback lasers,” J. Lightwave Technol. LT-4(11), 1655–1661 (1986).
[CrossRef]

Day, R.

Donati, S.

G. Giulian, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

Downs, M. J.

M. J. Downs and K. W. Raine, “An unmodulated bi-directional fringe-counting interferometer system for measuring displacement,” Precis. Eng. 1(2), 85–88 (1979).
[CrossRef]

Fei, L.

L. Fei, S. Zhang, and X. Zong, “Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity,” Opt. Commun. 246(4-6), 505–510 (2005).
[CrossRef]

Giulian, G.

G. Giulian, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

Grattan, K. T. V.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[CrossRef]

Hugon, O.

E. Lacot and O. Hugon, “Phase-sensitive laser detection by frequency-shifted optical feedback,” Phys. Rev. A 70(5), 053824 (2004).
[CrossRef]

Kawai, R.

R. Kawai, Y. Asakawa, and K. Otsuka, “Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diodepumped microchip LiNdP4O12 lasers,” IEEE Photon. Technol. Lett. 11(6), 706–708 (1999).
[CrossRef]

Lacot, E.

E. Lacot and O. Hugon, “Phase-sensitive laser detection by frequency-shifted optical feedback,” Phys. Rev. A 70(5), 053824 (2004).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24(11), 744–746 (1999).
[CrossRef]

Li, D.

Li, Y.

Liu, G.

Liu, W.

Y. Tan, S. Zhang, W. Liu, and W. Mao, “Intensity modulation in single-mode microchip Nd:YAG lasers with asymmetric external cavity,” Chin. Phys. 16(4), 1020–1026 (2007).
[CrossRef]

Mao, W.

Y. Tan, S. Zhang, W. Liu, and W. Mao, “Intensity modulation in single-mode microchip Nd:YAG lasers with asymmetric external cavity,” Chin. Phys. 16(4), 1020–1026 (2007).
[CrossRef]

Mochizuki, A.

Norgia, M.

G. Giulian, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

O’Neill, M. P.

Osborne, L. C.

Otsuka, K.

R. Kawai, Y. Asakawa, and K. Otsuka, “Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diodepumped microchip LiNdP4O12 lasers,” IEEE Photon. Technol. Lett. 11(6), 706–708 (1999).
[CrossRef]

Ovryn, B.

Palmer, A. W.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[CrossRef]

Peek, Th. H.

Th. H. Peek, P. T. Bolwjin, and C. Th. Alkemade, “Axial mode number of gas lasers from moving-mirror experiments,” Am. J. Phys. 35(9), 820–831 (1967).
[CrossRef]

Raine, K. W.

M. J. Downs and K. W. Raine, “An unmodulated bi-directional fringe-counting interferometer system for measuring displacement,” Precis. Eng. 1(2), 85–88 (1979).
[CrossRef]

Shinohara, S.

Stoeckel, F.

Sumi, M.

Tan, Y.

Y. Tan, S. Zhang, W. Liu, and W. Mao, “Intensity modulation in single-mode microchip Nd:YAG lasers with asymmetric external cavity,” Chin. Phys. 16(4), 1020–1026 (2007).
[CrossRef]

Y. Tan and S. Zhang, “Self-mixing interference effects of microchip Nd:YAG laser with a wave plate in the external cavity,” Appl. Opt. 46(24), 6064–6068 (2007).
[CrossRef]

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback lasers,” J. Lightwave Technol. LT-4(11), 1655–1661 (1986).
[CrossRef]

Wan, X.

Wang, W. M.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[CrossRef]

Wong, T. L.

Yoshida, H.

Zhang, S.

Y. Tan, S. Zhang, W. Liu, and W. Mao, “Intensity modulation in single-mode microchip Nd:YAG lasers with asymmetric external cavity,” Chin. Phys. 16(4), 1020–1026 (2007).
[CrossRef]

Y. Tan and S. Zhang, “Self-mixing interference effects of microchip Nd:YAG laser with a wave plate in the external cavity,” Appl. Opt. 46(24), 6064–6068 (2007).
[CrossRef]

X. Wan, D. Li, and S. Zhang, “Quasi-common-path laser feedback interferometry based on frequency shifting and multiplexing,” Opt. Lett. 32(4), 367–369 (2007).
[CrossRef]

L. Fei, S. Zhang, and X. Zong, “Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity,” Opt. Commun. 246(4-6), 505–510 (2005).
[CrossRef]

G. Liu, S. Zhang, J. Zhu, and Y. Li, “Optical feedback laser with a quartz crystal plate in the external cavity,” Appl. Opt. 42(33), 6636–6639 (2003).
[CrossRef]

Zhu, J.

Zong, X.

L. Fei, S. Zhang, and X. Zong, “Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity,” Opt. Commun. 246(4-6), 505–510 (2005).
[CrossRef]

Am. J. Phys. (1)

Th. H. Peek, P. T. Bolwjin, and C. Th. Alkemade, “Axial mode number of gas lasers from moving-mirror experiments,” Am. J. Phys. 35(9), 820–831 (1967).
[CrossRef]

Appl. Opt. (3)

Chin. Phys. (1)

Y. Tan, S. Zhang, W. Liu, and W. Mao, “Intensity modulation in single-mode microchip Nd:YAG lasers with asymmetric external cavity,” Chin. Phys. 16(4), 1020–1026 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Kawai, Y. Asakawa, and K. Otsuka, “Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diodepumped microchip LiNdP4O12 lasers,” IEEE Photon. Technol. Lett. 11(6), 706–708 (1999).
[CrossRef]

J. Lightwave Technol. (2)

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-µm distributed feedback lasers,” J. Lightwave Technol. LT-4(11), 1655–1661 (1986).
[CrossRef]

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12(9), 1577–1587 (1994).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

G. Giulian, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

Opt. Commun. (1)

L. Fei, S. Zhang, and X. Zong, “Polarization flipping and intensity transfer in laser with optical feedback from an external birefringence cavity,” Opt. Commun. 246(4-6), 505–510 (2005).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (1)

E. Lacot and O. Hugon, “Phase-sensitive laser detection by frequency-shifted optical feedback,” Phys. Rev. A 70(5), 053824 (2004).
[CrossRef]

Precis. Eng. (1)

M. J. Downs and K. W. Raine, “An unmodulated bi-directional fringe-counting interferometer system for measuring displacement,” Precis. Eng. 1(2), 85–88 (1979).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics