Abstract

Laser speckle imaging (LSI) based on the speckle contrast analysis is a simple and robust technique for imaging of heterogeneous dynamics. LSI finds frequent application for dynamical mapping of cerebral blood flow, as it features high spatial and temporal resolution. However, the quantitative interpretation of the acquired data is not straightforward for the common case of a speckle field formed by both by moving and localized scatterers such as blood cells and bone or tissue. Here we present a novel processing scheme, we call dynamic laser speckle imaging (dLSI), that can be used to correctly extract the temporal correlation parameters from the speckle contrast measured in the presence of a static or slow-evolving background. The static light contribution is derived from the measurements by cross-correlating sequential speckle images. In-vivo speckle imaging experiments performed in the rodent brain demonstrate that dLSI leads to improved results. The cerebral hemodynamic response observed through the thinned and intact skull are more pronounced in the dLSI images as compared to the standard speckle contrast analysis. The proposed method also yields benefits with respect to the quality of the speckle images by suppressing contributions of non-uniformly distributed specular reflections.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
    [CrossRef] [PubMed]
  2. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
    [CrossRef]
  3. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
    [CrossRef] [PubMed]
  4. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
    [CrossRef] [PubMed]
  5. T. Durduran, M. G. Burnett, G. Q. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
    [CrossRef] [PubMed]
  6. J. S. Paul, H. Al Nashash, A. R. Luft, and T. M. Le, “Statistical mapping of speckle autocorrelation for visualization of hyperaemic responses to cortical stimulation,” Ann. Biomed. Eng. 34(7), 1107–1118 (2006).
    [CrossRef] [PubMed]
  7. B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
    [CrossRef] [PubMed]
  8. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. J. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
    [CrossRef] [PubMed]
  9. P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31(23), 3465–3467 (2006).
    [CrossRef] [PubMed]
  10. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
    [CrossRef] [PubMed]
  11. H. Y. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32(15), 2188–2190 (2007).
    [CrossRef] [PubMed]
  12. P. C. Li, S. L. Ni, L. Zhang, S. Q. Zeng, and Q. M. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31(12), 1824–1826 (2006).
    [CrossRef] [PubMed]
  13. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).
    [CrossRef]
  14. T. Smausz, D. Zölei, and B. Hopp, “Real correlation time measurement in laser speckle contrast analysis using wide exposure time range images,” Appl. Opt. 48(8), 1425–1429 (2009).
    [CrossRef] [PubMed]
  15. A. C. Völker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, “Laser speckle imaging with an active noise reduction scheme,” Opt. Express 13(24), 9782–9787 (2005).
    [CrossRef] [PubMed]
  16. P. Zakharov, S. Bhat, P. Schurtenberger, and F. Scheffold, “Multiple-scattering suppression in dynamic light scattering based on a digital camera detection scheme,” Appl. Opt. 45(8), 1756–1764 (2006).
    [CrossRef] [PubMed]
  17. A. F. Fercher and J. D. Briers, “Flow Visualization by Means of Single-Exposure Speckle Photography,” Opt. Commun. 37(5), 326–330 (1981).
    [CrossRef]
  18. B. J. Berne, and R. Pecora, Dynamic Light Scattering. With Applications to Chemistry, Biology, and Physics. (Dover Publications, New York, 2000).
  19. P. Zakharov, A. Volker, A. Buck, B. Weber, and F. Scheffold, “Non-ergodicity correction in laser speckle biomedical imaging,” Proc. SPIE 6631, 66310D (2009).
    [CrossRef]
  20. J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
    [CrossRef]
  21. P. Zakharov, and F. Scheffold, Advances in dynamic light scattering techniques in Light Scattering Reviews 4 (Springer, Heidelberg, 2009).
  22. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14(1), 192–215 (1997).
    [CrossRef]
  23. S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44(10), 1823–1830 (2005).
    [CrossRef] [PubMed]
  24. P. Apollo, Y. Wong, and P. Wiltzius, “Dynamic light scattering with a ccd camera,” Rev. Sci. Instrum. 64(9), 2547–2549 (1993).
    [CrossRef]
  25. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
    [CrossRef]
  26. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Second Edition (SPIE Press, Bellingham, 2007).
  27. J. Berwick, D. Johnston, M. Jones, J. Martindale, P. Redgrave, N. McLoughlin, I. Schiessl, and J. E. Mayhew, “Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex,” Eur. J. Neurosci. 22(7), 1655–1666 (2005).
    [CrossRef] [PubMed]
  28. A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003).
    [CrossRef] [PubMed]
  29. U. Lindauer, A. Villringer, and U. Dirnagl, “Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics,” Am. J. Physiol. 264(4 Pt 2), H1223–H1228 (1993).
    [PubMed]

2009 (2)

P. Zakharov, A. Volker, A. Buck, B. Weber, and F. Scheffold, “Non-ergodicity correction in laser speckle biomedical imaging,” Proc. SPIE 6631, 66310D (2009).
[CrossRef]

T. Smausz, D. Zölei, and B. Hopp, “Real correlation time measurement in laser speckle contrast analysis using wide exposure time range images,” Appl. Opt. 48(8), 1425–1429 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (1)

2006 (4)

2005 (4)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[CrossRef]

J. Berwick, D. Johnston, M. Jones, J. Martindale, P. Redgrave, N. McLoughlin, I. Schiessl, and J. E. Mayhew, “Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex,” Eur. J. Neurosci. 22(7), 1655–1666 (2005).
[CrossRef] [PubMed]

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44(10), 1823–1830 (2005).
[CrossRef] [PubMed]

A. C. Völker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, “Laser speckle imaging with an active noise reduction scheme,” Opt. Express 13(24), 9782–9787 (2005).
[CrossRef] [PubMed]

2004 (3)

T. Durduran, M. G. Burnett, G. Q. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
[CrossRef] [PubMed]

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[CrossRef] [PubMed]

2003 (3)

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[CrossRef] [PubMed]

2001 (2)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[CrossRef]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

1999 (1)

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
[CrossRef]

1997 (1)

1993 (2)

U. Lindauer, A. Villringer, and U. Dirnagl, “Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics,” Am. J. Physiol. 264(4 Pt 2), H1223–H1228 (1993).
[PubMed]

P. Apollo, Y. Wong, and P. Wiltzius, “Dynamic light scattering with a ccd camera,” Rev. Sci. Instrum. 64(9), 2547–2549 (1993).
[CrossRef]

1981 (1)

A. F. Fercher and J. D. Briers, “Flow Visualization by Means of Single-Exposure Speckle Photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

Al Nashash, H.

J. S. Paul, H. Al Nashash, A. R. Luft, and T. M. Le, “Statistical mapping of speckle autocorrelation for visualization of hyperaemic responses to cortical stimulation,” Ann. Biomed. Eng. 34(7), 1107–1118 (2006).
[CrossRef] [PubMed]

Andermann, M. L.

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003).
[CrossRef] [PubMed]

Apollo, P.

P. Apollo, Y. Wong, and P. Wiltzius, “Dynamic light scattering with a ccd camera,” Rev. Sci. Instrum. 64(9), 2547–2549 (1993).
[CrossRef]

Ayata, C.

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[CrossRef] [PubMed]

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[CrossRef]

Berwick, J.

J. Berwick, D. Johnston, M. Jones, J. Martindale, P. Redgrave, N. McLoughlin, I. Schiessl, and J. E. Mayhew, “Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex,” Eur. J. Neurosci. 22(7), 1655–1666 (2005).
[CrossRef] [PubMed]

Bhat, S.

Boas, D. A.

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44(10), 1823–1830 (2005).
[CrossRef] [PubMed]

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14(1), 192–215 (1997).
[CrossRef]

Bolay, H.

Briers, J. D.

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[CrossRef]

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
[CrossRef]

A. F. Fercher and J. D. Briers, “Flow Visualization by Means of Single-Exposure Speckle Photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

Buck, A.

P. Zakharov, A. Volker, A. Buck, B. Weber, and F. Scheffold, “Non-ergodicity correction in laser speckle biomedical imaging,” Proc. SPIE 6631, 66310D (2009).
[CrossRef]

P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31(23), 3465–3467 (2006).
[CrossRef] [PubMed]

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
[CrossRef] [PubMed]

Buck, F.

Burger, C.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
[CrossRef] [PubMed]

Burnett, M. G.

T. Durduran, M. G. Burnett, G. Q. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

Cen, J.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

Chen, S.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

Cheng, H.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

Cheng, H. Y.

Dale, A. M.

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003).
[CrossRef] [PubMed]

Detre, J. A.

T. Durduran, M. G. Burnett, G. Q. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

Devor, A.

Dirnagl, U.

U. Lindauer, A. Villringer, and U. Dirnagl, “Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics,” Am. J. Physiol. 264(4 Pt 2), H1223–H1228 (1993).
[PubMed]

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[CrossRef]

Duncan, D. D.

Dunn, A. K.

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. J. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
[CrossRef] [PubMed]

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44(10), 1823–1830 (2005).
[CrossRef] [PubMed]

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Duong, T. Q.

Durduran, T.

T. Durduran, M. G. Burnett, G. Q. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[CrossRef]

Fercher, A. F.

A. F. Fercher and J. D. Briers, “Flow Visualization by Means of Single-Exposure Speckle Photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

Furuya, D.

T. Durduran, M. G. Burnett, G. Q. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[CrossRef]

Gong, H.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

Gopal, A.

Greenberg, J. H.

T. Durduran, M. G. Burnett, G. Q. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

He, X. W.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
[CrossRef]

Hopp, B.

Johnston, D.

J. Berwick, D. Johnston, M. Jones, J. Martindale, P. Redgrave, N. McLoughlin, I. Schiessl, and J. E. Mayhew, “Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex,” Eur. J. Neurosci. 22(7), 1655–1666 (2005).
[CrossRef] [PubMed]

Jones, M.

J. Berwick, D. Johnston, M. Jones, J. Martindale, P. Redgrave, N. McLoughlin, I. Schiessl, and J. E. Mayhew, “Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex,” Eur. J. Neurosci. 22(7), 1655–1666 (2005).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

Le, T. M.

J. S. Paul, H. Al Nashash, A. R. Luft, and T. M. Le, “Statistical mapping of speckle autocorrelation for visualization of hyperaemic responses to cortical stimulation,” Ann. Biomed. Eng. 34(7), 1107–1118 (2006).
[CrossRef] [PubMed]

Li, P. C.

Lindauer, U.

U. Lindauer, A. Villringer, and U. Dirnagl, “Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics,” Am. J. Physiol. 264(4 Pt 2), H1223–H1228 (1993).
[PubMed]

Luft, A. R.

J. S. Paul, H. Al Nashash, A. R. Luft, and T. M. Le, “Statistical mapping of speckle autocorrelation for visualization of hyperaemic responses to cortical stimulation,” Ann. Biomed. Eng. 34(7), 1107–1118 (2006).
[CrossRef] [PubMed]

Luo, Q.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

Luo, Q. M.

Martindale, J.

J. Berwick, D. Johnston, M. Jones, J. Martindale, P. Redgrave, N. McLoughlin, I. Schiessl, and J. E. Mayhew, “Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex,” Eur. J. Neurosci. 22(7), 1655–1666 (2005).
[CrossRef] [PubMed]

Mayhew, J. E.

J. Berwick, D. Johnston, M. Jones, J. Martindale, P. Redgrave, N. McLoughlin, I. Schiessl, and J. E. Mayhew, “Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex,” Eur. J. Neurosci. 22(7), 1655–1666 (2005).
[CrossRef] [PubMed]

McLoughlin, N.

J. Berwick, D. Johnston, M. Jones, J. Martindale, P. Redgrave, N. McLoughlin, I. Schiessl, and J. E. Mayhew, “Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex,” Eur. J. Neurosci. 22(7), 1655–1666 (2005).
[CrossRef] [PubMed]

Moskowitz, M. A.

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Ni, S. L.

Ozdemir-Gursoy, Y.

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[CrossRef] [PubMed]

Parthasarathy, A. B.

Paul, J. S.

J. S. Paul, H. Al Nashash, A. R. Luft, and T. M. Le, “Statistical mapping of speckle autocorrelation for visualization of hyperaemic responses to cortical stimulation,” Ann. Biomed. Eng. 34(7), 1107–1118 (2006).
[CrossRef] [PubMed]

Redgrave, P.

J. Berwick, D. Johnston, M. Jones, J. Martindale, P. Redgrave, N. McLoughlin, I. Schiessl, and J. E. Mayhew, “Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex,” Eur. J. Neurosci. 22(7), 1655–1666 (2005).
[CrossRef] [PubMed]

Richards, G.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
[CrossRef]

Salomone, S.

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[CrossRef] [PubMed]

Scheffold, F.

P. Zakharov, A. Volker, A. Buck, B. Weber, and F. Scheffold, “Non-ergodicity correction in laser speckle biomedical imaging,” Proc. SPIE 6631, 66310D (2009).
[CrossRef]

P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31(23), 3465–3467 (2006).
[CrossRef] [PubMed]

P. Zakharov, S. Bhat, P. Schurtenberger, and F. Scheffold, “Multiple-scattering suppression in dynamic light scattering based on a digital camera detection scheme,” Appl. Opt. 45(8), 1756–1764 (2006).
[CrossRef] [PubMed]

A. C. Völker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, “Laser speckle imaging with an active noise reduction scheme,” Opt. Express 13(24), 9782–9787 (2005).
[CrossRef] [PubMed]

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
[CrossRef] [PubMed]

Schiessl, I.

J. Berwick, D. Johnston, M. Jones, J. Martindale, P. Redgrave, N. McLoughlin, I. Schiessl, and J. E. Mayhew, “Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex,” Eur. J. Neurosci. 22(7), 1655–1666 (2005).
[CrossRef] [PubMed]

Schurtenberger, P.

Shin, H. K.

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[CrossRef] [PubMed]

Smausz, T.

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[CrossRef]

Tom, W. J.

Ulbert, I.

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003).
[CrossRef] [PubMed]

Villringer, A.

U. Lindauer, A. Villringer, and U. Dirnagl, “Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics,” Am. J. Physiol. 264(4 Pt 2), H1223–H1228 (1993).
[PubMed]

Volker, A.

P. Zakharov, A. Volker, A. Buck, B. Weber, and F. Scheffold, “Non-ergodicity correction in laser speckle biomedical imaging,” Proc. SPIE 6631, 66310D (2009).
[CrossRef]

Völker, A.

Völker, A. C.

von Schulthess, G. K.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
[CrossRef] [PubMed]

Weber, B.

P. Zakharov, A. Volker, A. Buck, B. Weber, and F. Scheffold, “Non-ergodicity correction in laser speckle biomedical imaging,” Proc. SPIE 6631, 66310D (2009).
[CrossRef]

P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31(23), 3465–3467 (2006).
[CrossRef] [PubMed]

A. C. Völker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, “Laser speckle imaging with an active noise reduction scheme,” Opt. Express 13(24), 9782–9787 (2005).
[CrossRef] [PubMed]

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
[CrossRef] [PubMed]

Wiltzius, P.

P. Apollo, Y. Wong, and P. Wiltzius, “Dynamic light scattering with a ccd camera,” Rev. Sci. Instrum. 64(9), 2547–2549 (1993).
[CrossRef]

Wong, Y.

P. Apollo, Y. Wong, and P. Wiltzius, “Dynamic light scattering with a ccd camera,” Rev. Sci. Instrum. 64(9), 2547–2549 (1993).
[CrossRef]

Wyss, M. T.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
[CrossRef] [PubMed]

Yodh, A. G.

T. Durduran, M. G. Burnett, G. Q. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14(1), 192–215 (1997).
[CrossRef]

Yu, G. Q.

T. Durduran, M. G. Burnett, G. Q. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

Yuan, S.

Zakharov, P.

Zeng, S.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

Zeng, S. Q.

Zhang, L.

Zhang, X. J.

Zhou, C.

T. Durduran, M. G. Burnett, G. Q. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

Zölei, D.

Am. J. Physiol. (1)

U. Lindauer, A. Villringer, and U. Dirnagl, “Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics,” Am. J. Physiol. 264(4 Pt 2), H1223–H1228 (1993).
[PubMed]

Ann. Biomed. Eng. (1)

J. S. Paul, H. Al Nashash, A. R. Luft, and T. M. Le, “Statistical mapping of speckle autocorrelation for visualization of hyperaemic responses to cortical stimulation,” Ann. Biomed. Eng. 34(7), 1107–1118 (2006).
[CrossRef] [PubMed]

Appl. Opt. (3)

Eur. J. Neurosci. (2)

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664–2670 (2004).
[CrossRef] [PubMed]

J. Berwick, D. Johnston, M. Jones, J. Martindale, P. Redgrave, N. McLoughlin, I. Schiessl, and J. E. Mayhew, “Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex,” Eur. J. Neurosci. 22(7), 1655–1666 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA),” J. Biomed. Opt. 4(1), 164–175 (1999).
[CrossRef]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (3)

C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, “Pronounced hypoperfusion during spreading depression in mouse cortex,” J. Cereb. Blood Flow Metab. 24(10), 1172–1182 (2004).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

T. Durduran, M. G. Burnett, G. Q. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Neuron (1)

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron 39(2), 353–359 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, “Flow Visualization by Means of Single-Exposure Speckle Photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Physiol. Meas. (1)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[CrossRef]

Proc. SPIE (1)

P. Zakharov, A. Volker, A. Buck, B. Weber, and F. Scheffold, “Non-ergodicity correction in laser speckle biomedical imaging,” Proc. SPIE 6631, 66310D (2009).
[CrossRef]

Rev. Sci. Instrum. (2)

P. Apollo, Y. Wong, and P. Wiltzius, “Dynamic light scattering with a ccd camera,” Rev. Sci. Instrum. 64(9), 2547–2549 (1993).
[CrossRef]

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[CrossRef]

Other (3)

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Second Edition (SPIE Press, Bellingham, 2007).

P. Zakharov, and F. Scheffold, Advances in dynamic light scattering techniques in Light Scattering Reviews 4 (Springer, Heidelberg, 2009).

B. J. Berne, and R. Pecora, Dynamic Light Scattering. With Applications to Chemistry, Biology, and Physics. (Dover Publications, New York, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a): Raw speckle reflection recorded with 10 ms exposure time, measured through thinned skull. (b) left: Reciprocal correlation time (RCT) derived from classical LASCA. (b) right: RCT computed with dLSI. Note the substantial reduction of specular reflections in the right panel. RCT values represent averages over 32 consecutive images.

Fig. 2.
Fig. 2.

Left: Example of activation maps obtained from an exposed cortex measurement. Maps represent relative changes of the reciprocal correlation time obtained from LASCA (top) and dLSI (bottom) signal upon single whisker stimulation (time step 0.5 s). The black dashed circle at second 4 shows the region-of-interest used for averaging the time activity curve. Right: Time activity curves averaged over 5 animals (10 trials each) from activated area (dashed lines show average, shaded area represents ± standard error of the mean). Gray area represents the duration of the whisker stimulation.

Fig. 3.
Fig. 3.

Same as Fig. 2 but for thinned skull experiments.

Fig. 4.
Fig. 4.

Same as Fig. 2 and 3 but for experiments through the intact skull.

Fig. 5.
Fig. 5.

(a): Static light contribution, LASCA contrast Km and dynamic contrast K12d for three different measurement methods during baseline (average ± standard error of the mean). (b): Reciprocal correlation time estimated with LASCA and dLSI for different measurement methods during baseline (average ± standard error of the mean).

Tables (1)

Tables Icon

Table 1. Static contribution ρ, measured contrast Km , baseline and change of reciprocal correlation time, obtained with LASCA and dLSI for three types of experiment (for details please see text).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

K(T)=σ(T)I=(ITIT)2IT
g1(τ)=exp(γ6τ/τ0),
g2(τ)=1+βg1(τ)2.
K2=2T0T[g2(τ)1](1τT)=2βT 0Tg1(τ)2(1τT) ,
g1(τ)=(1ρ)g1d(τ)+ρ.
g2(τ)1=β [(1ρ)g1d(τ)+ρ]2 .
K2=2βT0T [(1ρ)g1d(τ)+ρ]2 (1τ/T)
=(1ρ)2K2d2+2ρ(1ρ)K1d2+βρ2
K2d2=2βT 0T g1d(τ)2 (1τ/T)
K1d2=2βT 0T g1d(τ) (1τ/T)
K12d2=(1ρ2)K2d2+2ρ(1ρ)K1d2
ρ2=[g2(Δt)1]/β

Metrics