Abstract

We propose a simple lossless method for the generation of flat-topped intensity pulses bursts from a single utrashort pulse. We have found optimum solutions corresponding to different numbers of cavities and burst pulses, showing that the proposed all-pass structures of optical cavities, properly designed, can generate close to flat-topped pulse busts.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, "Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping," Opt. Lett. 32, 716-718 (2007).
    [CrossRef] [PubMed]
  2. C. -B. Huang and Y. Lai, "Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering," IEEE Photon. Technol. Lett. 12, 167-169 (2000).
    [CrossRef]
  3. J. Azaña, "Pulse repetition rate multiplication using phase-only filtering," Electron. Lett. 40, 449-451 (2004).
    [CrossRef]
  4. M. A. Preciado and M. A. Muriel, "Repetition-rate multiplication using a single all-pass optical cavity," Opt. Lett. 33, 962-964 (2008).
    [CrossRef] [PubMed]
  5. M. A. Preciado and M. A. Muriel, "All-pass optical structures for repetition rate multiplication," Opt. Express 16, 11162-11168 (2008).
    [CrossRef] [PubMed]
  6. M. A. Preciado and M. A. Muriel, "Repetition Rate Multiplication Using All-Pass Optical Structures," Optics & Photonics News 19, 37-37 (2008).
    [CrossRef]
  7. J. Azaña and M. A. Muriel, "Temporal Talbot effect in fiber gratings and its applications," Appl. Opt. 38, 6700-6704 (1999).
    [CrossRef]
  8. A. M. Weiner and D. E. Leaird, "Generation of terahertz-rate trains of femtosecond pulses by phase-only filtering," Opt. Lett. 15, 51-53 (1990)
    [CrossRef] [PubMed]
  9. J. Azaña, R. Slavík, P. Kockaert, L. R. Chen, and S. LaRochelle, "Generation of Customized Ultrahigh Repetition Rate Pulse Sequences Using Superimposed Fiber Bragg Gratings," J. Lightwave Technol. 21, 1490- (2003)
    [CrossRef]
  10. B. Muralidharan, V. Balakrishnan, and A. M. Weiner, "Design of Double-Passed Arrayed-Waveguide Gratings for the Generation of Flat-Topped Femtosecond Pulse Trains," J. Lightwave Technol.  24, 586- (2006)
    [CrossRef]
  11. V. García-Muñoz, M. A. Preciado, and M. A. Muriel, "Simultaneous ultrafast optical pulse train bursts generation and shaping based on Fourier series developments using superimposed fiber Bragg gratings," Opt. Express 15, 10878-10889 (2007)
    [CrossRef] [PubMed]
  12. A. Yariv and P. Yeh, "Wave propagation in periodic media," in Photonics: Optical electronics in modern communications (Oxford University Press, 2007).
  13. J. Capmany, P. Muñoz, J.D. Domenech, and M. A. Muriel, "Apodized coupled resonator waveguides," Opt. Express 15, 10196-10206 (2007).
    [CrossRef] [PubMed]
  14. J. Capmany and M. A. Muriel, "A new transfer matrix formalism for the analysis of fiber ring resonators: Compound coupled structures for FDMA," J. Lightwave Technol. 8,1904-1919 (1990).
    [CrossRef]
  15. A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill, New York, 1962).

2008 (3)

2007 (3)

2006 (1)

2004 (1)

J. Azaña, "Pulse repetition rate multiplication using phase-only filtering," Electron. Lett. 40, 449-451 (2004).
[CrossRef]

2003 (1)

2000 (1)

C. -B. Huang and Y. Lai, "Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering," IEEE Photon. Technol. Lett. 12, 167-169 (2000).
[CrossRef]

1999 (1)

1990 (2)

J. Capmany and M. A. Muriel, "A new transfer matrix formalism for the analysis of fiber ring resonators: Compound coupled structures for FDMA," J. Lightwave Technol. 8,1904-1919 (1990).
[CrossRef]

A. M. Weiner and D. E. Leaird, "Generation of terahertz-rate trains of femtosecond pulses by phase-only filtering," Opt. Lett. 15, 51-53 (1990)
[CrossRef] [PubMed]

Azaña, J.

Balakrishnan, V.

Capmany, J.

J. Capmany, P. Muñoz, J.D. Domenech, and M. A. Muriel, "Apodized coupled resonator waveguides," Opt. Express 15, 10196-10206 (2007).
[CrossRef] [PubMed]

J. Capmany and M. A. Muriel, "A new transfer matrix formalism for the analysis of fiber ring resonators: Compound coupled structures for FDMA," J. Lightwave Technol. 8,1904-1919 (1990).
[CrossRef]

Caraquitena, J.

Chen, L. R.

Domenech, J.D.

García-Muñoz, V.

Huang, C. -B.

C. -B. Huang and Y. Lai, "Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering," IEEE Photon. Technol. Lett. 12, 167-169 (2000).
[CrossRef]

Jiang, Z.

Kockaert, P.

Lai, Y.

C. -B. Huang and Y. Lai, "Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering," IEEE Photon. Technol. Lett. 12, 167-169 (2000).
[CrossRef]

LaRochelle, S.

Leaird, D. E.

Muñoz, P.

Muralidharan, B.

Muriel, M. A.

Preciado, M. A.

Slavík, R.

Weiner, A. M.

Appl. Opt. (1)

Electron. Lett. (1)

J. Azaña, "Pulse repetition rate multiplication using phase-only filtering," Electron. Lett. 40, 449-451 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. -B. Huang and Y. Lai, "Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering," IEEE Photon. Technol. Lett. 12, 167-169 (2000).
[CrossRef]

J. Lightwave Technol. (2)

J. Capmany and M. A. Muriel, "A new transfer matrix formalism for the analysis of fiber ring resonators: Compound coupled structures for FDMA," J. Lightwave Technol. 8,1904-1919 (1990).
[CrossRef]

J. Azaña, R. Slavík, P. Kockaert, L. R. Chen, and S. LaRochelle, "Generation of Customized Ultrahigh Repetition Rate Pulse Sequences Using Superimposed Fiber Bragg Gratings," J. Lightwave Technol. 21, 1490- (2003)
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Lett. (3)

Optics & Photonics News (1)

M. A. Preciado and M. A. Muriel, "Repetition Rate Multiplication Using All-Pass Optical Structures," Optics & Photonics News 19, 37-37 (2008).
[CrossRef]

Other (2)

A. Yariv and P. Yeh, "Wave propagation in periodic media," in Photonics: Optical electronics in modern communications (Oxford University Press, 2007).

A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill, New York, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Architecture of the system. A single short pulse is processed by the all-pass optical structure, generating an output burst of NP pulses. Two kinds of coupled cavities structures are proposed, partially reflecting coupled mirrors and coupled ring optical waveguide.

Fig. 2.
Fig. 2.

False-color representation of log10(1-FM), for a clear identification of accurate solutions, which correspond to the lowest negative values (blue cells).

Fig. 3.
Fig. 3.

Output burst of 9 pulses obtained from a numerical simulation of the designed optical structure with an input 200 fs FWHM gaussian pulse at 193 THz (blue-solid line), and at 195 THz (red-dotted line), hardly distinguishable. The maximums of each pulse are marked with a blue left-pointing triangle for the first input, and with a red right-pointing triangle for the second one, appearing a six-point star where both coincide.

Tables (2)

Tables Icon

Table 1. Pairs of AJ \ ER values in decibels for optimum solutions with different NC and NP values.

Tables Icon

Table 2. Performance of the designed structure in terms of figure of merit, amplitude jitter, extinction ratio, and energy efficiency, considering several values of round-trip power losses (RTPL).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ki=1ri2
h(t)=n=0cnδ(tnT)
rectNp[n]={0,n01,0<nNp0,n>Np
FM=max[[n=1cn2rectNp(n+k)]/Npn=1cn4],k
AJ=20log10(max(ci)/min(cj))
ER=20log10(max(ci)/max(ck))

Metrics