Abstract

In this study, we report first time the effect of laser pulse repetition frequency and pulse width of femtosecond laser radiation on silicon nanofibrous structure formation under ambient condition. Surface nanotexture analysis revealed the changes in fibrous structure density and size in respect of laser pulse width and repetition frequency. A phonon confinement model is used to explain the Raman spectra of processed specimens in order to understand the structure details of nanofibrous structure and hence to support the surface nanotexture analysis. The present investigation leads to a conclusion that nanofibrous structure is formed due to the aggregation of silicon nanoparticles and their size is estimated using the confinement model which is in the order of few nanometers.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Djurabekova, and K. Nordlund, "Atomistic simulation of the interface structure of Si nanocrystals embedded in amorphous silica," Phys. Rev. B 77(11), 115325 (2008).
    [CrossRef]
  2. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbé, and K. Chan, "A silicon nanocrystals based memory," Appl. Phys. Lett. 68(10), 1377-1379 (1996).
    [CrossRef]
  3. S. Prezioso, S. M. Hossain, A. Anopchenko, L. Pavesi, M. Wang, G. Pucker, and P. Bellutti, "Superlinear photovoltaic effect in Si nanocrystals based metal-insulator-semiconductor devices," Appl. Phys. Lett. 94(6), 062108 (2009).
    [CrossRef]
  4. T. Z. Lu, M. Alexe, R. Scholz, V. Talalaev, R. J. Zhang, and M. Zacharias, "Si nanocrystal based memories: Effect of the nanocrystal density," J. Appl. Phys. 100(1), 014310 (2006).
    [CrossRef]
  5. P. Alpuim, S. A. Filonovich, C. M. Costa, P. F. Rocha, M. I. Vasilevskiy, S. Lanceros-Mendez, C. Frias, A. T. Marques, R. Soares, and C. Costa, "Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon," J. Non-Cryst. Solids 354(19-25), 2585-2589 (2008).
    [CrossRef]
  6. I. Umezu, A. Sugimura, M. Inada, T. Makino, K. Matsumoto, and M. Takata, "Formation of nanoscale fine-structured silicon by pulsed laser ablation in hydrogen background gas," Physical Review B 76, - (2007).
    [CrossRef]
  7. B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, "Silicon surface morphologies after femtosecond laser irradiation," MRS Bull. 31, 626-633 (2006).
    [CrossRef]
  8. S. V. Zabotnov, L. A.  Golovan’, I. A.  Ostapenko, Y. V.  Ryabchikov, A. V.  Chervyakov, V. Y.  Timoshenko, P. K.  Kashkarov, and V. V.  Yakovlev, "Femtosecond nanostructuring of silicon surfaces," JETP Lett. 83(2), 69-71 (2006).
    [CrossRef]
  9. B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Applied Physics a-Materials Science & Processing 63, 109-115 (1996).
    [CrossRef]
  10. B. R. Tull, J. E. Carey, M. A. Sheehy, C. Friend, and E. Mazur, "Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas," Applied Physics a-Materials Science & Processing  83, 341-346 (2006).
    [CrossRef]
  11. M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, "Femtosecond laser-induced formation of submicrometer spikes on silicon in water," Appl. Phys. Lett. 85(23), 5694-5696 (2004).
    [CrossRef]
  12. M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, "Role of the background gas in the morphology and optical properties of laser-microstructured silicon," Chem. Mater. 17(14), 3582-3586 (2005).E
    [CrossRef]
  13. B. Tan, and K. Venkatakrishnan, "Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air," Opt. Express 17(2), 1064-1069 (2009).
    [CrossRef] [PubMed]
  14. S. T. Li, S. J. Silvers, and M. S. ElShall, "Surface oxidation and luminescence properties of weblike agglomeration of silicon nanocrystals produced by a laser vaporization-controlled condensation technique," J. Phys. Chem. B 101(10), 1794-1802 (1997).
    [CrossRef]
  15. S. Senadheera, B. Tan, and K. Venkatakrishnan, "Critical Time to Nucleation: Graphite and Silicon Nanoparticle Generation by Laser Ablation," Journal of Nanotechnology 6(2009).
  16. K. Arora, M. Rajalakshmi, and T. R. Ravindran, "Phonon Confinement in Nanostructured Materials," Encyclopedia of Nanoscience and Nanotechnology 8, 499-512 (2004).
  17. H. Richter, Z. P. Wang, and L. Ley, "The one phonon Raman spectrum in microcrystalline silicon," Solid State Commun. 39(5), 625-629 (1981).
    [CrossRef]
  18. J. Bonse, K. W. Brzezinka, and A. J. Meixner, "Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy," Appl. Surf. Sci. 221(1-4), 215-230 (2004).
    [CrossRef]
  19. R. Prabakaran, R. Kesavamoorthy, S. Amirthapandian, and A. Ramanand, "Raman scattering and photoluminescence studies on O+ implanted porous silicon," Mater. Lett. 58(29), 3745-3750 (2004).
    [CrossRef]
  20. Kailer, K. G. Nickel, and Y. G. Gogotsi, "Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations," Journal of Raman Spectroscopy 30(10), 939-937 (1999).
    [CrossRef]
  21. Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, "Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites," Phys. Rev. B 48(4), 2827-2830 (1993).
    [CrossRef]
  22. De Wolf, and H. E. Maes, "Mechanical stress measurements using micro-Raman spectroscopy," Microsyst. Technol. 5(1), 13-17 (1998).
    [CrossRef]
  23. H. Campbell, and P. M. Fauchet, "The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors," Solid State Commun. 58(10), 739-741 (1986).
    [CrossRef]
  24. M. Yang, D. M. Huang, P. H. Hao, F. L. Zhang, X. Y. Hou, and X. Wang, "Study of the Raman Peak Shift and the Linewidth of Light-Emitting Porous Silicon," J. Appl. Phys. 75(1), 651-653 (1994).
    [CrossRef]

2009 (3)

S. Prezioso, S. M. Hossain, A. Anopchenko, L. Pavesi, M. Wang, G. Pucker, and P. Bellutti, "Superlinear photovoltaic effect in Si nanocrystals based metal-insulator-semiconductor devices," Appl. Phys. Lett. 94(6), 062108 (2009).
[CrossRef]

S. Senadheera, B. Tan, and K. Venkatakrishnan, "Critical Time to Nucleation: Graphite and Silicon Nanoparticle Generation by Laser Ablation," Journal of Nanotechnology 6(2009).

B. Tan, and K. Venkatakrishnan, "Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air," Opt. Express 17(2), 1064-1069 (2009).
[CrossRef] [PubMed]

2008 (2)

F. Djurabekova, and K. Nordlund, "Atomistic simulation of the interface structure of Si nanocrystals embedded in amorphous silica," Phys. Rev. B 77(11), 115325 (2008).
[CrossRef]

P. Alpuim, S. A. Filonovich, C. M. Costa, P. F. Rocha, M. I. Vasilevskiy, S. Lanceros-Mendez, C. Frias, A. T. Marques, R. Soares, and C. Costa, "Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon," J. Non-Cryst. Solids 354(19-25), 2585-2589 (2008).
[CrossRef]

2007 (1)

I. Umezu, A. Sugimura, M. Inada, T. Makino, K. Matsumoto, and M. Takata, "Formation of nanoscale fine-structured silicon by pulsed laser ablation in hydrogen background gas," Physical Review B 76, - (2007).
[CrossRef]

2006 (4)

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, "Silicon surface morphologies after femtosecond laser irradiation," MRS Bull. 31, 626-633 (2006).
[CrossRef]

S. V. Zabotnov, L. A.  Golovan’, I. A.  Ostapenko, Y. V.  Ryabchikov, A. V.  Chervyakov, V. Y.  Timoshenko, P. K.  Kashkarov, and V. V.  Yakovlev, "Femtosecond nanostructuring of silicon surfaces," JETP Lett. 83(2), 69-71 (2006).
[CrossRef]

T. Z. Lu, M. Alexe, R. Scholz, V. Talalaev, R. J. Zhang, and M. Zacharias, "Si nanocrystal based memories: Effect of the nanocrystal density," J. Appl. Phys. 100(1), 014310 (2006).
[CrossRef]

B. R. Tull, J. E. Carey, M. A. Sheehy, C. Friend, and E. Mazur, "Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas," Applied Physics a-Materials Science & Processing  83, 341-346 (2006).
[CrossRef]

2005 (1)

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, "Role of the background gas in the morphology and optical properties of laser-microstructured silicon," Chem. Mater. 17(14), 3582-3586 (2005).E
[CrossRef]

2004 (3)

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, "Femtosecond laser-induced formation of submicrometer spikes on silicon in water," Appl. Phys. Lett. 85(23), 5694-5696 (2004).
[CrossRef]

J. Bonse, K. W. Brzezinka, and A. J. Meixner, "Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy," Appl. Surf. Sci. 221(1-4), 215-230 (2004).
[CrossRef]

R. Prabakaran, R. Kesavamoorthy, S. Amirthapandian, and A. Ramanand, "Raman scattering and photoluminescence studies on O+ implanted porous silicon," Mater. Lett. 58(29), 3745-3750 (2004).
[CrossRef]

1999 (1)

Kailer, K. G. Nickel, and Y. G. Gogotsi, "Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations," Journal of Raman Spectroscopy 30(10), 939-937 (1999).
[CrossRef]

1998 (1)

De Wolf, and H. E. Maes, "Mechanical stress measurements using micro-Raman spectroscopy," Microsyst. Technol. 5(1), 13-17 (1998).
[CrossRef]

1997 (1)

S. T. Li, S. J. Silvers, and M. S. ElShall, "Surface oxidation and luminescence properties of weblike agglomeration of silicon nanocrystals produced by a laser vaporization-controlled condensation technique," J. Phys. Chem. B 101(10), 1794-1802 (1997).
[CrossRef]

1996 (2)

S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbé, and K. Chan, "A silicon nanocrystals based memory," Appl. Phys. Lett. 68(10), 1377-1379 (1996).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Applied Physics a-Materials Science & Processing 63, 109-115 (1996).
[CrossRef]

1994 (1)

M. Yang, D. M. Huang, P. H. Hao, F. L. Zhang, X. Y. Hou, and X. Wang, "Study of the Raman Peak Shift and the Linewidth of Light-Emitting Porous Silicon," J. Appl. Phys. 75(1), 651-653 (1994).
[CrossRef]

1993 (1)

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, "Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites," Phys. Rev. B 48(4), 2827-2830 (1993).
[CrossRef]

1986 (1)

H. Campbell, and P. M. Fauchet, "The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors," Solid State Commun. 58(10), 739-741 (1986).
[CrossRef]

1981 (1)

H. Richter, Z. P. Wang, and L. Ley, "The one phonon Raman spectrum in microcrystalline silicon," Solid State Commun. 39(5), 625-629 (1981).
[CrossRef]

Alexe, M.

T. Z. Lu, M. Alexe, R. Scholz, V. Talalaev, R. J. Zhang, and M. Zacharias, "Si nanocrystal based memories: Effect of the nanocrystal density," J. Appl. Phys. 100(1), 014310 (2006).
[CrossRef]

Alpuim, P.

P. Alpuim, S. A. Filonovich, C. M. Costa, P. F. Rocha, M. I. Vasilevskiy, S. Lanceros-Mendez, C. Frias, A. T. Marques, R. Soares, and C. Costa, "Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon," J. Non-Cryst. Solids 354(19-25), 2585-2589 (2008).
[CrossRef]

Amirthapandian, S.

R. Prabakaran, R. Kesavamoorthy, S. Amirthapandian, and A. Ramanand, "Raman scattering and photoluminescence studies on O+ implanted porous silicon," Mater. Lett. 58(29), 3745-3750 (2004).
[CrossRef]

Anopchenko, A.

S. Prezioso, S. M. Hossain, A. Anopchenko, L. Pavesi, M. Wang, G. Pucker, and P. Bellutti, "Superlinear photovoltaic effect in Si nanocrystals based metal-insulator-semiconductor devices," Appl. Phys. Lett. 94(6), 062108 (2009).
[CrossRef]

Bellutti, P.

S. Prezioso, S. M. Hossain, A. Anopchenko, L. Pavesi, M. Wang, G. Pucker, and P. Bellutti, "Superlinear photovoltaic effect in Si nanocrystals based metal-insulator-semiconductor devices," Appl. Phys. Lett. 94(6), 062108 (2009).
[CrossRef]

Bonse, J.

J. Bonse, K. W. Brzezinka, and A. J. Meixner, "Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy," Appl. Surf. Sci. 221(1-4), 215-230 (2004).
[CrossRef]

Brzezinka, K. W.

J. Bonse, K. W. Brzezinka, and A. J. Meixner, "Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy," Appl. Surf. Sci. 221(1-4), 215-230 (2004).
[CrossRef]

Campbell, H.

H. Campbell, and P. M. Fauchet, "The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors," Solid State Commun. 58(10), 739-741 (1986).
[CrossRef]

Carey, J. E.

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, "Silicon surface morphologies after femtosecond laser irradiation," MRS Bull. 31, 626-633 (2006).
[CrossRef]

B. R. Tull, J. E. Carey, M. A. Sheehy, C. Friend, and E. Mazur, "Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas," Applied Physics a-Materials Science & Processing  83, 341-346 (2006).
[CrossRef]

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, "Role of the background gas in the morphology and optical properties of laser-microstructured silicon," Chem. Mater. 17(14), 3582-3586 (2005).E
[CrossRef]

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, "Femtosecond laser-induced formation of submicrometer spikes on silicon in water," Appl. Phys. Lett. 85(23), 5694-5696 (2004).
[CrossRef]

Chan, K.

S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbé, and K. Chan, "A silicon nanocrystals based memory," Appl. Phys. Lett. 68(10), 1377-1379 (1996).
[CrossRef]

Chervyakov, A. V.

S. V. Zabotnov, L. A.  Golovan’, I. A.  Ostapenko, Y. V.  Ryabchikov, A. V.  Chervyakov, V. Y.  Timoshenko, P. K.  Kashkarov, and V. V.  Yakovlev, "Femtosecond nanostructuring of silicon surfaces," JETP Lett. 83(2), 69-71 (2006).
[CrossRef]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Applied Physics a-Materials Science & Processing 63, 109-115 (1996).
[CrossRef]

Costa, C.

P. Alpuim, S. A. Filonovich, C. M. Costa, P. F. Rocha, M. I. Vasilevskiy, S. Lanceros-Mendez, C. Frias, A. T. Marques, R. Soares, and C. Costa, "Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon," J. Non-Cryst. Solids 354(19-25), 2585-2589 (2008).
[CrossRef]

Costa, C. M.

P. Alpuim, S. A. Filonovich, C. M. Costa, P. F. Rocha, M. I. Vasilevskiy, S. Lanceros-Mendez, C. Frias, A. T. Marques, R. Soares, and C. Costa, "Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon," J. Non-Cryst. Solids 354(19-25), 2585-2589 (2008).
[CrossRef]

Crabbé, E. F.

S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbé, and K. Chan, "A silicon nanocrystals based memory," Appl. Phys. Lett. 68(10), 1377-1379 (1996).
[CrossRef]

Crouch, C. H.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, "Femtosecond laser-induced formation of submicrometer spikes on silicon in water," Appl. Phys. Lett. 85(23), 5694-5696 (2004).
[CrossRef]

Djurabekova, F.

F. Djurabekova, and K. Nordlund, "Atomistic simulation of the interface structure of Si nanocrystals embedded in amorphous silica," Phys. Rev. B 77(11), 115325 (2008).
[CrossRef]

ElShall, M. S.

S. T. Li, S. J. Silvers, and M. S. ElShall, "Surface oxidation and luminescence properties of weblike agglomeration of silicon nanocrystals produced by a laser vaporization-controlled condensation technique," J. Phys. Chem. B 101(10), 1794-1802 (1997).
[CrossRef]

Fauchet, P. M.

H. Campbell, and P. M. Fauchet, "The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors," Solid State Commun. 58(10), 739-741 (1986).
[CrossRef]

Filonovich, S. A.

P. Alpuim, S. A. Filonovich, C. M. Costa, P. F. Rocha, M. I. Vasilevskiy, S. Lanceros-Mendez, C. Frias, A. T. Marques, R. Soares, and C. Costa, "Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon," J. Non-Cryst. Solids 354(19-25), 2585-2589 (2008).
[CrossRef]

Frias, C.

P. Alpuim, S. A. Filonovich, C. M. Costa, P. F. Rocha, M. I. Vasilevskiy, S. Lanceros-Mendez, C. Frias, A. T. Marques, R. Soares, and C. Costa, "Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon," J. Non-Cryst. Solids 354(19-25), 2585-2589 (2008).
[CrossRef]

Friend, C.

B. R. Tull, J. E. Carey, M. A. Sheehy, C. Friend, and E. Mazur, "Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas," Applied Physics a-Materials Science & Processing  83, 341-346 (2006).
[CrossRef]

Friend, C. M.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, "Role of the background gas in the morphology and optical properties of laser-microstructured silicon," Chem. Mater. 17(14), 3582-3586 (2005).E
[CrossRef]

Futagi, T.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, "Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites," Phys. Rev. B 48(4), 2827-2830 (1993).
[CrossRef]

Golovan’, L. A.

S. V. Zabotnov, L. A.  Golovan’, I. A.  Ostapenko, Y. V.  Ryabchikov, A. V.  Chervyakov, V. Y.  Timoshenko, P. K.  Kashkarov, and V. V.  Yakovlev, "Femtosecond nanostructuring of silicon surfaces," JETP Lett. 83(2), 69-71 (2006).
[CrossRef]

Hanafi, H.

S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbé, and K. Chan, "A silicon nanocrystals based memory," Appl. Phys. Lett. 68(10), 1377-1379 (1996).
[CrossRef]

Hao, P. H.

M. Yang, D. M. Huang, P. H. Hao, F. L. Zhang, X. Y. Hou, and X. Wang, "Study of the Raman Peak Shift and the Linewidth of Light-Emitting Porous Silicon," J. Appl. Phys. 75(1), 651-653 (1994).
[CrossRef]

Hartstein, A.

S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbé, and K. Chan, "A silicon nanocrystals based memory," Appl. Phys. Lett. 68(10), 1377-1379 (1996).
[CrossRef]

Hossain, S. M.

S. Prezioso, S. M. Hossain, A. Anopchenko, L. Pavesi, M. Wang, G. Pucker, and P. Bellutti, "Superlinear photovoltaic effect in Si nanocrystals based metal-insulator-semiconductor devices," Appl. Phys. Lett. 94(6), 062108 (2009).
[CrossRef]

Hou, X. Y.

M. Yang, D. M. Huang, P. H. Hao, F. L. Zhang, X. Y. Hou, and X. Wang, "Study of the Raman Peak Shift and the Linewidth of Light-Emitting Porous Silicon," J. Appl. Phys. 75(1), 651-653 (1994).
[CrossRef]

Huang, D. M.

M. Yang, D. M. Huang, P. H. Hao, F. L. Zhang, X. Y. Hou, and X. Wang, "Study of the Raman Peak Shift and the Linewidth of Light-Emitting Porous Silicon," J. Appl. Phys. 75(1), 651-653 (1994).
[CrossRef]

Inada, M.

I. Umezu, A. Sugimura, M. Inada, T. Makino, K. Matsumoto, and M. Takata, "Formation of nanoscale fine-structured silicon by pulsed laser ablation in hydrogen background gas," Physical Review B 76, - (2007).
[CrossRef]

Kailer,

Kailer, K. G. Nickel, and Y. G. Gogotsi, "Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations," Journal of Raman Spectroscopy 30(10), 939-937 (1999).
[CrossRef]

Kanemitsu, Y.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, "Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites," Phys. Rev. B 48(4), 2827-2830 (1993).
[CrossRef]

Kashkarov, P. K.

S. V. Zabotnov, L. A.  Golovan’, I. A.  Ostapenko, Y. V.  Ryabchikov, A. V.  Chervyakov, V. Y.  Timoshenko, P. K.  Kashkarov, and V. V.  Yakovlev, "Femtosecond nanostructuring of silicon surfaces," JETP Lett. 83(2), 69-71 (2006).
[CrossRef]

Kesavamoorthy, R.

R. Prabakaran, R. Kesavamoorthy, S. Amirthapandian, and A. Ramanand, "Raman scattering and photoluminescence studies on O+ implanted porous silicon," Mater. Lett. 58(29), 3745-3750 (2004).
[CrossRef]

Lanceros-Mendez, S.

P. Alpuim, S. A. Filonovich, C. M. Costa, P. F. Rocha, M. I. Vasilevskiy, S. Lanceros-Mendez, C. Frias, A. T. Marques, R. Soares, and C. Costa, "Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon," J. Non-Cryst. Solids 354(19-25), 2585-2589 (2008).
[CrossRef]

Ley, L.

H. Richter, Z. P. Wang, and L. Ley, "The one phonon Raman spectrum in microcrystalline silicon," Solid State Commun. 39(5), 625-629 (1981).
[CrossRef]

Li, S. T.

S. T. Li, S. J. Silvers, and M. S. ElShall, "Surface oxidation and luminescence properties of weblike agglomeration of silicon nanocrystals produced by a laser vaporization-controlled condensation technique," J. Phys. Chem. B 101(10), 1794-1802 (1997).
[CrossRef]

Lu, T. Z.

T. Z. Lu, M. Alexe, R. Scholz, V. Talalaev, R. J. Zhang, and M. Zacharias, "Si nanocrystal based memories: Effect of the nanocrystal density," J. Appl. Phys. 100(1), 014310 (2006).
[CrossRef]

Maes, H. E.

De Wolf, and H. E. Maes, "Mechanical stress measurements using micro-Raman spectroscopy," Microsyst. Technol. 5(1), 13-17 (1998).
[CrossRef]

Makino, T.

I. Umezu, A. Sugimura, M. Inada, T. Makino, K. Matsumoto, and M. Takata, "Formation of nanoscale fine-structured silicon by pulsed laser ablation in hydrogen background gas," Physical Review B 76, - (2007).
[CrossRef]

Marques, A. T.

P. Alpuim, S. A. Filonovich, C. M. Costa, P. F. Rocha, M. I. Vasilevskiy, S. Lanceros-Mendez, C. Frias, A. T. Marques, R. Soares, and C. Costa, "Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon," J. Non-Cryst. Solids 354(19-25), 2585-2589 (2008).
[CrossRef]

Masumoto, Y.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, "Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites," Phys. Rev. B 48(4), 2827-2830 (1993).
[CrossRef]

Matsumoto, K.

I. Umezu, A. Sugimura, M. Inada, T. Makino, K. Matsumoto, and M. Takata, "Formation of nanoscale fine-structured silicon by pulsed laser ablation in hydrogen background gas," Physical Review B 76, - (2007).
[CrossRef]

Matsumoto, T.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, "Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites," Phys. Rev. B 48(4), 2827-2830 (1993).
[CrossRef]

Mazur, E.

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, "Silicon surface morphologies after femtosecond laser irradiation," MRS Bull. 31, 626-633 (2006).
[CrossRef]

B. R. Tull, J. E. Carey, M. A. Sheehy, C. Friend, and E. Mazur, "Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas," Applied Physics a-Materials Science & Processing  83, 341-346 (2006).
[CrossRef]

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, "Role of the background gas in the morphology and optical properties of laser-microstructured silicon," Chem. Mater. 17(14), 3582-3586 (2005).E
[CrossRef]

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, "Femtosecond laser-induced formation of submicrometer spikes on silicon in water," Appl. Phys. Lett. 85(23), 5694-5696 (2004).
[CrossRef]

McDonald, J. P.

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, "Silicon surface morphologies after femtosecond laser irradiation," MRS Bull. 31, 626-633 (2006).
[CrossRef]

Meixner, A. J.

J. Bonse, K. W. Brzezinka, and A. J. Meixner, "Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy," Appl. Surf. Sci. 221(1-4), 215-230 (2004).
[CrossRef]

Mimura, H.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, "Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites," Phys. Rev. B 48(4), 2827-2830 (1993).
[CrossRef]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Applied Physics a-Materials Science & Processing 63, 109-115 (1996).
[CrossRef]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Applied Physics a-Materials Science & Processing 63, 109-115 (1996).
[CrossRef]

Nordlund, K.

F. Djurabekova, and K. Nordlund, "Atomistic simulation of the interface structure of Si nanocrystals embedded in amorphous silica," Phys. Rev. B 77(11), 115325 (2008).
[CrossRef]

Ostapenko, I. A.

S. V. Zabotnov, L. A.  Golovan’, I. A.  Ostapenko, Y. V.  Ryabchikov, A. V.  Chervyakov, V. Y.  Timoshenko, P. K.  Kashkarov, and V. V.  Yakovlev, "Femtosecond nanostructuring of silicon surfaces," JETP Lett. 83(2), 69-71 (2006).
[CrossRef]

Pavesi, L.

S. Prezioso, S. M. Hossain, A. Anopchenko, L. Pavesi, M. Wang, G. Pucker, and P. Bellutti, "Superlinear photovoltaic effect in Si nanocrystals based metal-insulator-semiconductor devices," Appl. Phys. Lett. 94(6), 062108 (2009).
[CrossRef]

Prabakaran, R.

R. Prabakaran, R. Kesavamoorthy, S. Amirthapandian, and A. Ramanand, "Raman scattering and photoluminescence studies on O+ implanted porous silicon," Mater. Lett. 58(29), 3745-3750 (2004).
[CrossRef]

Prezioso, S.

S. Prezioso, S. M. Hossain, A. Anopchenko, L. Pavesi, M. Wang, G. Pucker, and P. Bellutti, "Superlinear photovoltaic effect in Si nanocrystals based metal-insulator-semiconductor devices," Appl. Phys. Lett. 94(6), 062108 (2009).
[CrossRef]

Pucker, G.

S. Prezioso, S. M. Hossain, A. Anopchenko, L. Pavesi, M. Wang, G. Pucker, and P. Bellutti, "Superlinear photovoltaic effect in Si nanocrystals based metal-insulator-semiconductor devices," Appl. Phys. Lett. 94(6), 062108 (2009).
[CrossRef]

Ramanand, A.

R. Prabakaran, R. Kesavamoorthy, S. Amirthapandian, and A. Ramanand, "Raman scattering and photoluminescence studies on O+ implanted porous silicon," Mater. Lett. 58(29), 3745-3750 (2004).
[CrossRef]

Rana, F.

S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbé, and K. Chan, "A silicon nanocrystals based memory," Appl. Phys. Lett. 68(10), 1377-1379 (1996).
[CrossRef]

Richter, H.

H. Richter, Z. P. Wang, and L. Ley, "The one phonon Raman spectrum in microcrystalline silicon," Solid State Commun. 39(5), 625-629 (1981).
[CrossRef]

Rocha, P. F.

P. Alpuim, S. A. Filonovich, C. M. Costa, P. F. Rocha, M. I. Vasilevskiy, S. Lanceros-Mendez, C. Frias, A. T. Marques, R. Soares, and C. Costa, "Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon," J. Non-Cryst. Solids 354(19-25), 2585-2589 (2008).
[CrossRef]

Ryabchikov, Y. V.

S. V. Zabotnov, L. A.  Golovan’, I. A.  Ostapenko, Y. V.  Ryabchikov, A. V.  Chervyakov, V. Y.  Timoshenko, P. K.  Kashkarov, and V. V.  Yakovlev, "Femtosecond nanostructuring of silicon surfaces," JETP Lett. 83(2), 69-71 (2006).
[CrossRef]

Scholz, R.

T. Z. Lu, M. Alexe, R. Scholz, V. Talalaev, R. J. Zhang, and M. Zacharias, "Si nanocrystal based memories: Effect of the nanocrystal density," J. Appl. Phys. 100(1), 014310 (2006).
[CrossRef]

Senadheera, S.

S. Senadheera, B. Tan, and K. Venkatakrishnan, "Critical Time to Nucleation: Graphite and Silicon Nanoparticle Generation by Laser Ablation," Journal of Nanotechnology 6(2009).

Sheehy, M. A.

B. R. Tull, J. E. Carey, M. A. Sheehy, C. Friend, and E. Mazur, "Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas," Applied Physics a-Materials Science & Processing  83, 341-346 (2006).
[CrossRef]

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, "Role of the background gas in the morphology and optical properties of laser-microstructured silicon," Chem. Mater. 17(14), 3582-3586 (2005).E
[CrossRef]

Shen, M. Y.

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, "Femtosecond laser-induced formation of submicrometer spikes on silicon in water," Appl. Phys. Lett. 85(23), 5694-5696 (2004).
[CrossRef]

Silvers, S. J.

S. T. Li, S. J. Silvers, and M. S. ElShall, "Surface oxidation and luminescence properties of weblike agglomeration of silicon nanocrystals produced by a laser vaporization-controlled condensation technique," J. Phys. Chem. B 101(10), 1794-1802 (1997).
[CrossRef]

Soares, R.

P. Alpuim, S. A. Filonovich, C. M. Costa, P. F. Rocha, M. I. Vasilevskiy, S. Lanceros-Mendez, C. Frias, A. T. Marques, R. Soares, and C. Costa, "Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon," J. Non-Cryst. Solids 354(19-25), 2585-2589 (2008).
[CrossRef]

Sugimura, A.

I. Umezu, A. Sugimura, M. Inada, T. Makino, K. Matsumoto, and M. Takata, "Formation of nanoscale fine-structured silicon by pulsed laser ablation in hydrogen background gas," Physical Review B 76, - (2007).
[CrossRef]

Takata, M.

I. Umezu, A. Sugimura, M. Inada, T. Makino, K. Matsumoto, and M. Takata, "Formation of nanoscale fine-structured silicon by pulsed laser ablation in hydrogen background gas," Physical Review B 76, - (2007).
[CrossRef]

Talalaev, V.

T. Z. Lu, M. Alexe, R. Scholz, V. Talalaev, R. J. Zhang, and M. Zacharias, "Si nanocrystal based memories: Effect of the nanocrystal density," J. Appl. Phys. 100(1), 014310 (2006).
[CrossRef]

Tan, B.

S. Senadheera, B. Tan, and K. Venkatakrishnan, "Critical Time to Nucleation: Graphite and Silicon Nanoparticle Generation by Laser Ablation," Journal of Nanotechnology 6(2009).

B. Tan, and K. Venkatakrishnan, "Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air," Opt. Express 17(2), 1064-1069 (2009).
[CrossRef] [PubMed]

Timoshenko, V. Y.

S. V. Zabotnov, L. A.  Golovan’, I. A.  Ostapenko, Y. V.  Ryabchikov, A. V.  Chervyakov, V. Y.  Timoshenko, P. K.  Kashkarov, and V. V.  Yakovlev, "Femtosecond nanostructuring of silicon surfaces," JETP Lett. 83(2), 69-71 (2006).
[CrossRef]

Tiwari, S.

S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbé, and K. Chan, "A silicon nanocrystals based memory," Appl. Phys. Lett. 68(10), 1377-1379 (1996).
[CrossRef]

Tull, B. R.

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, "Silicon surface morphologies after femtosecond laser irradiation," MRS Bull. 31, 626-633 (2006).
[CrossRef]

B. R. Tull, J. E. Carey, M. A. Sheehy, C. Friend, and E. Mazur, "Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas," Applied Physics a-Materials Science & Processing  83, 341-346 (2006).
[CrossRef]

Tunnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Applied Physics a-Materials Science & Processing 63, 109-115 (1996).
[CrossRef]

Umezu, I.

I. Umezu, A. Sugimura, M. Inada, T. Makino, K. Matsumoto, and M. Takata, "Formation of nanoscale fine-structured silicon by pulsed laser ablation in hydrogen background gas," Physical Review B 76, - (2007).
[CrossRef]

Uto, H.

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, "Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites," Phys. Rev. B 48(4), 2827-2830 (1993).
[CrossRef]

Vasilevskiy, M. I.

P. Alpuim, S. A. Filonovich, C. M. Costa, P. F. Rocha, M. I. Vasilevskiy, S. Lanceros-Mendez, C. Frias, A. T. Marques, R. Soares, and C. Costa, "Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon," J. Non-Cryst. Solids 354(19-25), 2585-2589 (2008).
[CrossRef]

Venkatakrishnan, K.

S. Senadheera, B. Tan, and K. Venkatakrishnan, "Critical Time to Nucleation: Graphite and Silicon Nanoparticle Generation by Laser Ablation," Journal of Nanotechnology 6(2009).

B. Tan, and K. Venkatakrishnan, "Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air," Opt. Express 17(2), 1064-1069 (2009).
[CrossRef] [PubMed]

vonAlvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Applied Physics a-Materials Science & Processing 63, 109-115 (1996).
[CrossRef]

Wang, M.

S. Prezioso, S. M. Hossain, A. Anopchenko, L. Pavesi, M. Wang, G. Pucker, and P. Bellutti, "Superlinear photovoltaic effect in Si nanocrystals based metal-insulator-semiconductor devices," Appl. Phys. Lett. 94(6), 062108 (2009).
[CrossRef]

Wang, X.

M. Yang, D. M. Huang, P. H. Hao, F. L. Zhang, X. Y. Hou, and X. Wang, "Study of the Raman Peak Shift and the Linewidth of Light-Emitting Porous Silicon," J. Appl. Phys. 75(1), 651-653 (1994).
[CrossRef]

Wang, Z. P.

H. Richter, Z. P. Wang, and L. Ley, "The one phonon Raman spectrum in microcrystalline silicon," Solid State Commun. 39(5), 625-629 (1981).
[CrossRef]

Winston, L.

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, "Role of the background gas in the morphology and optical properties of laser-microstructured silicon," Chem. Mater. 17(14), 3582-3586 (2005).E
[CrossRef]

Wolf, De

De Wolf, and H. E. Maes, "Mechanical stress measurements using micro-Raman spectroscopy," Microsyst. Technol. 5(1), 13-17 (1998).
[CrossRef]

Yakovlev, V. V.

S. V. Zabotnov, L. A.  Golovan’, I. A.  Ostapenko, Y. V.  Ryabchikov, A. V.  Chervyakov, V. Y.  Timoshenko, P. K.  Kashkarov, and V. V.  Yakovlev, "Femtosecond nanostructuring of silicon surfaces," JETP Lett. 83(2), 69-71 (2006).
[CrossRef]

Yalisove, S. M.

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, "Silicon surface morphologies after femtosecond laser irradiation," MRS Bull. 31, 626-633 (2006).
[CrossRef]

Yang, M.

M. Yang, D. M. Huang, P. H. Hao, F. L. Zhang, X. Y. Hou, and X. Wang, "Study of the Raman Peak Shift and the Linewidth of Light-Emitting Porous Silicon," J. Appl. Phys. 75(1), 651-653 (1994).
[CrossRef]

Zabotnov, S. V.

S. V. Zabotnov, L. A.  Golovan’, I. A.  Ostapenko, Y. V.  Ryabchikov, A. V.  Chervyakov, V. Y.  Timoshenko, P. K.  Kashkarov, and V. V.  Yakovlev, "Femtosecond nanostructuring of silicon surfaces," JETP Lett. 83(2), 69-71 (2006).
[CrossRef]

Zacharias, M.

T. Z. Lu, M. Alexe, R. Scholz, V. Talalaev, R. J. Zhang, and M. Zacharias, "Si nanocrystal based memories: Effect of the nanocrystal density," J. Appl. Phys. 100(1), 014310 (2006).
[CrossRef]

Zhang, F. L.

M. Yang, D. M. Huang, P. H. Hao, F. L. Zhang, X. Y. Hou, and X. Wang, "Study of the Raman Peak Shift and the Linewidth of Light-Emitting Porous Silicon," J. Appl. Phys. 75(1), 651-653 (1994).
[CrossRef]

Zhang, R. J.

T. Z. Lu, M. Alexe, R. Scholz, V. Talalaev, R. J. Zhang, and M. Zacharias, "Si nanocrystal based memories: Effect of the nanocrystal density," J. Appl. Phys. 100(1), 014310 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbé, and K. Chan, "A silicon nanocrystals based memory," Appl. Phys. Lett. 68(10), 1377-1379 (1996).
[CrossRef]

S. Prezioso, S. M. Hossain, A. Anopchenko, L. Pavesi, M. Wang, G. Pucker, and P. Bellutti, "Superlinear photovoltaic effect in Si nanocrystals based metal-insulator-semiconductor devices," Appl. Phys. Lett. 94(6), 062108 (2009).
[CrossRef]

M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, "Femtosecond laser-induced formation of submicrometer spikes on silicon in water," Appl. Phys. Lett. 85(23), 5694-5696 (2004).
[CrossRef]

Appl. Surf. Sci. (1)

J. Bonse, K. W. Brzezinka, and A. J. Meixner, "Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy," Appl. Surf. Sci. 221(1-4), 215-230 (2004).
[CrossRef]

Applied Physics a-Materials Science & Processing (1)

B. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, and A. Tunnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Applied Physics a-Materials Science & Processing 63, 109-115 (1996).
[CrossRef]

Applied Physics a-Materials Science & Processing (1)

B. R. Tull, J. E. Carey, M. A. Sheehy, C. Friend, and E. Mazur, "Formation of silicon nanoparticles and web-like aggregates by femtosecond laser ablation in a background gas," Applied Physics a-Materials Science & Processing  83, 341-346 (2006).
[CrossRef]

Chem. Mater. (1)

M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, "Role of the background gas in the morphology and optical properties of laser-microstructured silicon," Chem. Mater. 17(14), 3582-3586 (2005).E
[CrossRef]

J. Appl. Phys. (2)

T. Z. Lu, M. Alexe, R. Scholz, V. Talalaev, R. J. Zhang, and M. Zacharias, "Si nanocrystal based memories: Effect of the nanocrystal density," J. Appl. Phys. 100(1), 014310 (2006).
[CrossRef]

M. Yang, D. M. Huang, P. H. Hao, F. L. Zhang, X. Y. Hou, and X. Wang, "Study of the Raman Peak Shift and the Linewidth of Light-Emitting Porous Silicon," J. Appl. Phys. 75(1), 651-653 (1994).
[CrossRef]

J. Non-Cryst. Solids (1)

P. Alpuim, S. A. Filonovich, C. M. Costa, P. F. Rocha, M. I. Vasilevskiy, S. Lanceros-Mendez, C. Frias, A. T. Marques, R. Soares, and C. Costa, "Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon," J. Non-Cryst. Solids 354(19-25), 2585-2589 (2008).
[CrossRef]

J. Phys. Chem. B (1)

S. T. Li, S. J. Silvers, and M. S. ElShall, "Surface oxidation and luminescence properties of weblike agglomeration of silicon nanocrystals produced by a laser vaporization-controlled condensation technique," J. Phys. Chem. B 101(10), 1794-1802 (1997).
[CrossRef]

JETP Lett. (1)

S. V. Zabotnov, L. A.  Golovan’, I. A.  Ostapenko, Y. V.  Ryabchikov, A. V.  Chervyakov, V. Y.  Timoshenko, P. K.  Kashkarov, and V. V.  Yakovlev, "Femtosecond nanostructuring of silicon surfaces," JETP Lett. 83(2), 69-71 (2006).
[CrossRef]

Journal of Nanotechnology (1)

S. Senadheera, B. Tan, and K. Venkatakrishnan, "Critical Time to Nucleation: Graphite and Silicon Nanoparticle Generation by Laser Ablation," Journal of Nanotechnology 6(2009).

Journal of Raman Spectroscopy (1)

Kailer, K. G. Nickel, and Y. G. Gogotsi, "Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations," Journal of Raman Spectroscopy 30(10), 939-937 (1999).
[CrossRef]

Mater. Lett. (1)

R. Prabakaran, R. Kesavamoorthy, S. Amirthapandian, and A. Ramanand, "Raman scattering and photoluminescence studies on O+ implanted porous silicon," Mater. Lett. 58(29), 3745-3750 (2004).
[CrossRef]

Microsyst. Technol. (1)

De Wolf, and H. E. Maes, "Mechanical stress measurements using micro-Raman spectroscopy," Microsyst. Technol. 5(1), 13-17 (1998).
[CrossRef]

MRS Bull. (1)

B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, and S. M. Yalisove, "Silicon surface morphologies after femtosecond laser irradiation," MRS Bull. 31, 626-633 (2006).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (2)

Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, and H. Mimura, "Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites," Phys. Rev. B 48(4), 2827-2830 (1993).
[CrossRef]

F. Djurabekova, and K. Nordlund, "Atomistic simulation of the interface structure of Si nanocrystals embedded in amorphous silica," Phys. Rev. B 77(11), 115325 (2008).
[CrossRef]

Physical Review B (1)

I. Umezu, A. Sugimura, M. Inada, T. Makino, K. Matsumoto, and M. Takata, "Formation of nanoscale fine-structured silicon by pulsed laser ablation in hydrogen background gas," Physical Review B 76, - (2007).
[CrossRef]

Solid State Commun. (2)

H. Richter, Z. P. Wang, and L. Ley, "The one phonon Raman spectrum in microcrystalline silicon," Solid State Commun. 39(5), 625-629 (1981).
[CrossRef]

H. Campbell, and P. M. Fauchet, "The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors," Solid State Commun. 58(10), 739-741 (1986).
[CrossRef]

Other (1)

K. Arora, M. Rajalakshmi, and T. R. Ravindran, "Phonon Confinement in Nanostructured Materials," Encyclopedia of Nanoscience and Nanotechnology 8, 499-512 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

SEM images of Si surface treated with frequencies a) 4, b) 8, c) 13 and d) 26 MHz.

Fig. 2.
Fig. 2.

SEM images of Si surface treated at 13 MHz with pulse width a) 428, b) 714, c) 1428 and d) 3571 fs.

Fig. 3.
Fig. 3.

Micro-Raman spectra of laser processed silicon surfaces a) with frequency b) with pulse width

Fig. 4.
Fig. 4.

Calculated silicon nanoparticle size using the phonon confinement model a) particle size with frequency b) particle size with laser pulse width

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

W(r,L)=exp(8π2r2L2) ,
C(0,q)2=exp(q2L216π2) .
I(ω)=02πa0C(0,q)2dq[ωω(q)]2+(Γ0/2)2,
ω(q)=ω0 120 (qq0)2 ,

Metrics