Abstract

We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe+-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  2. I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
    [CrossRef]
  3. Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultra broadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 77, 4104 (2004).
  4. E. R. Brown, J. R. Soderstrom, C. D. Parker, L. J. Mahoney, K. M. Molvar, and T. C. McGill, “Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes,” Appl. Phys. Lett. 58(20), 2291 (1991).
    [CrossRef]
  5. M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
    [CrossRef]
  6. I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
    [CrossRef]
  7. H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).
  8. J. R. Demers, R. T. Logan, Jr., and E. R. Brown, “An Optically Integrated Coherent Frequency-Domain THz Spectrometer with Signal-to-Noise Ratio up to 80 dB,” Microwave Photonics Tech. Digest, Victoria, Canada (2007), pp. 92–95.
  9. A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
    [CrossRef]
  10. P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys. 37(Part 2, No. 8B), L976–L978 (1998).
    [CrossRef]
  11. S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett. 44(4), 296 (2008).
    [CrossRef]
  12. R. Hui, B. Zhu, K. Demarest, C. Allen, and Jin Hong, “Generation of ultrahigh-speed tunable-rate optical pulses using strongly gain-coupled dual-wavelength DFB laser diodes,” IEEE Photon. Technol. Lett. 11(5), 518–520 (1999).
    [CrossRef]
  13. R. Phelan, V. Weldon, M. Lynch, and J. F. Donegan, “Simultaneous multigas detection with cascaded strongly gain coupled DFB laser by dual wavelength operation,” Electron. Lett. 38(1), 31 (2002).
    [CrossRef]
  14. S. Hoffmann, M. Hofmann, M. Kira, and S. W. Koch, “Two-colour diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20(7), S205–S210 (2005).
    [CrossRef]
  15. S. Pajarola, G. Guekos, and J. Mork, “Optical Generation of Millimeter-Waves Using a Dual-Polarization Emission External Cavity Diode Laser,” IEEE Photon. Technol. Lett. 8(1), 157–159 (1996).
    [CrossRef]
  16. H. Page, S. Malik, M. Evans, I. Gregory, I. Farrer, and D. Ritchie, “Waveguide coupled terahertz photoconductive antennas: Toward integrated photonic terahertz devices,” Appl. Phys. Lett. 92(16), 163502 (2008).
    [CrossRef]
  17. K. H. Park, Y. A. Leem, D. S. Yee, Y. Baek, D. C. Kim, S. B. Kim, and E. Sim, “Self-Pulsation in Multisection Distributed Feedback Laser Diode with a Novel Dual Grating Structure,” ETRI J. 25(3), 149–155 (2003).
    [CrossRef]
  18. O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wünsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
    [CrossRef]
  19. D. S. Yee, Y. A. Leem, S. B. Kim, D. C. Kim, K. H. Park, S. T. Kim, and B. G. Kim, “Loss-coupled distributed-feedback lasers with amplified optical feedback for optical microwave generation,” Opt. Lett. 29(19), 2243–2245 (2004).
    [CrossRef] [PubMed]
  20. Y. A. Leem, D. S. Yee, E. Sim, S. B. Kim, D. C. Kim, and K. H. Park, “Self-pulsation in multisection laser diodes with a DFB reflector,” IEEE Photon. Technol. Lett. 18(4), 622–624 (2006).
    [CrossRef]
  21. S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB Laser with a Striped Thin-Film Heater,” IEEE Photon. Technol. Lett. 4(4), 321–323 (1992).
    [CrossRef]
  22. S. W. Ryu, S. B. Kim, J. S. Sim, Y. D. Chung, J. H. Lee, and J. Kim, “Monolithic integration of thin film μ-heater array with 4-channel WDM transmitter,” Microelectron. J. 35(2), 203–206 (2004).
    [CrossRef]
  23. S. H. Oh, C. W. Lee, J. M. Lee, K. S. Kim, H. Ko, S. Park, and M. H. Park, “The Design and the Fabrication of Monolithically Integrated GaInAsP MQW Laser With Butt-Coupled Waveguide,” IEEE Photon. Technol. Lett. 15(10), 1339–1341 (2003).
    [CrossRef]
  24. G. P. Li, T. Makino, R. Moore, N. Puetz, K. Leong, and H. Lu, “Partly Gain-Coupled 1.55 μm Strained-Layer Multiquantum-well DFB Lasers,” IEEE J. Quantum Electron. 29(6), 1736–1742 (1993).
    [CrossRef]
  25. B. W. Hakki and T. Paoli, “Gain spectra in GaAs double heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299 (1975).
    [CrossRef]
  26. C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevičius, “Ion-Implanted InGaAs for ultrafast optoelectronic applications,” Appl. Phys. Lett. 82(22), 3913 (2003).
    [CrossRef]
  27. J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated InGaAs at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
    [CrossRef]

2008 (4)

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett. 44(4), 296 (2008).
[CrossRef]

H. Page, S. Malik, M. Evans, I. Gregory, I. Farrer, and D. Ritchie, “Waveguide coupled terahertz photoconductive antennas: Toward integrated photonic terahertz devices,” Appl. Phys. Lett. 92(16), 163502 (2008).
[CrossRef]

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated InGaAs at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[CrossRef]

2006 (1)

Y. A. Leem, D. S. Yee, E. Sim, S. B. Kim, D. C. Kim, and K. H. Park, “Self-pulsation in multisection laser diodes with a DFB reflector,” IEEE Photon. Technol. Lett. 18(4), 622–624 (2006).
[CrossRef]

2005 (3)

S. Hoffmann, M. Hofmann, M. Kira, and S. W. Koch, “Two-colour diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20(7), S205–S210 (2005).
[CrossRef]

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).

2004 (3)

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultra broadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 77, 4104 (2004).

D. S. Yee, Y. A. Leem, S. B. Kim, D. C. Kim, K. H. Park, S. T. Kim, and B. G. Kim, “Loss-coupled distributed-feedback lasers with amplified optical feedback for optical microwave generation,” Opt. Lett. 29(19), 2243–2245 (2004).
[CrossRef] [PubMed]

S. W. Ryu, S. B. Kim, J. S. Sim, Y. D. Chung, J. H. Lee, and J. Kim, “Monolithic integration of thin film μ-heater array with 4-channel WDM transmitter,” Microelectron. J. 35(2), 203–206 (2004).
[CrossRef]

2003 (4)

S. H. Oh, C. W. Lee, J. M. Lee, K. S. Kim, H. Ko, S. Park, and M. H. Park, “The Design and the Fabrication of Monolithically Integrated GaInAsP MQW Laser With Butt-Coupled Waveguide,” IEEE Photon. Technol. Lett. 15(10), 1339–1341 (2003).
[CrossRef]

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevičius, “Ion-Implanted InGaAs for ultrafast optoelectronic applications,” Appl. Phys. Lett. 82(22), 3913 (2003).
[CrossRef]

K. H. Park, Y. A. Leem, D. S. Yee, Y. Baek, D. C. Kim, S. B. Kim, and E. Sim, “Self-Pulsation in Multisection Distributed Feedback Laser Diode with a Novel Dual Grating Structure,” ETRI J. 25(3), 149–155 (2003).
[CrossRef]

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wünsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[CrossRef]

2002 (1)

R. Phelan, V. Weldon, M. Lynch, and J. F. Donegan, “Simultaneous multigas detection with cascaded strongly gain coupled DFB laser by dual wavelength operation,” Electron. Lett. 38(1), 31 (2002).
[CrossRef]

1999 (1)

R. Hui, B. Zhu, K. Demarest, C. Allen, and Jin Hong, “Generation of ultrahigh-speed tunable-rate optical pulses using strongly gain-coupled dual-wavelength DFB laser diodes,” IEEE Photon. Technol. Lett. 11(5), 518–520 (1999).
[CrossRef]

1998 (1)

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys. 37(Part 2, No. 8B), L976–L978 (1998).
[CrossRef]

1996 (1)

S. Pajarola, G. Guekos, and J. Mork, “Optical Generation of Millimeter-Waves Using a Dual-Polarization Emission External Cavity Diode Laser,” IEEE Photon. Technol. Lett. 8(1), 157–159 (1996).
[CrossRef]

1993 (1)

G. P. Li, T. Makino, R. Moore, N. Puetz, K. Leong, and H. Lu, “Partly Gain-Coupled 1.55 μm Strained-Layer Multiquantum-well DFB Lasers,” IEEE J. Quantum Electron. 29(6), 1736–1742 (1993).
[CrossRef]

1992 (1)

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB Laser with a Striped Thin-Film Heater,” IEEE Photon. Technol. Lett. 4(4), 321–323 (1992).
[CrossRef]

1991 (1)

E. R. Brown, J. R. Soderstrom, C. D. Parker, L. J. Mahoney, K. M. Molvar, and T. C. McGill, “Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes,” Appl. Phys. Lett. 58(20), 2291 (1991).
[CrossRef]

1975 (1)

B. W. Hakki and T. Paoli, “Gain spectra in GaAs double heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299 (1975).
[CrossRef]

Allen, C.

R. Hui, B. Zhu, K. Demarest, C. Allen, and Jin Hong, “Generation of ultrahigh-speed tunable-rate optical pulses using strongly gain-coupled dual-wavelength DFB laser diodes,” IEEE Photon. Technol. Lett. 11(5), 518–520 (1999).
[CrossRef]

Baek, Y.

K. H. Park, Y. A. Leem, D. S. Yee, Y. Baek, D. C. Kim, S. B. Kim, and E. Sim, “Self-Pulsation in Multisection Distributed Feedback Laser Diode with a Novel Dual Grating Structure,” ETRI J. 25(3), 149–155 (2003).
[CrossRef]

Baker, C.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultra broadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 77, 4104 (2004).

Baron, P.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Bauer, S.

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wünsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[CrossRef]

Beere, H. E.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultra broadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 77, 4104 (2004).

Belkin, M. A.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

Belyanin, A.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

Blary, K.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated InGaAs at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[CrossRef]

Bradley, I. V.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

Brown, E. R.

E. R. Brown, J. R. Soderstrom, C. D. Parker, L. J. Mahoney, K. M. Molvar, and T. C. McGill, “Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes,” Appl. Phys. Lett. 58(20), 2291 (1991).
[CrossRef]

Brox, O.

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wünsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[CrossRef]

Capasso, F.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

Carmody, C.

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevičius, “Ion-Implanted InGaAs for ultrafast optoelectronic applications,” Appl. Phys. Lett. 82(22), 3913 (2003).
[CrossRef]

Chinone, N.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB Laser with a Striped Thin-Film Heater,” IEEE Photon. Technol. Lett. 4(4), 321–323 (1992).
[CrossRef]

Chung, Y. D.

S. W. Ryu, S. B. Kim, J. S. Sim, Y. D. Chung, J. H. Lee, and J. Kim, “Monolithic integration of thin film μ-heater array with 4-channel WDM transmitter,” Microelectron. J. 35(2), 203–206 (2004).
[CrossRef]

Crozat, P.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated InGaAs at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[CrossRef]

Davies, A. G.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultra broadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 77, 4104 (2004).

Demarest, K.

R. Hui, B. Zhu, K. Demarest, C. Allen, and Jin Hong, “Generation of ultrahigh-speed tunable-rate optical pulses using strongly gain-coupled dual-wavelength DFB laser diodes,” IEEE Photon. Technol. Lett. 11(5), 518–520 (1999).
[CrossRef]

Donegan, J. F.

R. Phelan, V. Weldon, M. Lynch, and J. F. Donegan, “Simultaneous multigas detection with cascaded strongly gain coupled DFB laser by dual wavelength operation,” Electron. Lett. 38(1), 31 (2002).
[CrossRef]

Ellison, B. N.

S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett. 44(4), 296 (2008).
[CrossRef]

Erbert, G.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Evans, M.

H. Page, S. Malik, M. Evans, I. Gregory, I. Farrer, and D. Ritchie, “Waveguide coupled terahertz photoconductive antennas: Toward integrated photonic terahertz devices,” Appl. Phys. Lett. 92(16), 163502 (2008).
[CrossRef]

Evans, M. J.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultra broadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 77, 4104 (2004).

Faist, J.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

Farrer, I.

H. Page, S. Malik, M. Evans, I. Gregory, I. Farrer, and D. Ritchie, “Waveguide coupled terahertz photoconductive antennas: Toward integrated photonic terahertz devices,” Appl. Phys. Lett. 92(16), 163502 (2008).
[CrossRef]

Fischer, M.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

Fricke, J.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Fukunaga, K.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Furuta, T.

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).

Gaarder, A.

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevičius, “Ion-Implanted InGaAs for ultrafast optoelectronic applications,” Appl. Phys. Lett. 82(22), 3913 (2003).
[CrossRef]

Gregory, I.

H. Page, S. Malik, M. Evans, I. Gregory, I. Farrer, and D. Ritchie, “Waveguide coupled terahertz photoconductive antennas: Toward integrated photonic terahertz devices,” Appl. Phys. Lett. 92(16), 163502 (2008).
[CrossRef]

Gregory, I. S.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultra broadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 77, 4104 (2004).

Gu, P.

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys. 37(Part 2, No. 8B), L976–L978 (1998).
[CrossRef]

Guekos, G.

S. Pajarola, G. Guekos, and J. Mork, “Optical Generation of Millimeter-Waves Using a Dual-Polarization Emission External Cavity Diode Laser,” IEEE Photon. Technol. Lett. 8(1), 157–159 (1996).
[CrossRef]

Hakki, B. W.

B. W. Hakki and T. Paoli, “Gain spectra in GaAs double heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299 (1975).
[CrossRef]

Hidaka, T.

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys. 37(Part 2, No. 8B), L976–L978 (1998).
[CrossRef]

Hoffmann, S.

S. Hoffmann, M. Hofmann, M. Kira, and S. W. Koch, “Two-colour diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20(7), S205–S210 (2005).
[CrossRef]

Hofmann, M.

S. Hoffmann, M. Hofmann, M. Kira, and S. W. Koch, “Two-colour diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20(7), S205–S210 (2005).
[CrossRef]

Hosako, I.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Huggard, P. G.

S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett. 44(4), 296 (2008).
[CrossRef]

Hui, R.

R. Hui, B. Zhu, K. Demarest, C. Allen, and Jin Hong, “Generation of ultrahigh-speed tunable-rate optical pulses using strongly gain-coupled dual-wavelength DFB laser diodes,” IEEE Photon. Technol. Lett. 11(5), 518–520 (1999).
[CrossRef]

Hyodo, M.

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys. 37(Part 2, No. 8B), L976–L978 (1998).
[CrossRef]

Ishibashi, T.

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).

Ito, H.

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).

Jagadish, C.

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevičius, “Ion-Implanted InGaAs for ultrafast optoelectronic applications,” Appl. Phys. Lett. 82(22), 3913 (2003).
[CrossRef]

Jin Hong,

R. Hui, B. Zhu, K. Demarest, C. Allen, and Jin Hong, “Generation of ultrahigh-speed tunable-rate optical pulses using strongly gain-coupled dual-wavelength DFB laser diodes,” IEEE Photon. Technol. Lett. 11(5), 518–520 (1999).
[CrossRef]

Kasai, Y.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Kim, B. G.

Kim, D. C.

Y. A. Leem, D. S. Yee, E. Sim, S. B. Kim, D. C. Kim, and K. H. Park, “Self-pulsation in multisection laser diodes with a DFB reflector,” IEEE Photon. Technol. Lett. 18(4), 622–624 (2006).
[CrossRef]

D. S. Yee, Y. A. Leem, S. B. Kim, D. C. Kim, K. H. Park, S. T. Kim, and B. G. Kim, “Loss-coupled distributed-feedback lasers with amplified optical feedback for optical microwave generation,” Opt. Lett. 29(19), 2243–2245 (2004).
[CrossRef] [PubMed]

K. H. Park, Y. A. Leem, D. S. Yee, Y. Baek, D. C. Kim, S. B. Kim, and E. Sim, “Self-Pulsation in Multisection Distributed Feedback Laser Diode with a Novel Dual Grating Structure,” ETRI J. 25(3), 149–155 (2003).
[CrossRef]

Kim, J.

S. W. Ryu, S. B. Kim, J. S. Sim, Y. D. Chung, J. H. Lee, and J. Kim, “Monolithic integration of thin film μ-heater array with 4-channel WDM transmitter,” Microelectron. J. 35(2), 203–206 (2004).
[CrossRef]

Kim, K. S.

S. H. Oh, C. W. Lee, J. M. Lee, K. S. Kim, H. Ko, S. Park, and M. H. Park, “The Design and the Fabrication of Monolithically Integrated GaInAsP MQW Laser With Butt-Coupled Waveguide,” IEEE Photon. Technol. Lett. 15(10), 1339–1341 (2003).
[CrossRef]

Kim, S. B.

Y. A. Leem, D. S. Yee, E. Sim, S. B. Kim, D. C. Kim, and K. H. Park, “Self-pulsation in multisection laser diodes with a DFB reflector,” IEEE Photon. Technol. Lett. 18(4), 622–624 (2006).
[CrossRef]

S. W. Ryu, S. B. Kim, J. S. Sim, Y. D. Chung, J. H. Lee, and J. Kim, “Monolithic integration of thin film μ-heater array with 4-channel WDM transmitter,” Microelectron. J. 35(2), 203–206 (2004).
[CrossRef]

D. S. Yee, Y. A. Leem, S. B. Kim, D. C. Kim, K. H. Park, S. T. Kim, and B. G. Kim, “Loss-coupled distributed-feedback lasers with amplified optical feedback for optical microwave generation,” Opt. Lett. 29(19), 2243–2245 (2004).
[CrossRef] [PubMed]

K. H. Park, Y. A. Leem, D. S. Yee, Y. Baek, D. C. Kim, S. B. Kim, and E. Sim, “Self-Pulsation in Multisection Distributed Feedback Laser Diode with a Novel Dual Grating Structure,” ETRI J. 25(3), 149–155 (2003).
[CrossRef]

Kim, S. T.

Kira, M.

S. Hoffmann, M. Hofmann, M. Kira, and S. W. Koch, “Two-colour diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20(7), S205–S210 (2005).
[CrossRef]

Kitajima, S.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB Laser with a Striped Thin-Film Heater,” IEEE Photon. Technol. Lett. 4(4), 321–323 (1992).
[CrossRef]

Klehr, A.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Knauer, A.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Ko, H.

S. H. Oh, C. W. Lee, J. M. Lee, K. S. Kim, H. Ko, S. Park, and M. H. Park, “The Design and the Fabrication of Monolithically Integrated GaInAsP MQW Laser With Butt-Coupled Waveguide,” IEEE Photon. Technol. Lett. 15(10), 1339–1341 (2003).
[CrossRef]

Koch, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Koch, S. W.

S. Hoffmann, M. Hofmann, M. Kira, and S. W. Koch, “Two-colour diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20(7), S205–S210 (2005).
[CrossRef]

Kreissl, J.

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wünsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[CrossRef]

Lampin, J. F.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated InGaAs at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[CrossRef]

Lee, C. W.

S. H. Oh, C. W. Lee, J. M. Lee, K. S. Kim, H. Ko, S. Park, and M. H. Park, “The Design and the Fabrication of Monolithically Integrated GaInAsP MQW Laser With Butt-Coupled Waveguide,” IEEE Photon. Technol. Lett. 15(10), 1339–1341 (2003).
[CrossRef]

Lee, J. H.

S. W. Ryu, S. B. Kim, J. S. Sim, Y. D. Chung, J. H. Lee, and J. Kim, “Monolithic integration of thin film μ-heater array with 4-channel WDM transmitter,” Microelectron. J. 35(2), 203–206 (2004).
[CrossRef]

Lee, J. M.

S. H. Oh, C. W. Lee, J. M. Lee, K. S. Kim, H. Ko, S. Park, and M. H. Park, “The Design and the Fabrication of Monolithically Integrated GaInAsP MQW Laser With Butt-Coupled Waveguide,” IEEE Photon. Technol. Lett. 15(10), 1339–1341 (2003).
[CrossRef]

Leem, Y. A.

Y. A. Leem, D. S. Yee, E. Sim, S. B. Kim, D. C. Kim, and K. H. Park, “Self-pulsation in multisection laser diodes with a DFB reflector,” IEEE Photon. Technol. Lett. 18(4), 622–624 (2006).
[CrossRef]

D. S. Yee, Y. A. Leem, S. B. Kim, D. C. Kim, K. H. Park, S. T. Kim, and B. G. Kim, “Loss-coupled distributed-feedback lasers with amplified optical feedback for optical microwave generation,” Opt. Lett. 29(19), 2243–2245 (2004).
[CrossRef] [PubMed]

K. H. Park, Y. A. Leem, D. S. Yee, Y. Baek, D. C. Kim, S. B. Kim, and E. Sim, “Self-Pulsation in Multisection Distributed Feedback Laser Diode with a Novel Dual Grating Structure,” ETRI J. 25(3), 149–155 (2003).
[CrossRef]

Leong, K.

G. P. Li, T. Makino, R. Moore, N. Puetz, K. Leong, and H. Lu, “Partly Gain-Coupled 1.55 μm Strained-Layer Multiquantum-well DFB Lasers,” IEEE J. Quantum Electron. 29(6), 1736–1742 (1993).
[CrossRef]

Li, G. P.

G. P. Li, T. Makino, R. Moore, N. Puetz, K. Leong, and H. Lu, “Partly Gain-Coupled 1.55 μm Strained-Layer Multiquantum-well DFB Lasers,” IEEE J. Quantum Electron. 29(6), 1736–1742 (1993).
[CrossRef]

Linfield, E. H.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultra broadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 77, 4104 (2004).

Lu, H.

G. P. Li, T. Makino, R. Moore, N. Puetz, K. Leong, and H. Lu, “Partly Gain-Coupled 1.55 μm Strained-Layer Multiquantum-well DFB Lasers,” IEEE J. Quantum Electron. 29(6), 1736–1742 (1993).
[CrossRef]

Lynch, M.

R. Phelan, V. Weldon, M. Lynch, and J. F. Donegan, “Simultaneous multigas detection with cascaded strongly gain coupled DFB laser by dual wavelength operation,” Electron. Lett. 38(1), 31 (2002).
[CrossRef]

Mahoney, L. J.

E. R. Brown, J. R. Soderstrom, C. D. Parker, L. J. Mahoney, K. M. Molvar, and T. C. McGill, “Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes,” Appl. Phys. Lett. 58(20), 2291 (1991).
[CrossRef]

Makino, T.

G. P. Li, T. Makino, R. Moore, N. Puetz, K. Leong, and H. Lu, “Partly Gain-Coupled 1.55 μm Strained-Layer Multiquantum-well DFB Lasers,” IEEE J. Quantum Electron. 29(6), 1736–1742 (1993).
[CrossRef]

Malik, S.

H. Page, S. Malik, M. Evans, I. Gregory, I. Farrer, and D. Ritchie, “Waveguide coupled terahertz photoconductive antennas: Toward integrated photonic terahertz devices,” Appl. Phys. Lett. 92(16), 163502 (2008).
[CrossRef]

Mangeney, J.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated InGaAs at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[CrossRef]

Marcinkevicius, S.

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevičius, “Ion-Implanted InGaAs for ultrafast optoelectronic applications,” Appl. Phys. Lett. 82(22), 3913 (2003).
[CrossRef]

McGill, T. C.

E. R. Brown, J. R. Soderstrom, C. D. Parker, L. J. Mahoney, K. M. Molvar, and T. C. McGill, “Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes,” Appl. Phys. Lett. 58(20), 2291 (1991).
[CrossRef]

Mendrok, J.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Merigault, A.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated InGaAs at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[CrossRef]

Mikulics, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Missous, M.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

Molvar, K. M.

E. R. Brown, J. R. Soderstrom, C. D. Parker, L. J. Mahoney, K. M. Molvar, and T. C. McGill, “Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes,” Appl. Phys. Lett. 58(20), 2291 (1991).
[CrossRef]

Moore, R.

G. P. Li, T. Makino, R. Moore, N. Puetz, K. Leong, and H. Lu, “Partly Gain-Coupled 1.55 μm Strained-Layer Multiquantum-well DFB Lasers,” IEEE J. Quantum Electron. 29(6), 1736–1742 (1993).
[CrossRef]

Mork, J.

S. Pajarola, G. Guekos, and J. Mork, “Optical Generation of Millimeter-Waves Using a Dual-Polarization Emission External Cavity Diode Laser,” IEEE Photon. Technol. Lett. 8(1), 157–159 (1996).
[CrossRef]

Nakajima, F.

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).

O’Brien, S.

S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett. 44(4), 296 (2008).
[CrossRef]

O’Reilly, E. P.

S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett. 44(4), 296 (2008).
[CrossRef]

Ochiai, S.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Oh, S. H.

S. H. Oh, C. W. Lee, J. M. Lee, K. S. Kim, H. Ko, S. Park, and M. H. Park, “The Design and the Fabrication of Monolithically Integrated GaInAsP MQW Laser With Butt-Coupled Waveguide,” IEEE Photon. Technol. Lett. 15(10), 1339–1341 (2003).
[CrossRef]

Osborne, S.

S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett. 44(4), 296 (2008).
[CrossRef]

Page, H.

H. Page, S. Malik, M. Evans, I. Gregory, I. Farrer, and D. Ritchie, “Waveguide coupled terahertz photoconductive antennas: Toward integrated photonic terahertz devices,” Appl. Phys. Lett. 92(16), 163502 (2008).
[CrossRef]

Pajarola, S.

S. Pajarola, G. Guekos, and J. Mork, “Optical Generation of Millimeter-Waves Using a Dual-Polarization Emission External Cavity Diode Laser,” IEEE Photon. Technol. Lett. 8(1), 157–159 (1996).
[CrossRef]

Paoli, T.

B. W. Hakki and T. Paoli, “Gain spectra in GaAs double heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299 (1975).
[CrossRef]

Park, K. H.

Y. A. Leem, D. S. Yee, E. Sim, S. B. Kim, D. C. Kim, and K. H. Park, “Self-pulsation in multisection laser diodes with a DFB reflector,” IEEE Photon. Technol. Lett. 18(4), 622–624 (2006).
[CrossRef]

D. S. Yee, Y. A. Leem, S. B. Kim, D. C. Kim, K. H. Park, S. T. Kim, and B. G. Kim, “Loss-coupled distributed-feedback lasers with amplified optical feedback for optical microwave generation,” Opt. Lett. 29(19), 2243–2245 (2004).
[CrossRef] [PubMed]

K. H. Park, Y. A. Leem, D. S. Yee, Y. Baek, D. C. Kim, S. B. Kim, and E. Sim, “Self-Pulsation in Multisection Distributed Feedback Laser Diode with a Novel Dual Grating Structure,” ETRI J. 25(3), 149–155 (2003).
[CrossRef]

Park, M. H.

S. H. Oh, C. W. Lee, J. M. Lee, K. S. Kim, H. Ko, S. Park, and M. H. Park, “The Design and the Fabrication of Monolithically Integrated GaInAsP MQW Laser With Butt-Coupled Waveguide,” IEEE Photon. Technol. Lett. 15(10), 1339–1341 (2003).
[CrossRef]

Park, S.

S. H. Oh, C. W. Lee, J. M. Lee, K. S. Kim, H. Ko, S. Park, and M. H. Park, “The Design and the Fabrication of Monolithically Integrated GaInAsP MQW Laser With Butt-Coupled Waveguide,” IEEE Photon. Technol. Lett. 15(10), 1339–1341 (2003).
[CrossRef]

Parker, C. D.

E. R. Brown, J. R. Soderstrom, C. D. Parker, L. J. Mahoney, K. M. Molvar, and T. C. McGill, “Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes,” Appl. Phys. Lett. 58(20), 2291 (1991).
[CrossRef]

Patrashin, M.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Phelan, R.

R. Phelan, V. Weldon, M. Lynch, and J. F. Donegan, “Simultaneous multigas detection with cascaded strongly gain coupled DFB laser by dual wavelength operation,” Electron. Lett. 38(1), 31 (2002).
[CrossRef]

Puetz, N.

G. P. Li, T. Makino, R. Moore, N. Puetz, K. Leong, and H. Lu, “Partly Gain-Coupled 1.55 μm Strained-Layer Multiquantum-well DFB Lasers,” IEEE J. Quantum Electron. 29(6), 1736–1742 (1993).
[CrossRef]

Radziunas, M.

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wünsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[CrossRef]

Ritchie, D.

H. Page, S. Malik, M. Evans, I. Gregory, I. Farrer, and D. Ritchie, “Waveguide coupled terahertz photoconductive antennas: Toward integrated photonic terahertz devices,” Appl. Phys. Lett. 92(16), 163502 (2008).
[CrossRef]

Ryu, S. W.

S. W. Ryu, S. B. Kim, J. S. Sim, Y. D. Chung, J. H. Lee, and J. Kim, “Monolithic integration of thin film μ-heater array with 4-channel WDM transmitter,” Microelectron. J. 35(2), 203–206 (2004).
[CrossRef]

Saito, S.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Sakai, K.

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys. 37(Part 2, No. 8B), L976–L978 (1998).
[CrossRef]

Sakano, S.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB Laser with a Striped Thin-Film Heater,” IEEE Photon. Technol. Lett. 4(4), 321–323 (1992).
[CrossRef]

Sartorius, B.

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wünsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[CrossRef]

Sekine, N.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Seta, T.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Shen, Y. C.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultra broadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 77, 4104 (2004).

Sieber, J.

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wünsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[CrossRef]

Sim, E.

Y. A. Leem, D. S. Yee, E. Sim, S. B. Kim, D. C. Kim, and K. H. Park, “Self-pulsation in multisection laser diodes with a DFB reflector,” IEEE Photon. Technol. Lett. 18(4), 622–624 (2006).
[CrossRef]

K. H. Park, Y. A. Leem, D. S. Yee, Y. Baek, D. C. Kim, S. B. Kim, and E. Sim, “Self-Pulsation in Multisection Distributed Feedback Laser Diode with a Novel Dual Grating Structure,” ETRI J. 25(3), 149–155 (2003).
[CrossRef]

Sim, J. S.

S. W. Ryu, S. B. Kim, J. S. Sim, Y. D. Chung, J. H. Lee, and J. Kim, “Monolithic integration of thin film μ-heater array with 4-channel WDM transmitter,” Microelectron. J. 35(2), 203–206 (2004).
[CrossRef]

Soderstrom, J. R.

E. R. Brown, J. R. Soderstrom, C. D. Parker, L. J. Mahoney, K. M. Molvar, and T. C. McGill, “Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes,” Appl. Phys. Lett. 58(20), 2291 (1991).
[CrossRef]

Suzuki, M.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB Laser with a Striped Thin-Film Heater,” IEEE Photon. Technol. Lett. 4(4), 321–323 (1992).
[CrossRef]

Tan, H. H.

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevičius, “Ion-Implanted InGaAs for ultrafast optoelectronic applications,” Appl. Phys. Lett. 82(22), 3913 (2003).
[CrossRef]

Tani, M.

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys. 37(Part 2, No. 8B), L976–L978 (1998).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Tribe, W. R.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultra broadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 77, 4104 (2004).

Tsuchiya, T.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB Laser with a Striped Thin-Film Heater,” IEEE Photon. Technol. Lett. 4(4), 321–323 (1992).
[CrossRef]

Upadhya, P. C.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultra broadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 77, 4104 (2004).

Walther, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Weldon, V.

R. Phelan, V. Weldon, M. Lynch, and J. F. Donegan, “Simultaneous multigas detection with cascaded strongly gain coupled DFB laser by dual wavelength operation,” Electron. Lett. 38(1), 31 (2002).
[CrossRef]

Wilk, R.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

Wittmann, A.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

Wolfrum, M.

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wünsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[CrossRef]

Wünsche, H.-J.

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wünsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[CrossRef]

Xie, F.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

Yasuda, H.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Yee, D. S.

Y. A. Leem, D. S. Yee, E. Sim, S. B. Kim, D. C. Kim, and K. H. Park, “Self-pulsation in multisection laser diodes with a DFB reflector,” IEEE Photon. Technol. Lett. 18(4), 622–624 (2006).
[CrossRef]

D. S. Yee, Y. A. Leem, S. B. Kim, D. C. Kim, K. H. Park, S. T. Kim, and B. G. Kim, “Loss-coupled distributed-feedback lasers with amplified optical feedback for optical microwave generation,” Opt. Lett. 29(19), 2243–2245 (2004).
[CrossRef] [PubMed]

K. H. Park, Y. A. Leem, D. S. Yee, Y. Baek, D. C. Kim, S. B. Kim, and E. Sim, “Self-Pulsation in Multisection Distributed Feedback Laser Diode with a Novel Dual Grating Structure,” ETRI J. 25(3), 149–155 (2003).
[CrossRef]

Zerounian, N.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated InGaAs at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[CrossRef]

Zhu, B.

R. Hui, B. Zhu, K. Demarest, C. Allen, and Jin Hong, “Generation of ultrahigh-speed tunable-rate optical pulses using strongly gain-coupled dual-wavelength DFB laser diodes,” IEEE Photon. Technol. Lett. 11(5), 518–520 (1999).
[CrossRef]

Appl. Phys. Lett. (6)

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultra broadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 77, 4104 (2004).

E. R. Brown, J. R. Soderstrom, C. D. Parker, L. J. Mahoney, K. M. Molvar, and T. C. McGill, “Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes,” Appl. Phys. Lett. 58(20), 2291 (1991).
[CrossRef]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[CrossRef]

H. Page, S. Malik, M. Evans, I. Gregory, I. Farrer, and D. Ritchie, “Waveguide coupled terahertz photoconductive antennas: Toward integrated photonic terahertz devices,” Appl. Phys. Lett. 92(16), 163502 (2008).
[CrossRef]

C. Carmody, H. H. Tan, C. Jagadish, A. Gaarder, and S. Marcinkevičius, “Ion-Implanted InGaAs for ultrafast optoelectronic applications,” Appl. Phys. Lett. 82(22), 3913 (2003).
[CrossRef]

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated InGaAs at 1.55 μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[CrossRef]

Electron. Lett. (2)

S. Osborne, S. O’Brien, E. P. O’Reilly, P. G. Huggard, and B. N. Ellison, “Generation of CW 0.5 THz radiation by photomixing the output of a two-colour 1.49 μm Fabry-Perot diode laser,” Electron. Lett. 44(4), 296 (2008).
[CrossRef]

R. Phelan, V. Weldon, M. Lynch, and J. F. Donegan, “Simultaneous multigas detection with cascaded strongly gain coupled DFB laser by dual wavelength operation,” Electron. Lett. 38(1), 31 (2002).
[CrossRef]

ETRI J. (1)

K. H. Park, Y. A. Leem, D. S. Yee, Y. Baek, D. C. Kim, S. B. Kim, and E. Sim, “Self-Pulsation in Multisection Distributed Feedback Laser Diode with a Novel Dual Grating Structure,” ETRI J. 25(3), 149–155 (2003).
[CrossRef]

IEEE J. Quantum Electron. (3)

O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wünsche, “High-Frequency Pulsations in DFB Lasers With Amplified Feedback,” IEEE J. Quantum Electron. 39(11), 1381–1387 (2003).
[CrossRef]

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[CrossRef]

G. P. Li, T. Makino, R. Moore, N. Puetz, K. Leong, and H. Lu, “Partly Gain-Coupled 1.55 μm Strained-Layer Multiquantum-well DFB Lasers,” IEEE J. Quantum Electron. 29(6), 1736–1742 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

Y. A. Leem, D. S. Yee, E. Sim, S. B. Kim, D. C. Kim, and K. H. Park, “Self-pulsation in multisection laser diodes with a DFB reflector,” IEEE Photon. Technol. Lett. 18(4), 622–624 (2006).
[CrossRef]

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB Laser with a Striped Thin-Film Heater,” IEEE Photon. Technol. Lett. 4(4), 321–323 (1992).
[CrossRef]

R. Hui, B. Zhu, K. Demarest, C. Allen, and Jin Hong, “Generation of ultrahigh-speed tunable-rate optical pulses using strongly gain-coupled dual-wavelength DFB laser diodes,” IEEE Photon. Technol. Lett. 11(5), 518–520 (1999).
[CrossRef]

S. Pajarola, G. Guekos, and J. Mork, “Optical Generation of Millimeter-Waves Using a Dual-Polarization Emission External Cavity Diode Laser,” IEEE Photon. Technol. Lett. 8(1), 157–159 (1996).
[CrossRef]

S. H. Oh, C. W. Lee, J. M. Lee, K. S. Kim, H. Ko, S. Park, and M. H. Park, “The Design and the Fabrication of Monolithically Integrated GaInAsP MQW Laser With Butt-Coupled Waveguide,” IEEE Photon. Technol. Lett. 15(10), 1339–1341 (2003).
[CrossRef]

J. Appl. Phys. (1)

B. W. Hakki and T. Paoli, “Gain spectra in GaAs double heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299 (1975).
[CrossRef]

Jpn. J. Appl. Phys. (1)

P. Gu, M. Tani, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of cw-Terahertz Radiation Using a Two-Longitudinal-Mode Laser Diode,” Jpn. J. Appl. Phys. 37(Part 2, No. 8B), L976–L978 (1998).
[CrossRef]

Microelectron. J. (1)

S. W. Ryu, S. B. Kim, J. S. Sim, Y. D. Chung, J. H. Lee, and J. Kim, “Monolithic integration of thin film μ-heater array with 4-channel WDM transmitter,” Microelectron. J. 35(2), 203–206 (2004).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the Dawn of a New Era in Terahertz Technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[CrossRef]

Semicond. Sci. Technol. (2)

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20(7), S191–S198 (2005).

S. Hoffmann, M. Hofmann, M. Kira, and S. W. Koch, “Two-colour diode lasers for generation of THz radiation,” Semicond. Sci. Technol. 20(7), S205–S210 (2005).
[CrossRef]

Other (1)

J. R. Demers, R. T. Logan, Jr., and E. R. Brown, “An Optically Integrated Coherent Frequency-Domain THz Spectrometer with Signal-to-Noise Ratio up to 80 dB,” Microwave Photonics Tech. Digest, Victoria, Canada (2007), pp. 92–95.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Device structure of the dual-mode laser diode (DML)

Fig. 2.
Fig. 2.

Lasing spectra of the loss-coupled DFB laser with a length of 400 µm with varying the input µ-heater power.

Fig. 3.
Fig. 3.

Gain peak shift of a FP-LD as a function of the operation current of the µ-heater. The FP-LD has the same device structure with the µ-heater integrated DFB LD except grating layer.

Fig. 4.
Fig. 4.

Dual mode lasing spectrum of a HR/AR coated DML when a reverse bias is applied to the phase section. The operation current is 50 mA for each DFB section and the reverse bias is -0.3 V for the phase section. Inset shows the lasing spectrum when a forward bias is applied to the phase section. As increasing the reverse bias of the phase section, the optical loss is increased and the lasing of the complex compound-cavity modes is effectively suppressed.

Fig. 5.
Fig. 5.

Autocorrelation trace of DML. Wavelength difference between two modes is set to be 2.3 nm which is corresponding to 280 GHz.

Fig. 6.
Fig. 6.

Wavelength tuning characteristics of the HR/AR coated DML. The P1 and P2 represent the input µ-heater powers of the DFB1 and DFB2, respectively. The wavelength difference is tuned from 0.81 (0.10 THz) to 4.7 nm (0.57 THz) using µ-heaters.

Fig. 7.
Fig. 7.

(a) Microscope and SEM images of a fabricated Fe+-implanted bowtie-type InGaAs photomixer, (b) Frequency tuning characteristic of THz emission from the InGaAs photomixers illuminated by our DML.

Metrics