Abstract

We develop a fiber based probe that is capable of two-dimensional scanning applicable in optical coherence tomography (OCT). Based on the resonance of the fiber cantilever with asymmetry structure which has two distinguished resonant frequencies in orthogonal directions, Lissajous pattern is produced suitable for two-dimensional scanning upon a sample. Orthogonal resonances of the fiber cantilever are simultaneously excited by single piezo bender actuator with one driving signal consisting of two components corresponding to above-mentioned two resonant frequencies. By integrating a backward-placed two-dimensional position sensitive detector (PSD) into the probe, real-time lateral position of the scanning pattern is registered simultaneously for image reconstruction. Dynamical characteristics of the fiber cantilever are experimentally studied with special consideration on factors determining the resolution of the scanning pattern, including frequency and amplitude ratios between two components of the driving signal and fetching duration used for an en face image. With the developed probe implemented in our established OCT system, en face OCT images of typical samples are obtained with satisfying resolution and contrast, demonstrating the feasibility of such fiber cantilever with asymmetry structure for realizing two dimensional scanning by single actuator, potentially applicable to endoscopic OCT imaging.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova N. M. Shakhova, L. B. Snopova, A. V. Shakhov I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Yu. P. Chumakov, and O. S. Streltzova, "In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa," Opt. Express 1, 432-440 (1997), http://www.opticsinfobase.org/abstract.cfm?id=63224.
    [CrossRef] [PubMed]
  3. G. J. Tearney, S.A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography," Opt. Lett. 21, 543-545, (1996).
    [CrossRef] [PubMed]
  4. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography," Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  5. Y. Pan. T. Xie, and G. K. Fedder, "Endoscopic optical coherence tomography based on a microelectromechanical mirror," Opt. Lett. 26,1966-1968 (2001).
    [CrossRef]
  6. J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, "Electrostatic micromachine scanning mirror for optical coherence tomography," Opt. Lett,  28, 628-630 (2003).
    [CrossRef] [PubMed]
  7. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, "Forward-imaging instruments for optical coherence tomography," Opt. Lett. 22, 1618-1620 (1997).
    [CrossRef]
  8. X. Liu, M.l J. Cobb, and Y. Chen, M. B. Kimmey, and X. Li, "Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography," Opt. Lett. 29, 1763-1765 (2004).
    [CrossRef] [PubMed]
  9. T. Ono, "Optical beam deflector using a piezoelectric bimorph actuator," Sens. Actuators A: Physical 22, 726-728 (1990).
    [CrossRef]
  10. J. Friend, A. Umeshima, T. Ishii, K. Nakamura, and S. Ueha, "A piezoelectric linear actuator formed from a multitude of bimorphs," Sens. Actuators A: Physical 109, 242-251 (2004).
    [CrossRef]
  11. J. G. Smits, S. I. Dalke, and T. K. Cooney, "The constituent Equation of Piezoelectric Bimorphs," Sens. Actuators A: Physical 28, 41-61 (1991).
    [CrossRef]
  12. D. Li, and B. Sun, "Study on Displacement Model for Piezo-bimorph Actuator," China Mechanical Engin. 17, 1499-1501 (2003).
  13. Z. Xu, The theory of elasticity (Higher Education Press, Beijing, 1983).
  14. T. Wang, M. Bachman, G. P. Li, S. Guo, B. J. Wong, and Z. P. Chen, "Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography," Opt. Lett. 30, 53-55 (2005).
    [CrossRef] [PubMed]
  15. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. P. Chen, "Fiber-optic-bundle-based optical coherence tomography," Opt. Lett. 30, 1803-1805 (2005).
    [CrossRef] [PubMed]
  16. J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob and C. Yang, "Paired-angle-rotation scanning optical coherence tomography forward-imaging probe," Opt. Lett. 31, 1265-1267 (2006).
    [CrossRef] [PubMed]
  17. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, M. E. Brezinski, "Forward-imaging instruments for optical coherence tomography," Opt. Lett. 22, 1618-1620 (1997).
    [CrossRef]
  18. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, "Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography," Opt. Lett. 29, 1763-1765 (2004).
    [CrossRef] [PubMed]
  19. M. T. Myaing, D. J. MacDonald, and X. D. Li, "Fiber-optic scanning two-photon fluorescence endoscope," Opt. Lett. 31, 1076-1078 (2006).
    [CrossRef] [PubMed]
  20. R. Le Harzic, M. Weinigel, I. Riemann, K. König, and B. Messerschmidt, "Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens," Opt. Express 16,20588-20596 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-25-20588.
    [CrossRef] [PubMed]

2008 (1)

2006 (2)

2005 (2)

2004 (3)

2003 (2)

D. Li, and B. Sun, "Study on Displacement Model for Piezo-bimorph Actuator," China Mechanical Engin. 17, 1499-1501 (2003).

J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, "Electrostatic micromachine scanning mirror for optical coherence tomography," Opt. Lett,  28, 628-630 (2003).
[CrossRef] [PubMed]

2001 (1)

1997 (4)

1996 (1)

1991 (2)

J. G. Smits, S. I. Dalke, and T. K. Cooney, "The constituent Equation of Piezoelectric Bimorphs," Sens. Actuators A: Physical 28, 41-61 (1991).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

1990 (1)

T. Ono, "Optical beam deflector using a piezoelectric bimorph actuator," Sens. Actuators A: Physical 22, 726-728 (1990).
[CrossRef]

Bachman, M.

Boppart, S. A.

Boppart, S.A.

Bouma, B. E.

Brenner, M.

Brezinski, M. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Chen, Y.

Chen, Z. P.

Cobb, M. J.

Conry, M.

Cooney, T. K.

J. G. Smits, S. I. Dalke, and T. K. Cooney, "The constituent Equation of Piezoelectric Bimorphs," Sens. Actuators A: Physical 28, 41-61 (1991).
[CrossRef]

Dalke, S. I.

J. G. Smits, S. I. Dalke, and T. K. Cooney, "The constituent Equation of Piezoelectric Bimorphs," Sens. Actuators A: Physical 28, 41-61 (1991).
[CrossRef]

Feldchtein, F. I.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Friend, J.

J. Friend, A. Umeshima, T. Ishii, K. Nakamura, and S. Ueha, "A piezoelectric linear actuator formed from a multitude of bimorphs," Sens. Actuators A: Physical 109, 242-251 (2004).
[CrossRef]

Fujimoto, J. G.

Gelikonov, G. V.

Gelikonov, V. M.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Gu, C.

Guo, S.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Ishii, T.

J. Friend, A. Umeshima, T. Ishii, K. Nakamura, and S. Ueha, "A piezoelectric linear actuator formed from a multitude of bimorphs," Sens. Actuators A: Physical 109, 242-251 (2004).
[CrossRef]

Izatt, J. A.

J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, "Electrostatic micromachine scanning mirror for optical coherence tomography," Opt. Lett,  28, 628-630 (2003).
[CrossRef] [PubMed]

Kimmey, M. B.

König, K.

Kuranov, R. V.

Le Harzic, R.

Li, D.

D. Li, and B. Sun, "Study on Displacement Model for Piezo-bimorph Actuator," China Mechanical Engin. 17, 1499-1501 (2003).

Li, G. P.

Li, X.

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Liu, X.

MacDonald, D. J.

Messerschmidt, B.

Mukai, D.

Myaing, M. T.

Nakamura, K.

J. Friend, A. Umeshima, T. Ishii, K. Nakamura, and S. Ueha, "A piezoelectric linear actuator formed from a multitude of bimorphs," Sens. Actuators A: Physical 109, 242-251 (2004).
[CrossRef]

Ono, T.

T. Ono, "Optical beam deflector using a piezoelectric bimorph actuator," Sens. Actuators A: Physical 22, 726-728 (1990).
[CrossRef]

Pan, Y.

Pitris, C.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Rao, K. D.

J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, "Electrostatic micromachine scanning mirror for optical coherence tomography," Opt. Lett,  28, 628-630 (2003).
[CrossRef] [PubMed]

Riemann, I.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Sergeev, A. M.

Smith, S. W.

J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, "Electrostatic micromachine scanning mirror for optical coherence tomography," Opt. Lett,  28, 628-630 (2003).
[CrossRef] [PubMed]

Smits, J. G.

J. G. Smits, S. I. Dalke, and T. K. Cooney, "The constituent Equation of Piezoelectric Bimorphs," Sens. Actuators A: Physical 28, 41-61 (1991).
[CrossRef]

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

G. J. Tearney, S.A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography," Opt. Lett. 21, 543-545, (1996).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Sun, B.

D. Li, and B. Sun, "Study on Displacement Model for Piezo-bimorph Actuator," China Mechanical Engin. 17, 1499-1501 (2003).

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Ueha, S.

J. Friend, A. Umeshima, T. Ishii, K. Nakamura, and S. Ueha, "A piezoelectric linear actuator formed from a multitude of bimorphs," Sens. Actuators A: Physical 109, 242-251 (2004).
[CrossRef]

Umeshima, A.

J. Friend, A. Umeshima, T. Ishii, K. Nakamura, and S. Ueha, "A piezoelectric linear actuator formed from a multitude of bimorphs," Sens. Actuators A: Physical 109, 242-251 (2004).
[CrossRef]

Wang, F.

Wang, T.

Weinigel, M.

Weissman, N. J.

Wong, B. J.

Wu, J.

Xie, T.

Yang, C.

Yaqoob, Z.

Yazdanfar, S.

J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, "Electrostatic micromachine scanning mirror for optical coherence tomography," Opt. Lett,  28, 628-630 (2003).
[CrossRef] [PubMed]

Zara, J. M.

J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, "Electrostatic micromachine scanning mirror for optical coherence tomography," Opt. Lett,  28, 628-630 (2003).
[CrossRef] [PubMed]

China Mechanical Engin. (1)

D. Li, and B. Sun, "Study on Displacement Model for Piezo-bimorph Actuator," China Mechanical Engin. 17, 1499-1501 (2003).

Opt. Express (2)

Opt. Lett (1)

J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, "Electrostatic micromachine scanning mirror for optical coherence tomography," Opt. Lett,  28, 628-630 (2003).
[CrossRef] [PubMed]

Opt. Lett. (10)

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, "Forward-imaging instruments for optical coherence tomography," Opt. Lett. 22, 1618-1620 (1997).
[CrossRef]

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, M. E. Brezinski, "Forward-imaging instruments for optical coherence tomography," Opt. Lett. 22, 1618-1620 (1997).
[CrossRef]

G. J. Tearney, S.A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography," Opt. Lett. 21, 543-545, (1996).
[CrossRef] [PubMed]

Y. Pan. T. Xie, and G. K. Fedder, "Endoscopic optical coherence tomography based on a microelectromechanical mirror," Opt. Lett. 26,1966-1968 (2001).
[CrossRef]

X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, "Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography," Opt. Lett. 29, 1763-1765 (2004).
[CrossRef] [PubMed]

X. Liu, M.l J. Cobb, and Y. Chen, M. B. Kimmey, and X. Li, "Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography," Opt. Lett. 29, 1763-1765 (2004).
[CrossRef] [PubMed]

T. Wang, M. Bachman, G. P. Li, S. Guo, B. J. Wong, and Z. P. Chen, "Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography," Opt. Lett. 30, 53-55 (2005).
[CrossRef] [PubMed]

T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. P. Chen, "Fiber-optic-bundle-based optical coherence tomography," Opt. Lett. 30, 1803-1805 (2005).
[CrossRef] [PubMed]

M. T. Myaing, D. J. MacDonald, and X. D. Li, "Fiber-optic scanning two-photon fluorescence endoscope," Opt. Lett. 31, 1076-1078 (2006).
[CrossRef] [PubMed]

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob and C. Yang, "Paired-angle-rotation scanning optical coherence tomography forward-imaging probe," Opt. Lett. 31, 1265-1267 (2006).
[CrossRef] [PubMed]

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Sens. Actuators A: Physical (3)

T. Ono, "Optical beam deflector using a piezoelectric bimorph actuator," Sens. Actuators A: Physical 22, 726-728 (1990).
[CrossRef]

J. Friend, A. Umeshima, T. Ishii, K. Nakamura, and S. Ueha, "A piezoelectric linear actuator formed from a multitude of bimorphs," Sens. Actuators A: Physical 109, 242-251 (2004).
[CrossRef]

J. G. Smits, S. I. Dalke, and T. K. Cooney, "The constituent Equation of Piezoelectric Bimorphs," Sens. Actuators A: Physical 28, 41-61 (1991).
[CrossRef]

Other (1)

Z. Xu, The theory of elasticity (Higher Education Press, Beijing, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of 2D scanning asymmetry fiber cantilever (a) base excited by single driving signal consisting of two resonant frequencies (b) and the photograph of the asymmetry fiber cantilever in static state (c). SMF: single mode fiber, PB: piezo bimorph, PR: protruding rod, SR: stiffening rod, and FC: fiber cantilever.

Fig. 2.
Fig. 2.

Asymmetry fiber cantilever with rigid frame BDEC (a), PZT introduced driving force at point ‘C’ decomposed into orthogonal forces (b) and corresponding cantilevers with different resonant frequencies determined by free fiber length AC (c) and AB (d).

Fig. 3.
Fig. 3.

Lissajous patterns under different frequency ratios while initial phase difference and frame rate keep constant.

Fig. 4.
Fig. 4.

Scanning pattern recorded at 10 frames per second (a), 4 frames per second (b), and 2 frames per second (c) and corresponding zoomed-in views of the area indicated by square black box shown in (d), (e) and (f).

Fig. 5.
Fig. 5.

Displacement of the fiber tip versus applied frequency around resonant frequency.

Fig. 6.
Fig. 6.

The position curve of PSD measured before (a) and after (b) the calibration process.

Fig. 7.
Fig. 7.

Schematic of OCT system and the designed probe based on the proposed asymmetry fiber cantilever. FD-ODL: Fourier domain-optical delay line, PSD: position sensitive detector, FC: fiber cantilever, DC: dichroic coating.

Fig. 8.
Fig. 8.

Designed drawings (a) of the prototype probe developed and its photo (b).

Fig. 9.
Fig. 9.

En face images of character ‘H’ from a coin and corresponding imaging location (a) the coin sample; (b) the image of the whole character ‘H’; (c), (d) the images of different parts of the character ‘H’.

Fig. 10.
Fig. 10.

En face images of an infrared sensor card at lower layer (LL) (a) and deeper layer (DL) (b) with depth interval of 285 micrometer, and the reconstructed cross-sectional image showing the corresponding depth positions (c).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Dbiomorph=3*d31*U*L24*h2 ,
Dpiezotube=22*d31*L2*Uπ*ID*d,
f=12π(1.875)2l2rEIρπ=0.56l2r EIρπ ,
β=(β2β1)xcxc1xc2xc1+β1,

Metrics