Abstract

The combination of adaptive optics (AO) technology with optical coherence tomography (OCT) instrumentation for imaging the retina has proven to be a valuable tool for clinicians and researchers in understanding the healthy and diseased eye. The micrometer-isotropic resolution achieved by such a system allows imaging of the retina at a cellular level, however imaging of some cell types remains elusive. Improvement in contrast rather than resolution is needed and can be achieved through better AO correction of wavefront aberration. A common tool for assessing and ultimately improving AO system performance is the development of an error budget. Specifically, this is a list of the magnitude of the constituent residual errors of an optical system so that resources can be directed towards efficient performance improvement. Here we present an error budget developed for the UC Davis AO-OCT instrument indicating that bandwidth and controller errors are the limiting errors of our AO system, which should be corrected first to improve performance. We also discuss the scaling of error sources for different subjects and the need to improve the robustness of the system by addressing subject variability.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Optics Express 13(21), 8532–8546 (2005).
    [CrossRef] [PubMed]
  2. R. Zawadzki, S. Choi, A. Fuller, J. Evans, B. Hamann, J. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography,” Opt. Express 17(5), 4084–4094 (2009).
    [CrossRef] [PubMed]
  3. B. Macintosh, J. Graham, D. Palmer, R. Doyon, J. Dunn, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, A. Sivaramakrishnan, et al., “The Gemini planet imager: from science to design to construction,” in Proc. SPIE, vol. 7015, pp. 7015–43 (2008).
  4. M. van Dam, D. Le Mignant, B. Macintosh, “Performance of the Keck Observatory Adaptive-Optics System,” Appl. Opt. 43(29), 5458–5467 (2004).
    [CrossRef] [PubMed]
  5. J. W. Evans, B. A. Macintosh, L. Poyneer, K. Morzinski, S. Severson, D. Dillon, D. Gavel, L. Reza, “Demonstrating sub-nm closed loop MEMS flattening,” Opt. Express 14, 5558–5570 (2006).
    [CrossRef] [PubMed]
  6. N. Devaney, E. Dalimier, T. Farrell, D. Coburn, R. Mackey, D. Mackey, F. Laurent, E. Daly, C. Dainty, “Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors,” Appl. Opt. 47(35), 6550–6562 (2008).
    [CrossRef] [PubMed]
  7. E. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14(20), 8900–8917 (2006).
    [CrossRef] [PubMed]
  8. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11(20), 2597–2605 (2003).
    [CrossRef] [PubMed]
  9. H. Hofer, P. Artal, B. Singer, J. Aragón, D. Williams, “Dynamics of the eyes wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
    [CrossRef]
  10. R. Zawadzki, S. Choi, S. Jones, S. Oliver, J. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007).
    [CrossRef]
  11. D. A. Horsley, H. Park, J. S. Laut, P. Sophie, Werner, “Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry,” Sens. Act. A: Physical 134, 221–230 (2007).
    [CrossRef]
  12. T. Bifano, P. Bierden, J. Perreault“Micromachined Deformable Mirrors for Dynamic Wavefront Control,” in Advanced Wavefront Control: Methods, Devices and Applications II, J. D. Gonglewski, M. T. Gruineisen, M. K. Giles, eds., Proc. SPIE5553, pp. 1–16 (2004).
  13. J. Evans, R. Zawadzki, S. Jones, S. Okpodu, S. Olivier, J. Werner, “Performance of a MEMS-based AO-OCT system,” in Proceedings of SPIE, vol. 6888, p. 68880G (SPIE, 2008).
  14. D. Chen, S. Jones, D. Silva, S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007).
    [CrossRef]
  15. L. Poyneer, D. Gavel, J. Brase, “Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform,” J. Opt. Soc. Am. A 19(10), 2100–2111 (2002).
    [CrossRef]
  16. L. Poyneer, J. Véran, “Optimal modal Fourier-transform wavefront control,” J. Opt. Soc. Am. A 22(8), 1515–1526 (2005).
    [CrossRef]
  17. L. A. Poyneer, B. Macintosh, “Experimental demonstration of phase correction with a 32×32 microelectricalmechanical systems mirror and a spatially filtered wavefront sensor,” J. Opt. Soc. Am. A 21, 810–819 (2004).
    [CrossRef]
  18. L. Poyneer, D. Dillon, S. Thomas, B. Macintosh, “Laboratory demonstration of accurate and efficient nanometer-level wavefront control for extreme adaptive optics,” Appl. Opt. 47(9), 1317–1326 (2008).
    [CrossRef] [PubMed]
  19. J. W. Evans, R. J. Zawadzki, S. Jones, S. Olivier, J. S. Werner, “Performance of a MEMS-based AO-OCT system using Fourier reconstruction,” in MEMS Adaptive Optics III.
  20. L. Roberts Jr, M. Perrin, F. Marchis, A. Sivaramakrishnan, R. Makidon, J. Christou, B. Macintosh, L. Poyneer, M. van Dam, M. Troy, “Is that really your Strehl ratio?” in Proceedings of SPIE, vol. 5490, p. 504 (2004).
  21. J. Porter, A. Guirao, I. Cox, D. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A18(8), 1793–1803 (2001).
    [CrossRef]
  22. J. Francisco Castejón-Mochón, N. Lopez-Gil, A. Benito, P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Research 42(13), 1611–1617 (2002).
    [CrossRef]
  23. M. Nicolle, T. Fusco, G. Rousset, V. Michau, “Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics,” Opt. Lett. 29(23), 2743–2745 (2004).
    [CrossRef] [PubMed]
  24. P. Prieto, F. Vargas-Martín, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17(8), 1388–1398 (2000).
    [CrossRef]
  25. K. Baker, M. Moallem, “Iteratively weighted centroiding for Shack-Hartmann wave-front sensors,” Opt. Express 15(8), 5147–5159 (2007).
    [CrossRef] [PubMed]
  26. L. A. Poyneer, B. Bauman, B. A. Macintosh, D. Dillon, S. Severson, “Spatially filtered wave-front sensor for high-order adaptive optics,” Opt. Lett. 31, 293–295 (2006).
    [CrossRef] [PubMed]
  27. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024,008 (2008).
    [CrossRef]
  28. P. Bedggood, R. Ashman, G. Smith, A. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14(18), 8019–8030 (2006).
    [CrossRef] [PubMed]
  29. A. Dubinin, “Human retina imaging: widening of high resolution area,” J. Modern Opt. 55(4), 671–681 (2008).
    [CrossRef]
  30. E. Logean, E. Dalimier, C. Dainty, “Measured double-pass intensity point-spread function after adaptive optics correction of ocular aberrations,” Opt. Express 16(22), 348–357 (2008).
    [CrossRef]

2009 (1)

2008 (5)

L. Poyneer, D. Dillon, S. Thomas, B. Macintosh, “Laboratory demonstration of accurate and efficient nanometer-level wavefront control for extreme adaptive optics,” Appl. Opt. 47(9), 1317–1326 (2008).
[CrossRef] [PubMed]

N. Devaney, E. Dalimier, T. Farrell, D. Coburn, R. Mackey, D. Mackey, F. Laurent, E. Daly, C. Dainty, “Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors,” Appl. Opt. 47(35), 6550–6562 (2008).
[CrossRef] [PubMed]

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024,008 (2008).
[CrossRef]

A. Dubinin, “Human retina imaging: widening of high resolution area,” J. Modern Opt. 55(4), 671–681 (2008).
[CrossRef]

E. Logean, E. Dalimier, C. Dainty, “Measured double-pass intensity point-spread function after adaptive optics correction of ocular aberrations,” Opt. Express 16(22), 348–357 (2008).
[CrossRef]

2007 (4)

2006 (4)

2005 (2)

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Optics Express 13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

L. Poyneer, J. Véran, “Optimal modal Fourier-transform wavefront control,” J. Opt. Soc. Am. A 22(8), 1515–1526 (2005).
[CrossRef]

2004 (4)

2003 (1)

2002 (2)

L. Poyneer, D. Gavel, J. Brase, “Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform,” J. Opt. Soc. Am. A 19(10), 2100–2111 (2002).
[CrossRef]

J. Francisco Castejón-Mochón, N. Lopez-Gil, A. Benito, P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Research 42(13), 1611–1617 (2002).
[CrossRef]

2001 (2)

J. Porter, A. Guirao, I. Cox, D. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A18(8), 1793–1803 (2001).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. Aragón, D. Williams, “Dynamics of the eyes wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
[CrossRef]

2000 (1)

Aragón, J.

Artal, P.

Ashman, R.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024,008 (2008).
[CrossRef]

P. Bedggood, R. Ashman, G. Smith, A. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14(18), 8019–8030 (2006).
[CrossRef] [PubMed]

Baker, K.

Bauman, B.

Bedggood, P.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024,008 (2008).
[CrossRef]

P. Bedggood, R. Ashman, G. Smith, A. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14(18), 8019–8030 (2006).
[CrossRef] [PubMed]

Benito, A.

J. Francisco Castejón-Mochón, N. Lopez-Gil, A. Benito, P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Research 42(13), 1611–1617 (2002).
[CrossRef]

Bierden, P.

T. Bifano, P. Bierden, J. Perreault“Micromachined Deformable Mirrors for Dynamic Wavefront Control,” in Advanced Wavefront Control: Methods, Devices and Applications II, J. D. Gonglewski, M. T. Gruineisen, M. K. Giles, eds., Proc. SPIE5553, pp. 1–16 (2004).

Bifano, T.

T. Bifano, P. Bierden, J. Perreault“Micromachined Deformable Mirrors for Dynamic Wavefront Control,” in Advanced Wavefront Control: Methods, Devices and Applications II, J. D. Gonglewski, M. T. Gruineisen, M. K. Giles, eds., Proc. SPIE5553, pp. 1–16 (2004).

Bower, B.

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Optics Express 13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

Brase, J.

Chen, D.

Choi, S.

Christou, J.

L. Roberts Jr, M. Perrin, F. Marchis, A. Sivaramakrishnan, R. Makidon, J. Christou, B. Macintosh, L. Poyneer, M. van Dam, M. Troy, “Is that really your Strehl ratio?” in Proceedings of SPIE, vol. 5490, p. 504 (2004).

Coburn, D.

Cox, I.

J. Porter, A. Guirao, I. Cox, D. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A18(8), 1793–1803 (2001).
[CrossRef]

Daaboul, M.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024,008 (2008).
[CrossRef]

Dainty, C.

Dalimier, E.

Daly, E.

Devaney, N.

Diaz-Santana, L.

Dillon, D.

Doyon, R.

B. Macintosh, J. Graham, D. Palmer, R. Doyon, J. Dunn, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, A. Sivaramakrishnan, et al., “The Gemini planet imager: from science to design to construction,” in Proc. SPIE, vol. 7015, pp. 7015–43 (2008).

Drexler, W.

Dubinin, A.

A. Dubinin, “Human retina imaging: widening of high resolution area,” J. Modern Opt. 55(4), 671–681 (2008).
[CrossRef]

Dunn, J.

B. Macintosh, J. Graham, D. Palmer, R. Doyon, J. Dunn, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, A. Sivaramakrishnan, et al., “The Gemini planet imager: from science to design to construction,” in Proc. SPIE, vol. 7015, pp. 7015–43 (2008).

Evans, J.

R. Zawadzki, S. Choi, A. Fuller, J. Evans, B. Hamann, J. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography,” Opt. Express 17(5), 4084–4094 (2009).
[CrossRef] [PubMed]

J. Evans, R. Zawadzki, S. Jones, S. Okpodu, S. Olivier, J. Werner, “Performance of a MEMS-based AO-OCT system,” in Proceedings of SPIE, vol. 6888, p. 68880G (SPIE, 2008).

Evans, J. W.

J. W. Evans, B. A. Macintosh, L. Poyneer, K. Morzinski, S. Severson, D. Dillon, D. Gavel, L. Reza, “Demonstrating sub-nm closed loop MEMS flattening,” Opt. Express 14, 5558–5570 (2006).
[CrossRef] [PubMed]

J. W. Evans, R. J. Zawadzki, S. Jones, S. Olivier, J. S. Werner, “Performance of a MEMS-based AO-OCT system using Fourier reconstruction,” in MEMS Adaptive Optics III.

Farrell, T.

Fernandez, E.

Francisco Castejón-Mochón, J.

J. Francisco Castejón-Mochón, N. Lopez-Gil, A. Benito, P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Research 42(13), 1611–1617 (2002).
[CrossRef]

Fuller, A.

Fusco, T.

Gasson, P.

Gavel, D.

Giles, M. K.

T. Bifano, P. Bierden, J. Perreault“Micromachined Deformable Mirrors for Dynamic Wavefront Control,” in Advanced Wavefront Control: Methods, Devices and Applications II, J. D. Gonglewski, M. T. Gruineisen, M. K. Giles, eds., Proc. SPIE5553, pp. 1–16 (2004).

Goelz, S.

Gonglewski, J. D.

T. Bifano, P. Bierden, J. Perreault“Micromachined Deformable Mirrors for Dynamic Wavefront Control,” in Advanced Wavefront Control: Methods, Devices and Applications II, J. D. Gonglewski, M. T. Gruineisen, M. K. Giles, eds., Proc. SPIE5553, pp. 1–16 (2004).

Graham, J.

B. Macintosh, J. Graham, D. Palmer, R. Doyon, J. Dunn, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, A. Sivaramakrishnan, et al., “The Gemini planet imager: from science to design to construction,” in Proc. SPIE, vol. 7015, pp. 7015–43 (2008).

Gruineisen, M. T.

T. Bifano, P. Bierden, J. Perreault“Micromachined Deformable Mirrors for Dynamic Wavefront Control,” in Advanced Wavefront Control: Methods, Devices and Applications II, J. D. Gonglewski, M. T. Gruineisen, M. K. Giles, eds., Proc. SPIE5553, pp. 1–16 (2004).

Guirao, A.

J. Porter, A. Guirao, I. Cox, D. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A18(8), 1793–1803 (2001).
[CrossRef]

Hamann, B.

Hermann, B.

Hofer, H.

Horsley, D. A.

D. A. Horsley, H. Park, J. S. Laut, P. Sophie, Werner, “Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry,” Sens. Act. A: Physical 134, 221–230 (2007).
[CrossRef]

Izatt, J.

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Optics Express 13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

Jones, S.

D. Chen, S. Jones, D. Silva, S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007).
[CrossRef]

R. Zawadzki, S. Choi, S. Jones, S. Oliver, J. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007).
[CrossRef]

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Optics Express 13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

J. W. Evans, R. J. Zawadzki, S. Jones, S. Olivier, J. S. Werner, “Performance of a MEMS-based AO-OCT system using Fourier reconstruction,” in MEMS Adaptive Optics III.

J. Evans, R. Zawadzki, S. Jones, S. Okpodu, S. Olivier, J. Werner, “Performance of a MEMS-based AO-OCT system,” in Proceedings of SPIE, vol. 6888, p. 68880G (SPIE, 2008).

Larkin, J.

B. Macintosh, J. Graham, D. Palmer, R. Doyon, J. Dunn, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, A. Sivaramakrishnan, et al., “The Gemini planet imager: from science to design to construction,” in Proc. SPIE, vol. 7015, pp. 7015–43 (2008).

Laurent, F.

Laut, J. S.

D. A. Horsley, H. Park, J. S. Laut, P. Sophie, Werner, “Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry,” Sens. Act. A: Physical 134, 221–230 (2007).
[CrossRef]

Laut, S.

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Optics Express 13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

Le Mignant, D.

Logean, E.

E. Logean, E. Dalimier, C. Dainty, “Measured double-pass intensity point-spread function after adaptive optics correction of ocular aberrations,” Opt. Express 16(22), 348–357 (2008).
[CrossRef]

Lopez-Gil, N.

J. Francisco Castejón-Mochón, N. Lopez-Gil, A. Benito, P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Research 42(13), 1611–1617 (2002).
[CrossRef]

Macintosh, B.

L. Poyneer, D. Dillon, S. Thomas, B. Macintosh, “Laboratory demonstration of accurate and efficient nanometer-level wavefront control for extreme adaptive optics,” Appl. Opt. 47(9), 1317–1326 (2008).
[CrossRef] [PubMed]

M. van Dam, D. Le Mignant, B. Macintosh, “Performance of the Keck Observatory Adaptive-Optics System,” Appl. Opt. 43(29), 5458–5467 (2004).
[CrossRef] [PubMed]

L. A. Poyneer, B. Macintosh, “Experimental demonstration of phase correction with a 32×32 microelectricalmechanical systems mirror and a spatially filtered wavefront sensor,” J. Opt. Soc. Am. A 21, 810–819 (2004).
[CrossRef]

L. Roberts Jr, M. Perrin, F. Marchis, A. Sivaramakrishnan, R. Makidon, J. Christou, B. Macintosh, L. Poyneer, M. van Dam, M. Troy, “Is that really your Strehl ratio?” in Proceedings of SPIE, vol. 5490, p. 504 (2004).

B. Macintosh, J. Graham, D. Palmer, R. Doyon, J. Dunn, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, A. Sivaramakrishnan, et al., “The Gemini planet imager: from science to design to construction,” in Proc. SPIE, vol. 7015, pp. 7015–43 (2008).

Macintosh, B. A.

Mackey, D.

Mackey, R.

Makidon, R.

L. Roberts Jr, M. Perrin, F. Marchis, A. Sivaramakrishnan, R. Makidon, J. Christou, B. Macintosh, L. Poyneer, M. van Dam, M. Troy, “Is that really your Strehl ratio?” in Proceedings of SPIE, vol. 5490, p. 504 (2004).

Marchis, F.

L. Roberts Jr, M. Perrin, F. Marchis, A. Sivaramakrishnan, R. Makidon, J. Christou, B. Macintosh, L. Poyneer, M. van Dam, M. Troy, “Is that really your Strehl ratio?” in Proceedings of SPIE, vol. 5490, p. 504 (2004).

Metha, A.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024,008 (2008).
[CrossRef]

P. Bedggood, R. Ashman, G. Smith, A. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14(18), 8019–8030 (2006).
[CrossRef] [PubMed]

Michau, V.

Moallem, M.

Morzinski, K.

Munro, I.

Nicolle, M.

Okpodu, S.

J. Evans, R. Zawadzki, S. Jones, S. Okpodu, S. Olivier, J. Werner, “Performance of a MEMS-based AO-OCT system,” in Proceedings of SPIE, vol. 6888, p. 68880G (SPIE, 2008).

Oliver, S.

Olivier, S.

D. Chen, S. Jones, D. Silva, S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007).
[CrossRef]

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Optics Express 13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

J. W. Evans, R. J. Zawadzki, S. Jones, S. Olivier, J. S. Werner, “Performance of a MEMS-based AO-OCT system using Fourier reconstruction,” in MEMS Adaptive Optics III.

J. Evans, R. Zawadzki, S. Jones, S. Okpodu, S. Olivier, J. Werner, “Performance of a MEMS-based AO-OCT system,” in Proceedings of SPIE, vol. 6888, p. 68880G (SPIE, 2008).

Oppenheimer, B.

B. Macintosh, J. Graham, D. Palmer, R. Doyon, J. Dunn, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, A. Sivaramakrishnan, et al., “The Gemini planet imager: from science to design to construction,” in Proc. SPIE, vol. 7015, pp. 7015–43 (2008).

Palmer, D.

B. Macintosh, J. Graham, D. Palmer, R. Doyon, J. Dunn, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, A. Sivaramakrishnan, et al., “The Gemini planet imager: from science to design to construction,” in Proc. SPIE, vol. 7015, pp. 7015–43 (2008).

Park, H.

D. A. Horsley, H. Park, J. S. Laut, P. Sophie, Werner, “Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry,” Sens. Act. A: Physical 134, 221–230 (2007).
[CrossRef]

Perreault, J.

T. Bifano, P. Bierden, J. Perreault“Micromachined Deformable Mirrors for Dynamic Wavefront Control,” in Advanced Wavefront Control: Methods, Devices and Applications II, J. D. Gonglewski, M. T. Gruineisen, M. K. Giles, eds., Proc. SPIE5553, pp. 1–16 (2004).

Perrin, M.

L. Roberts Jr, M. Perrin, F. Marchis, A. Sivaramakrishnan, R. Makidon, J. Christou, B. Macintosh, L. Poyneer, M. van Dam, M. Troy, “Is that really your Strehl ratio?” in Proceedings of SPIE, vol. 5490, p. 504 (2004).

Porter, J.

J. Porter, A. Guirao, I. Cox, D. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A18(8), 1793–1803 (2001).
[CrossRef]

Povazay, B.

Poyneer, L.

Poyneer, L. A.

Prieto, P.

Reza, L.

Roberts Jr, L.

L. Roberts Jr, M. Perrin, F. Marchis, A. Sivaramakrishnan, R. Makidon, J. Christou, B. Macintosh, L. Poyneer, M. van Dam, M. Troy, “Is that really your Strehl ratio?” in Proceedings of SPIE, vol. 5490, p. 504 (2004).

Rousset, G.

Saddlemyer, L.

B. Macintosh, J. Graham, D. Palmer, R. Doyon, J. Dunn, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, A. Sivaramakrishnan, et al., “The Gemini planet imager: from science to design to construction,” in Proc. SPIE, vol. 7015, pp. 7015–43 (2008).

Severson, S.

Silva, D.

Singer, B.

Sivaramakrishnan, A.

L. Roberts Jr, M. Perrin, F. Marchis, A. Sivaramakrishnan, R. Makidon, J. Christou, B. Macintosh, L. Poyneer, M. van Dam, M. Troy, “Is that really your Strehl ratio?” in Proceedings of SPIE, vol. 5490, p. 504 (2004).

B. Macintosh, J. Graham, D. Palmer, R. Doyon, J. Dunn, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, A. Sivaramakrishnan, et al., “The Gemini planet imager: from science to design to construction,” in Proc. SPIE, vol. 7015, pp. 7015–43 (2008).

Smith, G.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024,008 (2008).
[CrossRef]

P. Bedggood, R. Ashman, G. Smith, A. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14(18), 8019–8030 (2006).
[CrossRef] [PubMed]

Sophie, P.

D. A. Horsley, H. Park, J. S. Laut, P. Sophie, Werner, “Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry,” Sens. Act. A: Physical 134, 221–230 (2007).
[CrossRef]

Thomas, S.

Torti, C.

Troy, M.

L. Roberts Jr, M. Perrin, F. Marchis, A. Sivaramakrishnan, R. Makidon, J. Christou, B. Macintosh, L. Poyneer, M. van Dam, M. Troy, “Is that really your Strehl ratio?” in Proceedings of SPIE, vol. 5490, p. 504 (2004).

Unterhuber, A.

Vabre, L.

van Dam, M.

M. van Dam, D. Le Mignant, B. Macintosh, “Performance of the Keck Observatory Adaptive-Optics System,” Appl. Opt. 43(29), 5458–5467 (2004).
[CrossRef] [PubMed]

L. Roberts Jr, M. Perrin, F. Marchis, A. Sivaramakrishnan, R. Makidon, J. Christou, B. Macintosh, L. Poyneer, M. van Dam, M. Troy, “Is that really your Strehl ratio?” in Proceedings of SPIE, vol. 5490, p. 504 (2004).

Vargas-Martín, F.

Véran, J.

Werner,

D. A. Horsley, H. Park, J. S. Laut, P. Sophie, Werner, “Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry,” Sens. Act. A: Physical 134, 221–230 (2007).
[CrossRef]

Werner, J.

R. Zawadzki, S. Choi, A. Fuller, J. Evans, B. Hamann, J. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography,” Opt. Express 17(5), 4084–4094 (2009).
[CrossRef] [PubMed]

R. Zawadzki, S. Choi, S. Jones, S. Oliver, J. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007).
[CrossRef]

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Optics Express 13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

J. Evans, R. Zawadzki, S. Jones, S. Okpodu, S. Olivier, J. Werner, “Performance of a MEMS-based AO-OCT system,” in Proceedings of SPIE, vol. 6888, p. 68880G (SPIE, 2008).

Werner, J. S.

J. W. Evans, R. J. Zawadzki, S. Jones, S. Olivier, J. S. Werner, “Performance of a MEMS-based AO-OCT system using Fourier reconstruction,” in MEMS Adaptive Optics III.

Williams, D.

H. Hofer, P. Artal, B. Singer, J. Aragón, D. Williams, “Dynamics of the eyes wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
[CrossRef]

J. Porter, A. Guirao, I. Cox, D. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A18(8), 1793–1803 (2001).
[CrossRef]

Zawadzki, R.

R. Zawadzki, S. Choi, A. Fuller, J. Evans, B. Hamann, J. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography,” Opt. Express 17(5), 4084–4094 (2009).
[CrossRef] [PubMed]

R. Zawadzki, S. Choi, S. Jones, S. Oliver, J. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007).
[CrossRef]

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Optics Express 13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

J. Evans, R. Zawadzki, S. Jones, S. Okpodu, S. Olivier, J. Werner, “Performance of a MEMS-based AO-OCT system,” in Proceedings of SPIE, vol. 6888, p. 68880G (SPIE, 2008).

Zawadzki, R. J.

J. W. Evans, R. J. Zawadzki, S. Jones, S. Olivier, J. S. Werner, “Performance of a MEMS-based AO-OCT system using Fourier reconstruction,” in MEMS Adaptive Optics III.

Zhao, M.

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Optics Express 13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

Appl. Opt. (3)

in Proceedings of SPIE (1)

L. Roberts Jr, M. Perrin, F. Marchis, A. Sivaramakrishnan, R. Makidon, J. Christou, B. Macintosh, L. Poyneer, M. van Dam, M. Troy, “Is that really your Strehl ratio?” in Proceedings of SPIE, vol. 5490, p. 504 (2004).

J. Biomed. Opt. (1)

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024,008 (2008).
[CrossRef]

J. Modern Opt. (1)

A. Dubinin, “Human retina imaging: widening of high resolution area,” J. Modern Opt. 55(4), 671–681 (2008).
[CrossRef]

J. Opt. Soc. Am. A (8)

J. Porter, A. Guirao, I. Cox, D. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A18(8), 1793–1803 (2001).
[CrossRef]

L. A. Poyneer, B. Macintosh, “Experimental demonstration of phase correction with a 32×32 microelectricalmechanical systems mirror and a spatially filtered wavefront sensor,” J. Opt. Soc. Am. A 21, 810–819 (2004).
[CrossRef]

P. Prieto, F. Vargas-Martín, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17(8), 1388–1398 (2000).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. Aragón, D. Williams, “Dynamics of the eyes wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
[CrossRef]

L. Poyneer, D. Gavel, J. Brase, “Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform,” J. Opt. Soc. Am. A 19(10), 2100–2111 (2002).
[CrossRef]

D. Chen, S. Jones, D. Silva, S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007).
[CrossRef]

R. Zawadzki, S. Choi, S. Jones, S. Oliver, J. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007).
[CrossRef]

L. Poyneer, J. Véran, “Optimal modal Fourier-transform wavefront control,” J. Opt. Soc. Am. A 22(8), 1515–1526 (2005).
[CrossRef]

Opt. Express (7)

Opt. Lett. (2)

Optics Express (1)

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Optics Express 13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

Sens. Act. A: Physical (1)

D. A. Horsley, H. Park, J. S. Laut, P. Sophie, Werner, “Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry,” Sens. Act. A: Physical 134, 221–230 (2007).
[CrossRef]

Vision Research (1)

J. Francisco Castejón-Mochón, N. Lopez-Gil, A. Benito, P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Research 42(13), 1611–1617 (2002).
[CrossRef]

Other (4)

T. Bifano, P. Bierden, J. Perreault“Micromachined Deformable Mirrors for Dynamic Wavefront Control,” in Advanced Wavefront Control: Methods, Devices and Applications II, J. D. Gonglewski, M. T. Gruineisen, M. K. Giles, eds., Proc. SPIE5553, pp. 1–16 (2004).

J. Evans, R. Zawadzki, S. Jones, S. Okpodu, S. Olivier, J. Werner, “Performance of a MEMS-based AO-OCT system,” in Proceedings of SPIE, vol. 6888, p. 68880G (SPIE, 2008).

J. W. Evans, R. J. Zawadzki, S. Jones, S. Olivier, J. S. Werner, “Performance of a MEMS-based AO-OCT system using Fourier reconstruction,” in MEMS Adaptive Optics III.

B. Macintosh, J. Graham, D. Palmer, R. Doyon, J. Dunn, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, A. Sivaramakrishnan, et al., “The Gemini planet imager: from science to design to construction,” in Proc. SPIE, vol. 7015, pp. 7015–43 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Layout of the AO-OCT sample arm. The system has three modes of operation imaging mode (labeled AO Sample arm), WFS reference set up used for measuring reference centroids and System Control set up which is a single pass mode used for measuring the control matrix for each DM. The system uses a 20×20 Shack-Hartmann wavefront sensor, a AOptix bimorph deformable mirror for low-order correction and a MEMS deformable mirror for high-order correction. Horizontal and vertical scanners are used to scan the retina. S1–S10 denote spherical mirrors used to re-image the pupil plane. A sample arm like this could also be used for other imaging modalities, such as AO-SLO.

Fig. 2.
Fig. 2.

Residual WFE in nm RMS for three subjects. Two of the subjects show typical good correction and the third is representative of a small group of subjects with poor correction. Good correction typically leads to WFEs of about 100 nm rms.

Fig. 3.
Fig. 3.

Power spectra for a converged closed-loop wavefront of a human subject compared to the model eye. Correctable in-band errors are dominated by low-order error.

Fig. 4.
Fig. 4.

Power spectra of a human subject wavefront, before correction after AOptix bimorph correction, and after MEMS correction. The curve labeled MEMS closed is the same as in Fig. 3. Low-order residual errors are reduced in each case but remain a large source of error.

Fig. 5.
Fig. 5.

Plot of intensity at every pixel for the WFS for backscattered light in the system. These images are captured when no subject is in the system, and in an ideal system would be only CCD noise. Contamination of the gold surface caused by outgassing of the glue used to attach the MEMS window introduced significant backscatter on the original MEMS device, but a newer test device provided by BMC without the contamination has reduced backscatter. The backscatter of the test device is nearly identical to backscatter from a flat mirror (not shown).

Fig. 6.
Fig. 6.

Current measurement error is compared to measurement error if the system changed CCD gain settings to 1 or a Gaussian-weighted centroider. Measurement error is plotted as a function of total photons per sub-aperture, which varies across the aperture and between subjects. The red vertical dashed line indicates the average total photons per sub-aperture for subject 13, while the blue is for subject 17. Clearly one reason for poor performance of the AO system with some subjects is a decrease in total photons reflected from the eye resulting in increased measurement error.

Fig. 7.
Fig. 7.

The average total photons per sub-aperture for two subjects. On the left, Subject 13, when the AO System performed well, and on the right Subject 17 for whom the AO system did not perform well. There is variation in the total photons between subjects and even across the aperture for individuals that must be considered when assessing measurement error. The colorbar range is from 0 to 2×107.

Fig. 8.
Fig. 8.

Left: Average corrected wavefront for subject 13, colorbar is in nm. Right: Standard deviation of each pixel of the reconstructed wavefront across all converged wavefronts for subject 13, color bar is in nm rms. The average value over all subjects is 26±12 nm rms.

Fig. 9.
Fig. 9.

A wavefront with a specific Fourier mode (left) was reconstructed using the Fourier reconstruction (middle) and the VMM reconstruction (right).

Fig. 10.
Fig. 10.

A series of Fourier modes was used to test the VMM and FTR. The rms error from 0 to 2 cycles per aperture is calculated for each mode for the original signal and the two reconstructions. The VMM consistently has more low-order error than the input signal, likely caused by aliasing in the down-sampling from the 20×20 WFS measurement to the 12×12 MEMS array. If the wavefront is filtered to remove high-order errors prior to reconstruction the VMM reconstructor does not introduce additional low-order error.

Fig. 11.
Fig. 11.

Low-order (LO) measured in the reconstructedVMMsignal is plotted as a function of higher-order (HO) error measured in the input signal.

Tables (1)

Tables Icon

Table 1. Residual wavefront errors are summarized in an error budget. The largest error remains the uncorrected low-order error that we attribute at least in part to aliasing within the control matrix. Out of band and Bandwidth errors are also significant, but bandwidth should be easier to correct and is the highest priority for the AO-OCT system.

Metrics