Abstract

Surface plasmon polariton reflector (SPPR) based on metal-insulator-metal (MIM) Bragg grating waveguide is numerically studied. A quasi-chirped technique is applied to the engraved grooves in the surface of the MIM waveguide, and a new kind of broad-bandgap SPPR is achieved. Meanwhile, by optimizing the profile of gap width between the metal and dielectric, the spectral sidelobe of SPPR is effectively suppressed and thus the performance of the SPPR is further improved.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L.  Barnes, A.  Dereux, and T. W.  Ebbesen, "surface plasmon subwavelength optics," Nature.  424,824-830 (2003).
    [CrossRef] [PubMed]
  2. H.  Rather, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  3. K.  Li, M. I.  Stockman, and D. J.  Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett.  91, 227402 (2003).
    [CrossRef] [PubMed]
  4. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface Plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833 (2004).
    [CrossRef]
  5. K. Donghyun, "Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors," Appl. Opt. 44, 3218-3223 (2005).
    [CrossRef]
  6. A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, "Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons," Opt. Express. 13, 4237-4243 (2005).
    [CrossRef] [PubMed]
  7. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, "Compact Bragg gratings for long-range surface plasmon polaritons," J. Lightwave Technol. 24, 912-918 (2006).
    [CrossRef]
  8. S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experiemental demonstration of fiber-accessible metal nanoparticle plasmon waveguide for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
    [CrossRef]
  9. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons," J. Lightw. Technol. 23, 413- 422 (2005).
    [CrossRef]
  10. Kazuo Tanaka, Masahiro Tanaka, and Tatsuhiko Sugiyama, "Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides," Opt. Express. 13, 256-266 (2005)
    [CrossRef] [PubMed]
  11. P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express. 14, 13030-13042 (2006).
    [CrossRef] [PubMed]
  12. S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, "Novel efficient design of Y-splitter for surface plasmon polariton applications," Opt. Express. 16, 14369-14379 (2008)
    [CrossRef] [PubMed]
  13. M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, "Extremely short-length surface plasmon resonance devices," Opt. Express. 16, 20227-20240 (2008)
    [CrossRef] [PubMed]
  14. Z. Zheng, Y. Wan, X. Zhao, and J. Zhu, "Spectral interferometric measurement of wavelength-dependent phase response for surface plasmon resonance sensors," Appl. Opt. 48, 2491-2495 (2009).
    [CrossRef] [PubMed]
  15. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.Y. Laluet, and T.W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature. 440, 508-511 (2006).
    [CrossRef] [PubMed]
  16. Z. Han, L. Liu, and E. Forsberg, "Ultra-compact directional couplers and Mach-Zehnder interferometers based on surface plasmon polariton," Opt. Commun. 259, 690-695 (2006).
    [CrossRef]
  17. J. C. Weeber, A. Bouhelier, F. G. Des, L. Markey and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano Lett. 7, 1352-1359 (2007).
    [CrossRef] [PubMed]
  18. P. Berin, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B.  61, 10484-10503 (2000).
    [CrossRef]
  19. R. Charbonneau, P. Berini, E. Berolo, and E. L. Shrzek, "Experimental observation of plasmon polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000).
    [CrossRef]
  20. S. Jetté-Charbonneau, "A study of Bragg gratings based on plasmon-polariton waveguides," M.A.Sc. thesis, University of Ottawa, Ottawa, Canada, 2003.
  21. S. Jetté-Charbonneau, R. Charbonnneau, N. Lahoud, G. A. Mattiussu, and P. Berini. "Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment." IEEE J. Quantum Electron. 41, 1480-1491 (2005)
    [CrossRef]
  22. S. Jetté-Charbonneau and P. Berini, "Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides," J. Opt. Soc. Am. A. 23, 1757-1767 (2006).
    [CrossRef]
  23. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, "Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons," J. Lightwave Technol. 24, 477-494 (2006).
    [CrossRef]
  24. P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahound, and G. Mattiussi., "Long-range surface plasmon-polariton waveguides and devices in lithium niobate," J. Appl. Phys. 103, 113114 (2007)
    [CrossRef]
  25. J. Mu and W. Huang, "Low-Loss Insulator-Metal-Insulator SPPs Bragg Reflector," in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper JMB41
  26. P. Berini, R. Charbonnneau, and N. Lahoud, "Long-Range Surface Plasmons Along Membrane-Supported Metal Stripes," IEEE J. Quantum Electron. 14, 1479-1495 (2008)
    [CrossRef]
  27. R , Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A. 21, 2442-2446 (2004).
    [CrossRef]
  28. P. Berini, "Bulk and surface sensitivities of surface plasmon waveguides," New J. Phys. 10, 105010 (2008).
    [CrossRef]
  29. J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express. 16, 413-425 (2008).
    [CrossRef] [PubMed]
  30. G. Veronis, Z. Yu, S. Kocabas, Miller. D, M. Brongersma, and S. Fan, "Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale," Chin. Opt. Lett. 7, 302-308 (2009).
    [CrossRef]
  31. J. A.  Dionne, L. A.  Sweatlock, and H. A.  Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B.  73, 035407- 035415 (2006).
    [CrossRef]
  32. B.  Wang and G. P.  Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett.  87, 013107-013109 (2005).
    [CrossRef]
  33. A.  Hosseini and Y.  Massoud, "A low-loss metal-insulator-metal plasmonic Bragg reflector," Opt. Express.  14, 11318-11323 (2006).
    [CrossRef]
  34. A. Hosseini, H. Nejati, and Y. Massoud, "Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express. 16, 1475-1480 (2008).
    [CrossRef] [PubMed]
  35. Z. H. Han, E. Forsberg, and S. L. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett.  19, 91-93 (2007).
    [CrossRef]
  36. J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Express. 16, 4888-4894 (2008).
    [CrossRef] [PubMed]
  37. L. Frandsen, A. Harpoth, P. Borel, M. Kristensen, J. Jensen, and O. Sigmund, "Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization," Opt. Express 12, 5916-5921 (2004).
    [CrossRef] [PubMed]
  38. K. A. Suneet, M. Usha, and P. O. Sant, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B. 23, 2566-2571 (2006).
    [CrossRef]
  39. T. Erdogan, "Fiber grating spectrum," J. Lightw. Technol. 15, 1277-1293 (1997).
    [CrossRef]
  40. K. Ennser, M. N. Zervas, and R. I. Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," IEEE J. Quantum Electron. 34, 770-778(1998).
    [CrossRef]
  41. S. Jetté-Charbonneau and P. Berini, "Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides," J. Opt. Soc. Am. A. 23, 1757-1767 (2006)
    [CrossRef]
  42. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B. 6, 4370-4379 (1972).
    [CrossRef]
  43. A. Taflove, and S. C. Hagness, "Computational Electrodynamics. The Finite-Difference Time-Domain Method," 2nd ed. 2000 (Artech House, Boston.).
  44. M. Kohmoto, B. Sutherland, and K. Iguchi, "Localization of optics: Quasiperiodic media," Phys. Rev. Lett. 58, 2436-2438 (1987).
    [CrossRef] [PubMed]
  45. P. Yeh, A. Yariv, and C. S. Hong, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am. 67, 423-437 (1977).
    [CrossRef]
  46. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2005).
    [CrossRef]

2009 (2)

2008 (7)

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, "Novel efficient design of Y-splitter for surface plasmon polariton applications," Opt. Express. 16, 14369-14379 (2008)
[CrossRef] [PubMed]

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, "Extremely short-length surface plasmon resonance devices," Opt. Express. 16, 20227-20240 (2008)
[CrossRef] [PubMed]

P. Berini, "Bulk and surface sensitivities of surface plasmon waveguides," New J. Phys. 10, 105010 (2008).
[CrossRef]

J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express. 16, 413-425 (2008).
[CrossRef] [PubMed]

P. Berini, R. Charbonnneau, and N. Lahoud, "Long-Range Surface Plasmons Along Membrane-Supported Metal Stripes," IEEE J. Quantum Electron. 14, 1479-1495 (2008)
[CrossRef]

A. Hosseini, H. Nejati, and Y. Massoud, "Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express. 16, 1475-1480 (2008).
[CrossRef] [PubMed]

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Express. 16, 4888-4894 (2008).
[CrossRef] [PubMed]

2007 (3)

Z. H. Han, E. Forsberg, and S. L. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett.  19, 91-93 (2007).
[CrossRef]

J. C. Weeber, A. Bouhelier, F. G. Des, L. Markey and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahound, and G. Mattiussi., "Long-range surface plasmon-polariton waveguides and devices in lithium niobate," J. Appl. Phys. 103, 113114 (2007)
[CrossRef]

2006 (10)

S. Jetté-Charbonneau and P. Berini, "Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides," J. Opt. Soc. Am. A. 23, 1757-1767 (2006).
[CrossRef]

P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express. 14, 13030-13042 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.Y. Laluet, and T.W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature. 440, 508-511 (2006).
[CrossRef] [PubMed]

Z. Han, L. Liu, and E. Forsberg, "Ultra-compact directional couplers and Mach-Zehnder interferometers based on surface plasmon polariton," Opt. Commun. 259, 690-695 (2006).
[CrossRef]

J. A.  Dionne, L. A.  Sweatlock, and H. A.  Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B.  73, 035407- 035415 (2006).
[CrossRef]

K. A. Suneet, M. Usha, and P. O. Sant, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B. 23, 2566-2571 (2006).
[CrossRef]

A.  Hosseini and Y.  Massoud, "A low-loss metal-insulator-metal plasmonic Bragg reflector," Opt. Express.  14, 11318-11323 (2006).
[CrossRef]

S. Jetté-Charbonneau and P. Berini, "Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides," J. Opt. Soc. Am. A. 23, 1757-1767 (2006)
[CrossRef]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, "Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons," J. Lightwave Technol. 24, 477-494 (2006).
[CrossRef]

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, "Compact Bragg gratings for long-range surface plasmon polaritons," J. Lightwave Technol. 24, 912-918 (2006).
[CrossRef]

2005 (8)

K. Donghyun, "Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors," Appl. Opt. 44, 3218-3223 (2005).
[CrossRef]

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2005).
[CrossRef]

B.  Wang and G. P.  Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett.  87, 013107-013109 (2005).
[CrossRef]

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experiemental demonstration of fiber-accessible metal nanoparticle plasmon waveguide for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons," J. Lightw. Technol. 23, 413- 422 (2005).
[CrossRef]

Kazuo Tanaka, Masahiro Tanaka, and Tatsuhiko Sugiyama, "Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides," Opt. Express. 13, 256-266 (2005)
[CrossRef] [PubMed]

A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, "Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons," Opt. Express. 13, 4237-4243 (2005).
[CrossRef] [PubMed]

S. Jetté-Charbonneau, R. Charbonnneau, N. Lahoud, G. A. Mattiussu, and P. Berini. "Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment." IEEE J. Quantum Electron. 41, 1480-1491 (2005)
[CrossRef]

2004 (3)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface Plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833 (2004).
[CrossRef]

R , Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A. 21, 2442-2446 (2004).
[CrossRef]

L. Frandsen, A. Harpoth, P. Borel, M. Kristensen, J. Jensen, and O. Sigmund, "Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization," Opt. Express 12, 5916-5921 (2004).
[CrossRef] [PubMed]

2003 (2)

W. L.  Barnes, A.  Dereux, and T. W.  Ebbesen, "surface plasmon subwavelength optics," Nature.  424,824-830 (2003).
[CrossRef] [PubMed]

K.  Li, M. I.  Stockman, and D. J.  Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett.  91, 227402 (2003).
[CrossRef] [PubMed]

2000 (2)

P. Berin, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B.  61, 10484-10503 (2000).
[CrossRef]

R. Charbonneau, P. Berini, E. Berolo, and E. L. Shrzek, "Experimental observation of plasmon polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000).
[CrossRef]

1998 (1)

K. Ennser, M. N. Zervas, and R. I. Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," IEEE J. Quantum Electron. 34, 770-778(1998).
[CrossRef]

1997 (1)

T. Erdogan, "Fiber grating spectrum," J. Lightw. Technol. 15, 1277-1293 (1997).
[CrossRef]

1987 (1)

M. Kohmoto, B. Sutherland, and K. Iguchi, "Localization of optics: Quasiperiodic media," Phys. Rev. Lett. 58, 2436-2438 (1987).
[CrossRef] [PubMed]

1977 (1)

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B. 6, 4370-4379 (1972).
[CrossRef]

Atwater, H. A.

J. A.  Dionne, L. A.  Sweatlock, and H. A.  Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B.  73, 035407- 035415 (2006).
[CrossRef]

Barclay, P. E.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experiemental demonstration of fiber-accessible metal nanoparticle plasmon waveguide for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

Barnes, W. L.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2005).
[CrossRef]

W. L.  Barnes, A.  Dereux, and T. W.  Ebbesen, "surface plasmon subwavelength optics," Nature.  424,824-830 (2003).
[CrossRef] [PubMed]

Bergman, D. J.

K.  Li, M. I.  Stockman, and D. J.  Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett.  91, 227402 (2003).
[CrossRef] [PubMed]

Berin, P.

P. Berin, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B.  61, 10484-10503 (2000).
[CrossRef]

Berini, P.

P. Berini, R. Charbonnneau, and N. Lahoud, "Long-Range Surface Plasmons Along Membrane-Supported Metal Stripes," IEEE J. Quantum Electron. 14, 1479-1495 (2008)
[CrossRef]

P. Berini, "Bulk and surface sensitivities of surface plasmon waveguides," New J. Phys. 10, 105010 (2008).
[CrossRef]

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahound, and G. Mattiussi., "Long-range surface plasmon-polariton waveguides and devices in lithium niobate," J. Appl. Phys. 103, 113114 (2007)
[CrossRef]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, "Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons," J. Lightwave Technol. 24, 477-494 (2006).
[CrossRef]

S. Jetté-Charbonneau and P. Berini, "Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides," J. Opt. Soc. Am. A. 23, 1757-1767 (2006)
[CrossRef]

S. Jetté-Charbonneau and P. Berini, "Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides," J. Opt. Soc. Am. A. 23, 1757-1767 (2006).
[CrossRef]

P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express. 14, 13030-13042 (2006).
[CrossRef] [PubMed]

S. Jetté-Charbonneau, R. Charbonnneau, N. Lahoud, G. A. Mattiussu, and P. Berini. "Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment." IEEE J. Quantum Electron. 41, 1480-1491 (2005)
[CrossRef]

R. Charbonneau, P. Berini, E. Berolo, and E. L. Shrzek, "Experimental observation of plasmon polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000).
[CrossRef]

Berolo, E.

Boltasseva, A.

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, "Compact Bragg gratings for long-range surface plasmon polaritons," J. Lightwave Technol. 24, 912-918 (2006).
[CrossRef]

A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, "Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons," Opt. Express. 13, 4237-4243 (2005).
[CrossRef] [PubMed]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons," J. Lightw. Technol. 23, 413- 422 (2005).
[CrossRef]

Borel, P.

Bouhelier, A.

J. C. Weeber, A. Bouhelier, F. G. Des, L. Markey and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

Bozhevolnyi, S.

A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, "Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons," Opt. Express. 13, 4237-4243 (2005).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, "Compact Bragg gratings for long-range surface plasmon polaritons," J. Lightwave Technol. 24, 912-918 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.Y. Laluet, and T.W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature. 440, 508-511 (2006).
[CrossRef] [PubMed]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons," J. Lightw. Technol. 23, 413- 422 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface Plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833 (2004).
[CrossRef]

Breukelaar, I.

Brongersma, M. L.

R , Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A. 21, 2442-2446 (2004).
[CrossRef]

Catrysse, P. B.

R , Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A. 21, 2442-2446 (2004).
[CrossRef]

Charbonneau, R.

Charbonnneau, R.

P. Berini, R. Charbonnneau, and N. Lahoud, "Long-Range Surface Plasmons Along Membrane-Supported Metal Stripes," IEEE J. Quantum Electron. 14, 1479-1495 (2008)
[CrossRef]

S. Jetté-Charbonneau, R. Charbonnneau, N. Lahoud, G. A. Mattiussu, and P. Berini. "Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment." IEEE J. Quantum Electron. 41, 1480-1491 (2005)
[CrossRef]

Chichkov, B.

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, "Novel efficient design of Y-splitter for surface plasmon polariton applications," Opt. Express. 16, 14369-14379 (2008)
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B. 6, 4370-4379 (1972).
[CrossRef]

Dereux, A.

J. C. Weeber, A. Bouhelier, F. G. Des, L. Markey and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

W. L.  Barnes, A.  Dereux, and T. W.  Ebbesen, "surface plasmon subwavelength optics," Nature.  424,824-830 (2003).
[CrossRef] [PubMed]

Des, F. G.

J. C. Weeber, A. Bouhelier, F. G. Des, L. Markey and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.Y. Laluet, and T.W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature. 440, 508-511 (2006).
[CrossRef] [PubMed]

Dionne, J. A.

J. A.  Dionne, L. A.  Sweatlock, and H. A.  Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B.  73, 035407- 035415 (2006).
[CrossRef]

Donghyun, K.

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.Y. Laluet, and T.W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature. 440, 508-511 (2006).
[CrossRef] [PubMed]

W. L.  Barnes, A.  Dereux, and T. W.  Ebbesen, "surface plasmon subwavelength optics," Nature.  424,824-830 (2003).
[CrossRef] [PubMed]

Ennser, K.

K. Ennser, M. N. Zervas, and R. I. Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," IEEE J. Quantum Electron. 34, 770-778(1998).
[CrossRef]

Erdogan, T.

T. Erdogan, "Fiber grating spectrum," J. Lightw. Technol. 15, 1277-1293 (1997).
[CrossRef]

Fafard, S.

Forsberg, E.

Z. H. Han, E. Forsberg, and S. L. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett.  19, 91-93 (2007).
[CrossRef]

Z. Han, L. Liu, and E. Forsberg, "Ultra-compact directional couplers and Mach-Zehnder interferometers based on surface plasmon polariton," Opt. Commun. 259, 690-695 (2006).
[CrossRef]

Frandsen, L.

Friedman, M. D.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experiemental demonstration of fiber-accessible metal nanoparticle plasmon waveguide for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

Han, Z.

Z. Han, L. Liu, and E. Forsberg, "Ultra-compact directional couplers and Mach-Zehnder interferometers based on surface plasmon polariton," Opt. Commun. 259, 690-695 (2006).
[CrossRef]

Han, Z. H.

Z. H. Han, E. Forsberg, and S. L. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett.  19, 91-93 (2007).
[CrossRef]

Harpoth, A.

He, M. D.

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Express. 16, 4888-4894 (2008).
[CrossRef] [PubMed]

He, S. L.

Z. H. Han, E. Forsberg, and S. L. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett.  19, 91-93 (2007).
[CrossRef]

Hobson, P. A.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2005).
[CrossRef]

Hong, C. S.

Hosseini, A.

A. Hosseini, H. Nejati, and Y. Massoud, "Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express. 16, 1475-1480 (2008).
[CrossRef] [PubMed]

A.  Hosseini and Y.  Massoud, "A low-loss metal-insulator-metal plasmonic Bragg reflector," Opt. Express.  14, 11318-11323 (2006).
[CrossRef]

Huang, W.

J. Mu and W. Huang, "Low-Loss Insulator-Metal-Insulator SPPs Bragg Reflector," in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper JMB41

Huang, W. Q.

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Express. 16, 4888-4894 (2008).
[CrossRef] [PubMed]

Iguchi, K.

M. Kohmoto, B. Sutherland, and K. Iguchi, "Localization of optics: Quasiperiodic media," Phys. Rev. Lett. 58, 2436-2438 (1987).
[CrossRef] [PubMed]

Jensen, J.

Jetté-Charbonneau, S.

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahound, and G. Mattiussi., "Long-range surface plasmon-polariton waveguides and devices in lithium niobate," J. Appl. Phys. 103, 113114 (2007)
[CrossRef]

S. Jetté-Charbonneau and P. Berini, "Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides," J. Opt. Soc. Am. A. 23, 1757-1767 (2006)
[CrossRef]

S. Jetté-Charbonneau and P. Berini, "Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides," J. Opt. Soc. Am. A. 23, 1757-1767 (2006).
[CrossRef]

S. Jetté-Charbonneau, R. Charbonnneau, N. Lahoud, G. A. Mattiussu, and P. Berini. "Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment." IEEE J. Quantum Electron. 41, 1480-1491 (2005)
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B. 6, 4370-4379 (1972).
[CrossRef]

Kats, A. V.

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, "Extremely short-length surface plasmon resonance devices," Opt. Express. 16, 20227-20240 (2008)
[CrossRef] [PubMed]

Kim, H.

J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express. 16, 413-425 (2008).
[CrossRef] [PubMed]

Kiyan, R.

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, "Novel efficient design of Y-splitter for surface plasmon polariton applications," Opt. Express. 16, 14369-14379 (2008)
[CrossRef] [PubMed]

Kjaer, K.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons," J. Lightw. Technol. 23, 413- 422 (2005).
[CrossRef]

Kocabas, S.

Kohmoto, M.

M. Kohmoto, B. Sutherland, and K. Iguchi, "Localization of optics: Quasiperiodic media," Phys. Rev. Lett. 58, 2436-2438 (1987).
[CrossRef] [PubMed]

Kristensen, M.

Lahoud, N.

P. Berini, R. Charbonnneau, and N. Lahoud, "Long-Range Surface Plasmons Along Membrane-Supported Metal Stripes," IEEE J. Quantum Electron. 14, 1479-1495 (2008)
[CrossRef]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, "Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons," J. Lightwave Technol. 24, 477-494 (2006).
[CrossRef]

S. Jetté-Charbonneau, R. Charbonnneau, N. Lahoud, G. A. Mattiussu, and P. Berini. "Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment." IEEE J. Quantum Electron. 41, 1480-1491 (2005)
[CrossRef]

Lahound, N.

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahound, and G. Mattiussi., "Long-range surface plasmon-polariton waveguides and devices in lithium niobate," J. Appl. Phys. 103, 113114 (2007)
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.Y. Laluet, and T.W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature. 440, 508-511 (2006).
[CrossRef] [PubMed]

Laming, R. I.

K. Ennser, M. N. Zervas, and R. I. Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," IEEE J. Quantum Electron. 34, 770-778(1998).
[CrossRef]

Larsen, M. S.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons," J. Lightw. Technol. 23, 413- 422 (2005).
[CrossRef]

Lee, B.

J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express. 16, 413-425 (2008).
[CrossRef] [PubMed]

Leosson, K.

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, "Compact Bragg gratings for long-range surface plasmon polaritons," J. Lightwave Technol. 24, 912-918 (2006).
[CrossRef]

A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, "Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons," Opt. Express. 13, 4237-4243 (2005).
[CrossRef] [PubMed]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons," J. Lightw. Technol. 23, 413- 422 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface Plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833 (2004).
[CrossRef]

Li, K.

K.  Li, M. I.  Stockman, and D. J.  Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett.  91, 227402 (2003).
[CrossRef] [PubMed]

Liu, J. Q.

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Express. 16, 4888-4894 (2008).
[CrossRef] [PubMed]

Liu, L.

Z. Han, L. Liu, and E. Forsberg, "Ultra-compact directional couplers and Mach-Zehnder interferometers based on surface plasmon polariton," Opt. Commun. 259, 690-695 (2006).
[CrossRef]

Maier, S. A.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experiemental demonstration of fiber-accessible metal nanoparticle plasmon waveguide for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

Markey, L.

J. C. Weeber, A. Bouhelier, F. G. Des, L. Markey and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

Massoud, Y.

A. Hosseini, H. Nejati, and Y. Massoud, "Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express. 16, 1475-1480 (2008).
[CrossRef] [PubMed]

A.  Hosseini and Y.  Massoud, "A low-loss metal-insulator-metal plasmonic Bragg reflector," Opt. Express.  14, 11318-11323 (2006).
[CrossRef]

Mattiussi, G.

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahound, and G. Mattiussi., "Long-range surface plasmon-polariton waveguides and devices in lithium niobate," J. Appl. Phys. 103, 113114 (2007)
[CrossRef]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, "Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons," J. Lightwave Technol. 24, 477-494 (2006).
[CrossRef]

Mattiussu, G. A.

S. Jetté-Charbonneau, R. Charbonnneau, N. Lahoud, G. A. Mattiussu, and P. Berini. "Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment." IEEE J. Quantum Electron. 41, 1480-1491 (2005)
[CrossRef]

Mu, J.

J. Mu and W. Huang, "Low-Loss Insulator-Metal-Insulator SPPs Bragg Reflector," in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper JMB41

Nejati, H.

A. Hosseini, H. Nejati, and Y. Massoud, "Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express. 16, 1475-1480 (2008).
[CrossRef] [PubMed]

Nesterov, M. L.

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, "Extremely short-length surface plasmon resonance devices," Opt. Express. 16, 20227-20240 (2008)
[CrossRef] [PubMed]

Nikolajsen, T.

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, "Compact Bragg gratings for long-range surface plasmon polaritons," J. Lightwave Technol. 24, 912-918 (2006).
[CrossRef]

A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, "Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons," Opt. Express. 13, 4237-4243 (2005).
[CrossRef] [PubMed]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons," J. Lightw. Technol. 23, 413- 422 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface Plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833 (2004).
[CrossRef]

Ohrt, C.

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, "Novel efficient design of Y-splitter for surface plasmon polariton applications," Opt. Express. 16, 14369-14379 (2008)
[CrossRef] [PubMed]

Painter, O.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experiemental demonstration of fiber-accessible metal nanoparticle plasmon waveguide for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

Park, J.

J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express. 16, 413-425 (2008).
[CrossRef] [PubMed]

Passinger, S.

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, "Novel efficient design of Y-splitter for surface plasmon polariton applications," Opt. Express. 16, 14369-14379 (2008)
[CrossRef] [PubMed]

Reinhardt, C.

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, "Novel efficient design of Y-splitter for surface plasmon polariton applications," Opt. Express. 16, 14369-14379 (2008)
[CrossRef] [PubMed]

Sage, I.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2005).
[CrossRef]

Sant, P. O.

K. A. Suneet, M. Usha, and P. O. Sant, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B. 23, 2566-2571 (2006).
[CrossRef]

Scales, C.

Seidel, A.

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, "Novel efficient design of Y-splitter for surface plasmon polariton applications," Opt. Express. 16, 14369-14379 (2008)
[CrossRef] [PubMed]

Selker, M. D.

R , Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A. 21, 2442-2446 (2004).
[CrossRef]

Selker, R

R , Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A. 21, 2442-2446 (2004).
[CrossRef]

Shrzek, E. L.

Sigmund, O.

Sondergaard, T.

A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, "Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons," Opt. Express. 13, 4237-4243 (2005).
[CrossRef] [PubMed]

Stepanov, A.

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, "Novel efficient design of Y-splitter for surface plasmon polariton applications," Opt. Express. 16, 14369-14379 (2008)
[CrossRef] [PubMed]

Stockman, M. I.

K.  Li, M. I.  Stockman, and D. J.  Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett.  91, 227402 (2003).
[CrossRef] [PubMed]

Sugiyama, Tatsuhiko

Kazuo Tanaka, Masahiro Tanaka, and Tatsuhiko Sugiyama, "Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides," Opt. Express. 13, 256-266 (2005)
[CrossRef] [PubMed]

Suneet, K. A.

K. A. Suneet, M. Usha, and P. O. Sant, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B. 23, 2566-2571 (2006).
[CrossRef]

Sutherland, B.

M. Kohmoto, B. Sutherland, and K. Iguchi, "Localization of optics: Quasiperiodic media," Phys. Rev. Lett. 58, 2436-2438 (1987).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. A.  Dionne, L. A.  Sweatlock, and H. A.  Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B.  73, 035407- 035415 (2006).
[CrossRef]

Tanaka, Kazuo

Kazuo Tanaka, Masahiro Tanaka, and Tatsuhiko Sugiyama, "Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides," Opt. Express. 13, 256-266 (2005)
[CrossRef] [PubMed]

Tanaka, Masahiro

Kazuo Tanaka, Masahiro Tanaka, and Tatsuhiko Sugiyama, "Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides," Opt. Express. 13, 256-266 (2005)
[CrossRef] [PubMed]

Turitsyn, S. K.

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, "Extremely short-length surface plasmon resonance devices," Opt. Express. 16, 20227-20240 (2008)
[CrossRef] [PubMed]

Usha, M.

K. A. Suneet, M. Usha, and P. O. Sant, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B. 23, 2566-2571 (2006).
[CrossRef]

Veronis, G.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.Y. Laluet, and T.W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature. 440, 508-511 (2006).
[CrossRef] [PubMed]

Wan, Y.

Wang, B.

B.  Wang and G. P.  Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett.  87, 013107-013109 (2005).
[CrossRef]

Wang, D.

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Express. 16, 4888-4894 (2008).
[CrossRef] [PubMed]

Wang, G. P.

B.  Wang and G. P.  Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett.  87, 013107-013109 (2005).
[CrossRef]

Wang, L.L.

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Express. 16, 4888-4894 (2008).
[CrossRef] [PubMed]

Wasey, J. A. E.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2005).
[CrossRef]

Wedge, S.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2005).
[CrossRef]

Weeber, J. C.

J. C. Weeber, A. Bouhelier, F. G. Des, L. Markey and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

Wen, S.C.

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Express. 16, 4888-4894 (2008).
[CrossRef] [PubMed]

Yariv, A.

Yeh, P.

Yu, Z.

Zervas, M. N.

K. Ennser, M. N. Zervas, and R. I. Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," IEEE J. Quantum Electron. 34, 770-778(1998).
[CrossRef]

Zhao, X.

Zheng, Z.

Zhu, J.

Zou, B. S.

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Express. 16, 4888-4894 (2008).
[CrossRef] [PubMed]

Adv. Mater. (1)

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, "Surface plasmon mediated emission from organic light-emitting diodes," Adv. Mater. 14, 1393-1396 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

B.  Wang and G. P.  Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett.  87, 013107-013109 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface Plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833 (2004).
[CrossRef]

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, "Experiemental demonstration of fiber-accessible metal nanoparticle plasmon waveguide for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (3)

S. Jetté-Charbonneau, R. Charbonnneau, N. Lahoud, G. A. Mattiussu, and P. Berini. "Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment." IEEE J. Quantum Electron. 41, 1480-1491 (2005)
[CrossRef]

P. Berini, R. Charbonnneau, and N. Lahoud, "Long-Range Surface Plasmons Along Membrane-Supported Metal Stripes," IEEE J. Quantum Electron. 14, 1479-1495 (2008)
[CrossRef]

K. Ennser, M. N. Zervas, and R. I. Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," IEEE J. Quantum Electron. 34, 770-778(1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. H. Han, E. Forsberg, and S. L. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett.  19, 91-93 (2007).
[CrossRef]

J. Appl. Phys. (1)

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahound, and G. Mattiussi., "Long-range surface plasmon-polariton waveguides and devices in lithium niobate," J. Appl. Phys. 103, 113114 (2007)
[CrossRef]

J. Lightw. Technol. (2)

T. Erdogan, "Fiber grating spectrum," J. Lightw. Technol. 15, 1277-1293 (1997).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons," J. Lightw. Technol. 23, 413- 422 (2005).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A. (3)

R , Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A. 21, 2442-2446 (2004).
[CrossRef]

S. Jetté-Charbonneau and P. Berini, "Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides," J. Opt. Soc. Am. A. 23, 1757-1767 (2006).
[CrossRef]

S. Jetté-Charbonneau and P. Berini, "Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides," J. Opt. Soc. Am. A. 23, 1757-1767 (2006)
[CrossRef]

J. Opt. Soc. Am. B. (1)

K. A. Suneet, M. Usha, and P. O. Sant, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B. 23, 2566-2571 (2006).
[CrossRef]

Nano Lett. (1)

J. C. Weeber, A. Bouhelier, F. G. Des, L. Markey and A. Dereux, "Submicrometer In-Plane Integrated Surface Plasmon Cavities," Nano Lett. 7, 1352-1359 (2007).
[CrossRef] [PubMed]

Nature. (2)

W. L.  Barnes, A.  Dereux, and T. W.  Ebbesen, "surface plasmon subwavelength optics," Nature.  424,824-830 (2003).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.Y. Laluet, and T.W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature. 440, 508-511 (2006).
[CrossRef] [PubMed]

New J. Phys. (1)

P. Berini, "Bulk and surface sensitivities of surface plasmon waveguides," New J. Phys. 10, 105010 (2008).
[CrossRef]

Opt. Commun. (1)

Z. Han, L. Liu, and E. Forsberg, "Ultra-compact directional couplers and Mach-Zehnder interferometers based on surface plasmon polariton," Opt. Commun. 259, 690-695 (2006).
[CrossRef]

Opt. Express (1)

Opt. Express. (9)

A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, "Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons," Opt. Express. 13, 4237-4243 (2005).
[CrossRef] [PubMed]

Kazuo Tanaka, Masahiro Tanaka, and Tatsuhiko Sugiyama, "Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides," Opt. Express. 13, 256-266 (2005)
[CrossRef] [PubMed]

P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express. 14, 13030-13042 (2006).
[CrossRef] [PubMed]

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, "Novel efficient design of Y-splitter for surface plasmon polariton applications," Opt. Express. 16, 14369-14379 (2008)
[CrossRef] [PubMed]

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, "Extremely short-length surface plasmon resonance devices," Opt. Express. 16, 20227-20240 (2008)
[CrossRef] [PubMed]

J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express. 16, 413-425 (2008).
[CrossRef] [PubMed]

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Express. 16, 4888-4894 (2008).
[CrossRef] [PubMed]

A.  Hosseini and Y.  Massoud, "A low-loss metal-insulator-metal plasmonic Bragg reflector," Opt. Express.  14, 11318-11323 (2006).
[CrossRef]

A. Hosseini, H. Nejati, and Y. Massoud, "Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express. 16, 1475-1480 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B. (3)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B. 6, 4370-4379 (1972).
[CrossRef]

J. A.  Dionne, L. A.  Sweatlock, and H. A.  Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B.  73, 035407- 035415 (2006).
[CrossRef]

P. Berin, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B.  61, 10484-10503 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

M. Kohmoto, B. Sutherland, and K. Iguchi, "Localization of optics: Quasiperiodic media," Phys. Rev. Lett. 58, 2436-2438 (1987).
[CrossRef] [PubMed]

K.  Li, M. I.  Stockman, and D. J.  Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett.  91, 227402 (2003).
[CrossRef] [PubMed]

Other (4)

J. Mu and W. Huang, "Low-Loss Insulator-Metal-Insulator SPPs Bragg Reflector," in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper JMB41

A. Taflove, and S. C. Hagness, "Computational Electrodynamics. The Finite-Difference Time-Domain Method," 2nd ed. 2000 (Artech House, Boston.).

S. Jetté-Charbonneau, "A study of Bragg gratings based on plasmon-polariton waveguides," M.A.Sc. thesis, University of Ottawa, Ottawa, Canada, 2003.

H.  Rather, Surface Plasmons (Springer-Verlag, Berlin, 1988).

Supplementary Material (1)

» Media 1: MOV (1098 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Scheme of the MIM SPP waveguide. (b) Magnetic field distribution of |Hy|2 inside the MIM waveguide (Media 1). (c) Real part of the effective refractive index versus gap width w and wavelength λ in the Ag-SiO2-Ag (nd =1.46) and the Ag-PSiO2-Ag (nd =1.23) MIM waveguide, respectively.

Fig.2.
Fig.2.

(a) Scheme of the quasi-chirped MIM SPP waveguide. (b) The n-th period of the proposed MIM structure in (a). (c) The effective refractive index of the SPP mode in the dielectric An and Bn , respectively. In the design, it is assumed that the dielectrics of layer An (n=1, 2…,N) and Bn are Sio2 (nA =1.46) and air (nB =1.0), and the width WAn and WBn are 80 nm and 120 nm, respectively.

Fig. 3.
Fig. 3.

Transmission spectrum of the three designed MIM SPPRs. The reflector of uniform-design-1 contains one uniform segment, the quasi-chirped-design-2 and the quasi-chirped-design-3 contain two and three segments, respectively. The used parameters in these designed reflectors are shown in the Table 1 in detail.

Fig. 4.
Fig. 4.

Band structure for the segment related in the Table 1. Here, ω B is angular frequency corresponding to the wavelength of 1550 nm, Λ is the period length, and K is the Bloch wave number.

Fig. 5.
Fig. 5.

(a) The Gaussian apodized effective refractive index nAeff and nBeff . (b) The optimized variations of width WAn and WBn (n=1,2,..N) along the MIM SPP waveguide. (c) Spectral reflectivity of the apodized and non-apodized MIM SPPR.

Fig. 6.
Fig. 6.

Transmission spectrum of nanocavity structure formed by introducing a defect at the center of the apodized MIM SPP waveguide.

Tables (1)

Tables Icon

Table 1. Parameters for the three designed Bragg-grating-based MIM SPPRs.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

kdεmtanh(kdw2)+εdkm=0,
kd,m=βspp2εd,mk02,
neff=βsppk0,
εm=1wp2w02+iw0γ,
En+1=EnΔtε0Jn+12Δtε0Δ×Hn+12,
Jn+12=1γΔt21+γΔt2Jn12+ε0wp2Δt1+γΔt2En.
Hn+12=Hn12Δtμ0Δ×En·
nAeff(n)=n0+n0nA0f(n)
nBeff(n)=n0n0nB0f(n)
f(n)=exp[nF]2

Metrics