Abstract

Surface plasmon polariton reflector (SPPR) based on metal-insulator-metal (MIM) Bragg grating waveguide is numerically studied. A quasi-chirped technique is applied to the engraved grooves in the surface of the MIM waveguide, and a new kind of broad-bandgap SPPR is achieved. Meanwhile, by optimizing the profile of gap width between the metal and dielectric, the spectral sidelobe of SPPR is effectively suppressed and thus the performance of the SPPR is further improved.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A wide bandgap plasmonic Bragg reflector

Jian-Qiang Liu, Ling-Ling Wang, Meng-Dong He, Wei-Qing Huang, Dianyuan Wang, B. S. Zou, and Shuangchun Wen
Opt. Express 16(7) 4888-4894 (2008)

A low-loss metal-insulator-metal plasmonic bragg reflector

Amir Hosseini and Yehia Massoud
Opt. Express 14(23) 11318-11323 (2006)

Design and analysis of a surface plasmon polariton modulator using the electro-optic effect

Ashwani Kumar, Siu Fung Yu, and Xiaofeng Li
Appl. Opt. 48(35) 6600-6605 (2009)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “surface plasmon subwavelength optics,” Nature. 424, 824–830 (2003).
    [Crossref] [PubMed]
  2. H. Rather, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  3. K. Li, M. I. Stockman, and D. J. Bergman, “Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
    [Crossref] [PubMed]
  4. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface Plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833 (2004).
    [Crossref]
  5. K. Donghyun, “Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors,” Appl. Opt. 44, 3218–3223 (2005).
    [Crossref]
  6. A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express. 13, 4237–4243 (2005).
    [Crossref] [PubMed]
  7. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightw. Technol. 24, 912–918 (2006).
    [Crossref]
  8. S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experiemental demonstration of fiber-accessible metal nanoparticle plasmon waveguide for planar energy guiding and sensing,” Appl. Phys. Lett. 86, 071103 (2005).
    [Crossref]
  9. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 23, 413–422 (2005).
    [Crossref]
  10. Kazuo Tanaka, Masahiro Tanaka, and Tatsuhiko Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express. 13, 256–266 (2005)
    [Crossref] [PubMed]
  11. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express. 14, 13030–13042 (2006).
    [Crossref] [PubMed]
  12. S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express. 16, 14369–14379 (2008)
    [Crossref] [PubMed]
  13. M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express. 16, 20227–20240 (2008)
    [Crossref] [PubMed]
  14. Z. Zheng, Y. Wan, X. Zhao, and J. Zhu, “Spectral interferometric measurement of wavelength-dependent phase response for surface plasmon resonance sensors,” Appl. Opt. 48, 2491–2495 (2009).
    [Crossref] [PubMed]
  15. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.Y. Laluet, and T.W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature. 440, 508–511 (2006).
    [Crossref] [PubMed]
  16. Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers based on surface plasmon polariton,” Opt. Commun. 259, 690–695 (2006).
    [Crossref]
  17. J. C. Weeber, A. Bouhelier, F. G. Des, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett. 7, 1352–1359 (2007).
    [Crossref] [PubMed]
  18. P. Berin, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B. 61, 10484–10503 (2000).
    [Crossref]
  19. R. Charbonneau, P. Berini, E. Berolo, and E. L. Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
    [Crossref]
  20. S. Jetté-Charbonneau, “A study of Bragg gratings based on plasmon-polariton waveguides,” M.A.Sc. thesis, University of Ottawa, Ottawa, Canada, 2003.
  21. S. Jetté-Charbonneau, R. Charbonnneau, N. Lahoud, G. A. Mattiussu, and P. Berini. “Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment.” IEEE J. Quantum Electron. 41, 1480–1491 (2005)
    [Crossref]
  22. S. Jetté-Charbonneau and P. Berini, “Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides,” J. Opt. Soc. Am. A. 23, 1757–1767 (2006).
    [Crossref]
  23. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 24, 477–494(2006).
    [Crossref]
  24. P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahound, and G. Mattiussi., “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 103, 113114 (2007)
    [Crossref]
  25. J. Mu and W. Huang, “Low-Loss Insulator-Metal-Insulator SPPs Bragg Reflector,” in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper JMB41
  26. P. Berini, R. Charbonnneau, and N. Lahoud, “Long-Range Surface Plasmons Along Membrane-Supported Metal Stripes,” IEEE J. Quantum Electron. 14, 1479–1495 (2008)
    [Crossref]
  27. R Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A. 21, 2442–2446 (2004).
    [Crossref]
  28. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
    [Crossref]
  29. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express. 16, 413–425 (2008).
    [Crossref] [PubMed]
  30. G. Veronis, Z. Yu, S. Kocabas, D.M. Miller, S. Brongersma, and Fan, “Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett. 7, 302–308 (2009).
    [Crossref]
  31. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B. 73, 035407–035415 (2006).
    [Crossref]
  32. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107–013109 (2005).
    [Crossref]
  33. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express. 14, 11318–11323 (2006).
    [Crossref]
  34. A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express. 16, 1475–1480 (2008).
    [Crossref] [PubMed]
  35. Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
    [Crossref]
  36. J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express. 16, 4888–4894 (2008).
    [Crossref] [PubMed]
  37. L. Frandsen, A. Harpoth, P. Borel, M. Kristensen, J. Jensen, and O. Sigmund, “Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization,” Opt. Express 12, 5916–5921 (2004).
    [Crossref] [PubMed]
  38. K. A. Suneet, M. Usha, and P. O. Sant, “Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material,” J. Opt. Soc. Am. B. 23, 2566–2571 (2006).
    [Crossref]
  39. T. Erdogan, “Fiber grating spectrum,” J. Lightw. Technol. 15, 1277–1293 (1997).
    [Crossref]
  40. K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778(1998).
    [Crossref]
  41. S. Jetté-Charbonneau and P. Berini, “Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides,” J. Opt. Soc. Am. A. 23, 1757–1767 (2006)
    [Crossref]
  42. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6, 4370–4379 (1972).
    [Crossref]
  43. A. Taflove and S. C. Hagness, “Computational Electrodynamics. The Finite-Difference Time-Domain Method,” 2nd ed.2000 (Artech House, Boston.).
  44. M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: Quasiperiodic media,” Phys. Rev. Lett. 58, 2436–2438 (1987).
    [Crossref] [PubMed]
  45. P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–437 (1977).
    [Crossref]
  46. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393–1396 (2005).
    [Crossref]

2009 (2)

2008 (7)

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express. 16, 14369–14379 (2008)
[Crossref] [PubMed]

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express. 16, 20227–20240 (2008)
[Crossref] [PubMed]

P. Berini, R. Charbonnneau, and N. Lahoud, “Long-Range Surface Plasmons Along Membrane-Supported Metal Stripes,” IEEE J. Quantum Electron. 14, 1479–1495 (2008)
[Crossref]

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
[Crossref]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express. 16, 413–425 (2008).
[Crossref] [PubMed]

A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express. 16, 1475–1480 (2008).
[Crossref] [PubMed]

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express. 16, 4888–4894 (2008).
[Crossref] [PubMed]

2007 (3)

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[Crossref]

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahound, and G. Mattiussi., “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 103, 113114 (2007)
[Crossref]

J. C. Weeber, A. Bouhelier, F. G. Des, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett. 7, 1352–1359 (2007).
[Crossref] [PubMed]

2006 (10)

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express. 14, 13030–13042 (2006).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.Y. Laluet, and T.W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature. 440, 508–511 (2006).
[Crossref] [PubMed]

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers based on surface plasmon polariton,” Opt. Commun. 259, 690–695 (2006).
[Crossref]

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightw. Technol. 24, 912–918 (2006).
[Crossref]

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express. 14, 11318–11323 (2006).
[Crossref]

K. A. Suneet, M. Usha, and P. O. Sant, “Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material,” J. Opt. Soc. Am. B. 23, 2566–2571 (2006).
[Crossref]

S. Jetté-Charbonneau and P. Berini, “Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides,” J. Opt. Soc. Am. A. 23, 1757–1767 (2006)
[Crossref]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B. 73, 035407–035415 (2006).
[Crossref]

S. Jetté-Charbonneau and P. Berini, “Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides,” J. Opt. Soc. Am. A. 23, 1757–1767 (2006).
[Crossref]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 24, 477–494(2006).
[Crossref]

2005 (8)

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107–013109 (2005).
[Crossref]

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experiemental demonstration of fiber-accessible metal nanoparticle plasmon waveguide for planar energy guiding and sensing,” Appl. Phys. Lett. 86, 071103 (2005).
[Crossref]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 23, 413–422 (2005).
[Crossref]

Kazuo Tanaka, Masahiro Tanaka, and Tatsuhiko Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express. 13, 256–266 (2005)
[Crossref] [PubMed]

A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express. 13, 4237–4243 (2005).
[Crossref] [PubMed]

S. Jetté-Charbonneau, R. Charbonnneau, N. Lahoud, G. A. Mattiussu, and P. Berini. “Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment.” IEEE J. Quantum Electron. 41, 1480–1491 (2005)
[Crossref]

K. Donghyun, “Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors,” Appl. Opt. 44, 3218–3223 (2005).
[Crossref]

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393–1396 (2005).
[Crossref]

2004 (3)

L. Frandsen, A. Harpoth, P. Borel, M. Kristensen, J. Jensen, and O. Sigmund, “Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization,” Opt. Express 12, 5916–5921 (2004).
[Crossref] [PubMed]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface Plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833 (2004).
[Crossref]

R Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A. 21, 2442–2446 (2004).
[Crossref]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “surface plasmon subwavelength optics,” Nature. 424, 824–830 (2003).
[Crossref] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref] [PubMed]

2000 (2)

P. Berin, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B. 61, 10484–10503 (2000).
[Crossref]

R. Charbonneau, P. Berini, E. Berolo, and E. L. Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
[Crossref]

1998 (1)

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778(1998).
[Crossref]

1997 (1)

T. Erdogan, “Fiber grating spectrum,” J. Lightw. Technol. 15, 1277–1293 (1997).
[Crossref]

1987 (1)

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: Quasiperiodic media,” Phys. Rev. Lett. 58, 2436–2438 (1987).
[Crossref] [PubMed]

1977 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6, 4370–4379 (1972).
[Crossref]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B. 73, 035407–035415 (2006).
[Crossref]

Barclay, P. E.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experiemental demonstration of fiber-accessible metal nanoparticle plasmon waveguide for planar energy guiding and sensing,” Appl. Phys. Lett. 86, 071103 (2005).
[Crossref]

Barnes, W. L.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393–1396 (2005).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “surface plasmon subwavelength optics,” Nature. 424, 824–830 (2003).
[Crossref] [PubMed]

Bergman, D. J.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref] [PubMed]

Berin, P.

P. Berin, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B. 61, 10484–10503 (2000).
[Crossref]

Berini, P.

P. Berini, R. Charbonnneau, and N. Lahoud, “Long-Range Surface Plasmons Along Membrane-Supported Metal Stripes,” IEEE J. Quantum Electron. 14, 1479–1495 (2008)
[Crossref]

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
[Crossref]

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahound, and G. Mattiussi., “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 103, 113114 (2007)
[Crossref]

S. Jetté-Charbonneau and P. Berini, “Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides,” J. Opt. Soc. Am. A. 23, 1757–1767 (2006).
[Crossref]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 24, 477–494(2006).
[Crossref]

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express. 14, 13030–13042 (2006).
[Crossref] [PubMed]

S. Jetté-Charbonneau and P. Berini, “Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides,” J. Opt. Soc. Am. A. 23, 1757–1767 (2006)
[Crossref]

S. Jetté-Charbonneau, R. Charbonnneau, N. Lahoud, G. A. Mattiussu, and P. Berini. “Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment.” IEEE J. Quantum Electron. 41, 1480–1491 (2005)
[Crossref]

R. Charbonneau, P. Berini, E. Berolo, and E. L. Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
[Crossref]

Berolo, E.

Boltasseva, A.

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightw. Technol. 24, 912–918 (2006).
[Crossref]

A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express. 13, 4237–4243 (2005).
[Crossref] [PubMed]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 23, 413–422 (2005).
[Crossref]

Borel, P.

Bouhelier, A.

J. C. Weeber, A. Bouhelier, F. G. Des, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett. 7, 1352–1359 (2007).
[Crossref] [PubMed]

Bozhevolnyi, S.

A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express. 13, 4237–4243 (2005).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightw. Technol. 24, 912–918 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.Y. Laluet, and T.W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature. 440, 508–511 (2006).
[Crossref] [PubMed]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 23, 413–422 (2005).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface Plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833 (2004).
[Crossref]

Breukelaar, I.

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 24, 477–494(2006).
[Crossref]

Brongersma, M. L.

R Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A. 21, 2442–2446 (2004).
[Crossref]

Brongersma, S.

Catrysse, P. B.

R Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A. 21, 2442–2446 (2004).
[Crossref]

Charbonneau, R.

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahound, and G. Mattiussi., “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 103, 113114 (2007)
[Crossref]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 24, 477–494(2006).
[Crossref]

R. Charbonneau, P. Berini, E. Berolo, and E. L. Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
[Crossref]

Charbonnneau, R.

P. Berini, R. Charbonnneau, and N. Lahoud, “Long-Range Surface Plasmons Along Membrane-Supported Metal Stripes,” IEEE J. Quantum Electron. 14, 1479–1495 (2008)
[Crossref]

S. Jetté-Charbonneau, R. Charbonnneau, N. Lahoud, G. A. Mattiussu, and P. Berini. “Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment.” IEEE J. Quantum Electron. 41, 1480–1491 (2005)
[Crossref]

Chichkov, B.

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express. 16, 14369–14379 (2008)
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6, 4370–4379 (1972).
[Crossref]

Dereux, A.

J. C. Weeber, A. Bouhelier, F. G. Des, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett. 7, 1352–1359 (2007).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “surface plasmon subwavelength optics,” Nature. 424, 824–830 (2003).
[Crossref] [PubMed]

Des, F. G.

J. C. Weeber, A. Bouhelier, F. G. Des, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett. 7, 1352–1359 (2007).
[Crossref] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.Y. Laluet, and T.W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature. 440, 508–511 (2006).
[Crossref] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B. 73, 035407–035415 (2006).
[Crossref]

Donghyun, K.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “surface plasmon subwavelength optics,” Nature. 424, 824–830 (2003).
[Crossref] [PubMed]

Ebbesen, T.W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.Y. Laluet, and T.W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature. 440, 508–511 (2006).
[Crossref] [PubMed]

Ennser, K.

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778(1998).
[Crossref]

Erdogan, T.

T. Erdogan, “Fiber grating spectrum,” J. Lightw. Technol. 15, 1277–1293 (1997).
[Crossref]

Fafard, S.

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 24, 477–494(2006).
[Crossref]

Fan,

Forsberg, E.

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[Crossref]

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers based on surface plasmon polariton,” Opt. Commun. 259, 690–695 (2006).
[Crossref]

Frandsen, L.

Friedman, M. D.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experiemental demonstration of fiber-accessible metal nanoparticle plasmon waveguide for planar energy guiding and sensing,” Appl. Phys. Lett. 86, 071103 (2005).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness, “Computational Electrodynamics. The Finite-Difference Time-Domain Method,” 2nd ed.2000 (Artech House, Boston.).

Han, Z.

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers based on surface plasmon polariton,” Opt. Commun. 259, 690–695 (2006).
[Crossref]

Han, Z. H.

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[Crossref]

Harpoth, A.

He, M. D.

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express. 16, 4888–4894 (2008).
[Crossref] [PubMed]

He, S. L.

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[Crossref]

Hobson, P. A.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393–1396 (2005).
[Crossref]

Hong, C. S.

Hosseini, A.

A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express. 16, 1475–1480 (2008).
[Crossref] [PubMed]

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express. 14, 11318–11323 (2006).
[Crossref]

Huang, W.

J. Mu and W. Huang, “Low-Loss Insulator-Metal-Insulator SPPs Bragg Reflector,” in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper JMB41

Huang, W. Q.

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express. 16, 4888–4894 (2008).
[Crossref] [PubMed]

Iguchi, K.

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: Quasiperiodic media,” Phys. Rev. Lett. 58, 2436–2438 (1987).
[Crossref] [PubMed]

Jensen, J.

Jetté-Charbonneau, S.

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahound, and G. Mattiussi., “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 103, 113114 (2007)
[Crossref]

S. Jetté-Charbonneau and P. Berini, “Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides,” J. Opt. Soc. Am. A. 23, 1757–1767 (2006).
[Crossref]

S. Jetté-Charbonneau and P. Berini, “Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides,” J. Opt. Soc. Am. A. 23, 1757–1767 (2006)
[Crossref]

S. Jetté-Charbonneau, R. Charbonnneau, N. Lahoud, G. A. Mattiussu, and P. Berini. “Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment.” IEEE J. Quantum Electron. 41, 1480–1491 (2005)
[Crossref]

S. Jetté-Charbonneau, “A study of Bragg gratings based on plasmon-polariton waveguides,” M.A.Sc. thesis, University of Ottawa, Ottawa, Canada, 2003.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6, 4370–4379 (1972).
[Crossref]

Kats, A. V.

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express. 16, 20227–20240 (2008)
[Crossref] [PubMed]

Kim, H.

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express. 16, 413–425 (2008).
[Crossref] [PubMed]

Kiyan, R.

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express. 16, 14369–14379 (2008)
[Crossref] [PubMed]

Kjaer, K.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 23, 413–422 (2005).
[Crossref]

Kocabas, S.

Kohmoto, M.

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: Quasiperiodic media,” Phys. Rev. Lett. 58, 2436–2438 (1987).
[Crossref] [PubMed]

Kristensen, M.

Lahoud, N.

P. Berini, R. Charbonnneau, and N. Lahoud, “Long-Range Surface Plasmons Along Membrane-Supported Metal Stripes,” IEEE J. Quantum Electron. 14, 1479–1495 (2008)
[Crossref]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 24, 477–494(2006).
[Crossref]

S. Jetté-Charbonneau, R. Charbonnneau, N. Lahoud, G. A. Mattiussu, and P. Berini. “Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment.” IEEE J. Quantum Electron. 41, 1480–1491 (2005)
[Crossref]

Lahound, N.

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahound, and G. Mattiussi., “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 103, 113114 (2007)
[Crossref]

Laluet, J.Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.Y. Laluet, and T.W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature. 440, 508–511 (2006).
[Crossref] [PubMed]

Laming, R. I.

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778(1998).
[Crossref]

Larsen, M. S.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 23, 413–422 (2005).
[Crossref]

Lee, B.

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express. 16, 413–425 (2008).
[Crossref] [PubMed]

Leosson, K.

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightw. Technol. 24, 912–918 (2006).
[Crossref]

A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express. 13, 4237–4243 (2005).
[Crossref] [PubMed]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 23, 413–422 (2005).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface Plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833 (2004).
[Crossref]

Li, K.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref] [PubMed]

Liu, J. Q.

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express. 16, 4888–4894 (2008).
[Crossref] [PubMed]

Liu, L.

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers based on surface plasmon polariton,” Opt. Commun. 259, 690–695 (2006).
[Crossref]

Maier, S. A.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experiemental demonstration of fiber-accessible metal nanoparticle plasmon waveguide for planar energy guiding and sensing,” Appl. Phys. Lett. 86, 071103 (2005).
[Crossref]

Markey, L.

J. C. Weeber, A. Bouhelier, F. G. Des, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett. 7, 1352–1359 (2007).
[Crossref] [PubMed]

Massoud, Y.

A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express. 16, 1475–1480 (2008).
[Crossref] [PubMed]

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express. 14, 11318–11323 (2006).
[Crossref]

Mattiussi, G.

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahound, and G. Mattiussi., “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 103, 113114 (2007)
[Crossref]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 24, 477–494(2006).
[Crossref]

Mattiussu, G. A.

S. Jetté-Charbonneau, R. Charbonnneau, N. Lahoud, G. A. Mattiussu, and P. Berini. “Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment.” IEEE J. Quantum Electron. 41, 1480–1491 (2005)
[Crossref]

Miller, D.M.

Mu, J.

J. Mu and W. Huang, “Low-Loss Insulator-Metal-Insulator SPPs Bragg Reflector,” in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper JMB41

Nejati, H.

A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express. 16, 1475–1480 (2008).
[Crossref] [PubMed]

Nesterov, M. L.

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express. 16, 20227–20240 (2008)
[Crossref] [PubMed]

Nikolajsen, T.

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightw. Technol. 24, 912–918 (2006).
[Crossref]

A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express. 13, 4237–4243 (2005).
[Crossref] [PubMed]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 23, 413–422 (2005).
[Crossref]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface Plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833 (2004).
[Crossref]

Ohrt, C.

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express. 16, 14369–14379 (2008)
[Crossref] [PubMed]

Painter, O.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experiemental demonstration of fiber-accessible metal nanoparticle plasmon waveguide for planar energy guiding and sensing,” Appl. Phys. Lett. 86, 071103 (2005).
[Crossref]

Park, J.

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express. 16, 413–425 (2008).
[Crossref] [PubMed]

Passinger, S.

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express. 16, 14369–14379 (2008)
[Crossref] [PubMed]

Rather, H.

H. Rather, Surface Plasmons (Springer-Verlag, Berlin, 1988).

Reinhardt, C.

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express. 16, 14369–14379 (2008)
[Crossref] [PubMed]

Sage, I.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393–1396 (2005).
[Crossref]

Sant, P. O.

K. A. Suneet, M. Usha, and P. O. Sant, “Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material,” J. Opt. Soc. Am. B. 23, 2566–2571 (2006).
[Crossref]

Scales, C.

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 24, 477–494(2006).
[Crossref]

Seidel, A.

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express. 16, 14369–14379 (2008)
[Crossref] [PubMed]

Selker, M. D.

R Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A. 21, 2442–2446 (2004).
[Crossref]

Selker, R

R Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A. 21, 2442–2446 (2004).
[Crossref]

Shrzek, E. L.

Sigmund, O.

Sondergaard, T.

A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express. 13, 4237–4243 (2005).
[Crossref] [PubMed]

Stepanov, A.

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express. 16, 14369–14379 (2008)
[Crossref] [PubMed]

Stockman, M. I.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref] [PubMed]

Sugiyama, Tatsuhiko

Kazuo Tanaka, Masahiro Tanaka, and Tatsuhiko Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express. 13, 256–266 (2005)
[Crossref] [PubMed]

Suneet, K. A.

K. A. Suneet, M. Usha, and P. O. Sant, “Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material,” J. Opt. Soc. Am. B. 23, 2566–2571 (2006).
[Crossref]

Sutherland, B.

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: Quasiperiodic media,” Phys. Rev. Lett. 58, 2436–2438 (1987).
[Crossref] [PubMed]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B. 73, 035407–035415 (2006).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, “Computational Electrodynamics. The Finite-Difference Time-Domain Method,” 2nd ed.2000 (Artech House, Boston.).

Tanaka, Kazuo

Kazuo Tanaka, Masahiro Tanaka, and Tatsuhiko Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express. 13, 256–266 (2005)
[Crossref] [PubMed]

Tanaka, Masahiro

Kazuo Tanaka, Masahiro Tanaka, and Tatsuhiko Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express. 13, 256–266 (2005)
[Crossref] [PubMed]

Turitsyn, S. K.

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express. 16, 20227–20240 (2008)
[Crossref] [PubMed]

Usha, M.

K. A. Suneet, M. Usha, and P. O. Sant, “Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material,” J. Opt. Soc. Am. B. 23, 2566–2571 (2006).
[Crossref]

Veronis, G.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.Y. Laluet, and T.W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature. 440, 508–511 (2006).
[Crossref] [PubMed]

Wan, Y.

Wang, B.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107–013109 (2005).
[Crossref]

Wang, D.

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express. 16, 4888–4894 (2008).
[Crossref] [PubMed]

Wang, G. P.

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107–013109 (2005).
[Crossref]

Wang, L.L.

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express. 16, 4888–4894 (2008).
[Crossref] [PubMed]

Wasey, J. A. E.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393–1396 (2005).
[Crossref]

Wedge, S.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393–1396 (2005).
[Crossref]

Weeber, J. C.

J. C. Weeber, A. Bouhelier, F. G. Des, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett. 7, 1352–1359 (2007).
[Crossref] [PubMed]

Wen, S.C.

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express. 16, 4888–4894 (2008).
[Crossref] [PubMed]

Yariv, A.

Yeh, P.

Yu, Z.

Zervas, M. N.

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778(1998).
[Crossref]

Zhao, X.

Zheng, Z.

Zhu, J.

Zou, B. S.

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express. 16, 4888–4894 (2008).
[Crossref] [PubMed]

Adv. Mater. (1)

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14, 1393–1396 (2005).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface Plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833 (2004).
[Crossref]

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experiemental demonstration of fiber-accessible metal nanoparticle plasmon waveguide for planar energy guiding and sensing,” Appl. Phys. Lett. 86, 071103 (2005).
[Crossref]

B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107–013109 (2005).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (3)

S. Jetté-Charbonneau, R. Charbonnneau, N. Lahoud, G. A. Mattiussu, and P. Berini. “Bragg Gratings Based on Long-Range Surface Plasmon-Polariton Waveguides: Comparison of Theory and Experiment.” IEEE J. Quantum Electron. 41, 1480–1491 (2005)
[Crossref]

P. Berini, R. Charbonnneau, and N. Lahoud, “Long-Range Surface Plasmons Along Membrane-Supported Metal Stripes,” IEEE J. Quantum Electron. 14, 1479–1495 (2008)
[Crossref]

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778(1998).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[Crossref]

J. Appl. Phys. (1)

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahound, and G. Mattiussi., “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 103, 113114 (2007)
[Crossref]

J. Lightw. Technol. (4)

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightw. Technol. 24, 912–918 (2006).
[Crossref]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive Integrated Optics Elements Based on Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 24, 477–494(2006).
[Crossref]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightw. Technol. 23, 413–422 (2005).
[Crossref]

T. Erdogan, “Fiber grating spectrum,” J. Lightw. Technol. 15, 1277–1293 (1997).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A. (3)

S. Jetté-Charbonneau and P. Berini, “Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides,” J. Opt. Soc. Am. A. 23, 1757–1767 (2006)
[Crossref]

S. Jetté-Charbonneau and P. Berini, “Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides,” J. Opt. Soc. Am. A. 23, 1757–1767 (2006).
[Crossref]

R Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A. 21, 2442–2446 (2004).
[Crossref]

J. Opt. Soc. Am. B. (1)

K. A. Suneet, M. Usha, and P. O. Sant, “Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material,” J. Opt. Soc. Am. B. 23, 2566–2571 (2006).
[Crossref]

Nano Lett. (1)

J. C. Weeber, A. Bouhelier, F. G. Des, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett. 7, 1352–1359 (2007).
[Crossref] [PubMed]

Nature. (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.Y. Laluet, and T.W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature. 440, 508–511 (2006).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “surface plasmon subwavelength optics,” Nature. 424, 824–830 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
[Crossref]

Opt. Commun. (1)

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers based on surface plasmon polariton,” Opt. Commun. 259, 690–695 (2006).
[Crossref]

Opt. Express (1)

Opt. Express. (9)

A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express. 13, 4237–4243 (2005).
[Crossref] [PubMed]

Kazuo Tanaka, Masahiro Tanaka, and Tatsuhiko Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express. 13, 256–266 (2005)
[Crossref] [PubMed]

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express. 14, 13030–13042 (2006).
[Crossref] [PubMed]

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express. 16, 14369–14379 (2008)
[Crossref] [PubMed]

M. L. Nesterov, A. V. Kats, and S. K. Turitsyn, “Extremely short-length surface plasmon resonance devices,” Opt. Express. 16, 20227–20240 (2008)
[Crossref] [PubMed]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express. 16, 413–425 (2008).
[Crossref] [PubMed]

J. Q. Liu, L.L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express. 16, 4888–4894 (2008).
[Crossref] [PubMed]

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express. 14, 11318–11323 (2006).
[Crossref]

A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express. 16, 1475–1480 (2008).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B. (3)

P. Berin, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B. 61, 10484–10503 (2000).
[Crossref]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B. 73, 035407–035415 (2006).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: Quasiperiodic media,” Phys. Rev. Lett. 58, 2436–2438 (1987).
[Crossref] [PubMed]

K. Li, M. I. Stockman, and D. J. Bergman, “Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[Crossref] [PubMed]

Other (4)

H. Rather, Surface Plasmons (Springer-Verlag, Berlin, 1988).

S. Jetté-Charbonneau, “A study of Bragg gratings based on plasmon-polariton waveguides,” M.A.Sc. thesis, University of Ottawa, Ottawa, Canada, 2003.

J. Mu and W. Huang, “Low-Loss Insulator-Metal-Insulator SPPs Bragg Reflector,” in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper JMB41

A. Taflove and S. C. Hagness, “Computational Electrodynamics. The Finite-Difference Time-Domain Method,” 2nd ed.2000 (Artech House, Boston.).

Supplementary Material (1)

» Media 1: MOV (1098 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Scheme of the MIM SPP waveguide. (b) Magnetic field distribution of |Hy|2 inside the MIM waveguide (Media 1). (c) Real part of the effective refractive index versus gap width w and wavelength λ in the Ag-SiO2-Ag (nd =1.46) and the Ag-PSiO2-Ag (nd =1.23) MIM waveguide, respectively.

Fig.2.
Fig.2.

(a) Scheme of the quasi-chirped MIM SPP waveguide. (b) The n-th period of the proposed MIM structure in (a). (c) The effective refractive index of the SPP mode in the dielectric An and Bn , respectively. In the design, it is assumed that the dielectrics of layer An (n=1, 2…,N) and Bn are Sio2 (nA =1.46) and air (nB =1.0), and the width WAn and WBn are 80 nm and 120 nm, respectively.

Fig. 3.
Fig. 3.

Transmission spectrum of the three designed MIM SPPRs. The reflector of uniform-design-1 contains one uniform segment, the quasi-chirped-design-2 and the quasi-chirped-design-3 contain two and three segments, respectively. The used parameters in these designed reflectors are shown in the Table 1 in detail.

Fig. 4.
Fig. 4.

Band structure for the segment related in the Table 1. Here, ω B is angular frequency corresponding to the wavelength of 1550 nm, Λ is the period length, and K is the Bloch wave number.

Fig. 5.
Fig. 5.

(a) The Gaussian apodized effective refractive index nAeff and nBeff . (b) The optimized variations of width WAn and WBn (n=1,2,..N) along the MIM SPP waveguide. (c) Spectral reflectivity of the apodized and non-apodized MIM SPPR.

Fig. 6.
Fig. 6.

Transmission spectrum of nanocavity structure formed by introducing a defect at the center of the apodized MIM SPP waveguide.

Tables (1)

Tables Icon

Table 1. Parameters for the three designed Bragg-grating-based MIM SPPRs.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

kdεmtanh(kdw2)+εdkm=0,
kd,m=βspp2εd,mk02,
neff=βsppk0,
εm=1wp2w02+iw0γ,
En+1=EnΔtε0Jn+12Δtε0Δ×Hn+12,
Jn+12=1γΔt21+γΔt2Jn12+ε0wp2Δt1+γΔt2En.
Hn+12=Hn12Δtμ0Δ×En·
nAeff(n)=n0+n0nA0f(n)
nBeff(n)=n0n0nB0f(n)
f(n)=exp[nF]2

Metrics