Abstract

Characteristics of high-power, narrow-linewidth, continuous-wave (cw) green radiation obtained by simple single-pass second-harmonic-generation (SHG) of a cw ytterbium fiber laser at 1064 nm in the nonlinear crystals of PPKTP and MgO:sPPLT are studied and compared. Temperature tuning and SHG power scaling up to nearly 10 W for input fundamental power levels up to 30 W are performed. Various contributions to thermal effects in both crystals, limiting the SHG conversion efficiency, are studied. Optimal focusing conditions and thermal management schemes are investigated to maximize SHG performance in MgO:sPPLT. Stable green output power and high spatial beam quality with M 2<1.33 and M 2<1.34 is achieved in MgO:sPPLT and PPKTP, respectively.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.  Golden, "Green lasers score good marks in semiconductor material processing," Laser Focus World.  28, 75 (1992).
  2. R. J. Rockwell Jr., M.S., "Designs and functions of laser systems for biomedical applications", in Conference on the laser, Annals of the New York Academy of Sciences,  168, 2 (2006).
  3. K. Yamamoto, H. Furuya, and K. Mizuuchi, "Highly-efficient SHG laser by using periodically poled MgO:LiNbO3 and its application," in proceedings of Lasers and Electro-Optics Society, 693 (IEEE, 2007), paper ThA3.
  4. G. K. Samanta, S. Chaitanya Kumar, R. Das, and M. Ebrahim-Zadeh, "Continuous-wave optical parametric oscillator pumped by a fiber laser green source at 532 nm," Opt. Lett. 34, 2255-2257 (2009).
    [CrossRef] [PubMed]
  5. R. G. Batchko, G. D. Miller, A. Alexandrovski, M. M. Fejer, and R. L. Byer, In Proceedings of the Conference on Lasers and Electro-Optics, (Optical Society of America, Washington, D.C.,1998), 12, 75 (1998).
  6. J. D. Bierlein and H. Vanherzeele, "Potassium titanyl phosphate: properties and new applications," J. Opt. Soc. Am. B 6, 622-633 (1989).
    [CrossRef]
  7. Z. Sun, G. K. Samanta, G. R. Fayaz, M. Ebrahim-Zadeh, C. Canalias, V. Pasiskevicius, and F. Laurell, "Efficient generation of tunable CW single frequency green radiation by second harmonic generation in periodically-poled KTiOPO4," in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CTuK1.
  8. G. K. Samanta, S. Chaitanya Kumar, M. Mathew, C. Canalias, V. Pasiskevicius, F. Laurell, and M. Ebrahim-Zadeh, "High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO4," Opt. Lett. 33, 2955-2957 (2008).
    [CrossRef] [PubMed]
  9. N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, "Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate," Jpn. J. Appl. Phys. 43, L1265 -L1267 (2004).
    [CrossRef]
  10. S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, "Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate, " Opt. Express 16, 11294-11299 (2008).
    [CrossRef] [PubMed]
  11. G. K. Samanta, S. Chaitanya Kumar, and M. Ebrahim-Zadeh, "Stable, 9.6 W, continuous-wave, single-frequency, fiber-based green source at 532 nm," Opt. Lett. 34, 1561-1563 (2009).
    [CrossRef] [PubMed]
  12. D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
    [CrossRef]
  13. The PPKTP crystal was fabricated by C. Canalias, V. Pasiskevicius, and F. Laurell, Royal Institute of Technology, Sweden.
  14. The MgO:sPPLT crystal was fabricated by HC Photonics Corporation, Taiwan.
  15. K. Kato and E. Takaoka, "Sellmeier and thermo-optic dispersion formulas for KTP," Appl. Opt. 41, 5040-5044 (2002).
    [CrossRef] [PubMed]
  16. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, "Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalite," Opt. Lett. 28, 194-196 (2003).
    [CrossRef] [PubMed]
  17. M. M.  Fejer, G. A.  Magel, D. H.  Jundt, and R. L.  Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron.  28, 2631-2654 (1992).
    [CrossRef]
  18. G. D.  Boyd and D. A.  Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys.  39, 3597-3639 (1968).
    [CrossRef]
  19. K. Kitamura, Y. Furukawa, S. Takekawa, T. Hatanaka, H. Ito, and V , Gopalan, "Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices," Ferroelectrics 257, 235 -243 (2001)
    [CrossRef]
  20. G. K. Samanta, and M. Ebrahim-Zadeh, "Continuous-wave singly-resonant optical parametric oscillator with resonant wave coupling," Opt. Express 16, 6883-6888 (2008).
    [CrossRef] [PubMed]
  21. Z. M.  Liao, S. A.  Payne, J.  Dawson, A.  Drobschoff, C.  Ebbers, D.  Pennington, and L.  Taylor, "Thermally induced dephasing in periodically poled KTP frequency-doubling crystals," J. Opt. Soc. Am. B  21, 2191-2196 (2004).
    [CrossRef]
  22. H. Hatano, S. Takekawa, S. Kurimura, O. A. Louchev, and K. Kitamura, "Thermal managements for highly efficient SHG with linear input/output characteristics using periodically poled stoichiometric LiTaO3," in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CMBB5.

2009 (2)

2008 (3)

2007 (1)

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

2006 (1)

R. J. Rockwell Jr., M.S., "Designs and functions of laser systems for biomedical applications", in Conference on the laser, Annals of the New York Academy of Sciences,  168, 2 (2006).

2004 (2)

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, "Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate," Jpn. J. Appl. Phys. 43, L1265 -L1267 (2004).
[CrossRef]

Z. M.  Liao, S. A.  Payne, J.  Dawson, A.  Drobschoff, C.  Ebbers, D.  Pennington, and L.  Taylor, "Thermally induced dephasing in periodically poled KTP frequency-doubling crystals," J. Opt. Soc. Am. B  21, 2191-2196 (2004).
[CrossRef]

2003 (1)

2002 (1)

2001 (1)

K. Kitamura, Y. Furukawa, S. Takekawa, T. Hatanaka, H. Ito, and V , Gopalan, "Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices," Ferroelectrics 257, 235 -243 (2001)
[CrossRef]

1992 (2)

M. M.  Fejer, G. A.  Magel, D. H.  Jundt, and R. L.  Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron.  28, 2631-2654 (1992).
[CrossRef]

J.  Golden, "Green lasers score good marks in semiconductor material processing," Laser Focus World.  28, 75 (1992).

1989 (1)

1968 (1)

G. D.  Boyd and D. A.  Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys.  39, 3597-3639 (1968).
[CrossRef]

Alexandrovski, A.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

Bierlein, J. D.

Blau, P.

Boyd, G. D.

G. D.  Boyd and D. A.  Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys.  39, 3597-3639 (1968).
[CrossRef]

Bruner, A.

Byer, R. L.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

M. M.  Fejer, G. A.  Magel, D. H.  Jundt, and R. L.  Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron.  28, 2631-2654 (1992).
[CrossRef]

Canalias, C.

Chaitanya Kumar, S.

Das, R.

Dawson, J.

Drobschoff, A.

Ebbers, C.

Ebrahim-Zadeh, M.

Eger, D.

Fejer, M. M.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

M. M.  Fejer, G. A.  Magel, D. H.  Jundt, and R. L.  Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron.  28, 2631-2654 (1992).
[CrossRef]

Furukawa, Y.

K. Kitamura, Y. Furukawa, S. Takekawa, T. Hatanaka, H. Ito, and V , Gopalan, "Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices," Ferroelectrics 257, 235 -243 (2001)
[CrossRef]

Golden, J.

J.  Golden, "Green lasers score good marks in semiconductor material processing," Laser Focus World.  28, 75 (1992).

Gopalan, V

K. Kitamura, Y. Furukawa, S. Takekawa, T. Hatanaka, H. Ito, and V , Gopalan, "Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices," Ferroelectrics 257, 235 -243 (2001)
[CrossRef]

Hatanaka, T.

K. Kitamura, Y. Furukawa, S. Takekawa, T. Hatanaka, H. Ito, and V , Gopalan, "Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices," Ferroelectrics 257, 235 -243 (2001)
[CrossRef]

Huang, J.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

Hum, D. S.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

Ito, H.

K. Kitamura, Y. Furukawa, S. Takekawa, T. Hatanaka, H. Ito, and V , Gopalan, "Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices," Ferroelectrics 257, 235 -243 (2001)
[CrossRef]

Jundt, D. H.

M. M.  Fejer, G. A.  Magel, D. H.  Jundt, and R. L.  Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron.  28, 2631-2654 (1992).
[CrossRef]

Katagai, T.

Kato, K.

Katz, M.

Kitamura, K.

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, "Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate," Jpn. J. Appl. Phys. 43, L1265 -L1267 (2004).
[CrossRef]

K. Kitamura, Y. Furukawa, S. Takekawa, T. Hatanaka, H. Ito, and V , Gopalan, "Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices," Ferroelectrics 257, 235 -243 (2001)
[CrossRef]

Kleinman, D. A.

G. D.  Boyd and D. A.  Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys.  39, 3597-3639 (1968).
[CrossRef]

Kondilenko, V.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

Kurimura, S.

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, "Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate, " Opt. Express 16, 11294-11299 (2008).
[CrossRef] [PubMed]

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, "Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate," Jpn. J. Appl. Phys. 43, L1265 -L1267 (2004).
[CrossRef]

Laurell, F.

Liao, Z. M.

Magel, G. A.

M. M.  Fejer, G. A.  Magel, D. H.  Jundt, and R. L.  Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron.  28, 2631-2654 (1992).
[CrossRef]

Mathew, M.

Miller, G. D.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

Mio, N.

Moriwaki, S.

Nomura, Y.

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, "Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate," Jpn. J. Appl. Phys. 43, L1265 -L1267 (2004).
[CrossRef]

Ohmae, N.

Oron, M. B.

Pasiskevicius, V.

Payne, S. A.

Pennington, D.

Rockwell, R. J.

R. J. Rockwell Jr., M.S., "Designs and functions of laser systems for biomedical applications", in Conference on the laser, Annals of the New York Academy of Sciences,  168, 2 (2006).

Route, R. K.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

Ruschin, S.

Samanta, G. K.

Suzuki, I.

Takaoka, E.

Takekawa, S.

K. Kitamura, Y. Furukawa, S. Takekawa, T. Hatanaka, H. Ito, and V , Gopalan, "Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices," Ferroelectrics 257, 235 -243 (2001)
[CrossRef]

Takeno, K.

Taylor, L.

Tovstonog, S. V.

Urbanek, K.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

Vanherzeele, H.

Yu, N. E.

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, "Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate," Jpn. J. Appl. Phys. 43, L1265 -L1267 (2004).
[CrossRef]

Annals of the New York Academy of Sciences (1)

R. J. Rockwell Jr., M.S., "Designs and functions of laser systems for biomedical applications", in Conference on the laser, Annals of the New York Academy of Sciences,  168, 2 (2006).

Appl. Opt. (1)

Ferroelectrics (1)

K. Kitamura, Y. Furukawa, S. Takekawa, T. Hatanaka, H. Ito, and V , Gopalan, "Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices," Ferroelectrics 257, 235 -243 (2001)
[CrossRef]

IEEE J. Quantum Elect. (1)

M. M.  Fejer, G. A.  Magel, D. H.  Jundt, and R. L.  Byer, "Quasi-phase-matched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron.  28, 2631-2654 (1992).
[CrossRef]

J. Appl. Phys. (2)

G. D.  Boyd and D. A.  Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys.  39, 3597-3639 (1968).
[CrossRef]

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, "Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion," J. Appl. Phys. 101, 093108 (2007).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, "Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate," Jpn. J. Appl. Phys. 43, L1265 -L1267 (2004).
[CrossRef]

Laser Focus World. (1)

J.  Golden, "Green lasers score good marks in semiconductor material processing," Laser Focus World.  28, 75 (1992).

Opt. Express (2)

Opt. Lett. (4)

Other (6)

R. G. Batchko, G. D. Miller, A. Alexandrovski, M. M. Fejer, and R. L. Byer, In Proceedings of the Conference on Lasers and Electro-Optics, (Optical Society of America, Washington, D.C.,1998), 12, 75 (1998).

K. Yamamoto, H. Furuya, and K. Mizuuchi, "Highly-efficient SHG laser by using periodically poled MgO:LiNbO3 and its application," in proceedings of Lasers and Electro-Optics Society, 693 (IEEE, 2007), paper ThA3.

Z. Sun, G. K. Samanta, G. R. Fayaz, M. Ebrahim-Zadeh, C. Canalias, V. Pasiskevicius, and F. Laurell, "Efficient generation of tunable CW single frequency green radiation by second harmonic generation in periodically-poled KTiOPO4," in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CTuK1.

The PPKTP crystal was fabricated by C. Canalias, V. Pasiskevicius, and F. Laurell, Royal Institute of Technology, Sweden.

The MgO:sPPLT crystal was fabricated by HC Photonics Corporation, Taiwan.

H. Hatano, S. Takekawa, S. Kurimura, O. A. Louchev, and K. Kitamura, "Thermal managements for highly efficient SHG with linear input/output characteristics using periodically poled stoichiometric LiTaO3," in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CMBB5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Experimental setup for single-pass second harmonic generation. FI: Faraday isolator, λ/2: Half-wave plate, PBS: Polarizing beam-splitter, L: Lens, M: Dichroic mirror.

Fig. 2.
Fig. 2.

Temperature tuning curves of (a) PPKTP and (b) MgO:sPPLT, at approximately 1 W of incident fundamental power.

Fig. 3.
Fig. 3.

Temperature tuning curves of (a) PPKTP and (b) MgO:sPPLT at different fundamental power levels.

Fig. 4.
Fig. 4.

Dependence of the phase-matching temperature on fundamental power for PPKTP and MgO:sPPLT crystals.

Fig. 5.
Fig. 5.

Dependence of measured SH power and corresponding conversion efficiency on the incident fundamental power for (a) PPKTP, (b) MgO:sPPLT.

Fig. 6.
Fig. 6.

Variation of the measured SH power with square of the fundamental power for (a) PPKTP, (b) MgO:sPPLT.

Fig. 7.
Fig. 7.

Dependence of the measured average SH power on square of the average fundamental power for (a) PPKTP, (b) MgO:sPPLT.

Fig. 8.
Fig. 8.

Linear transmission of (a, b) PPKTP, and (c, d) MgO:sPPLT at fundamental and SH wavelengths.

Fig. 9.
Fig. 9.

Power stability recorded over one hour at various fundamental power levels for (a) PPKTP, and (b) MgO:sPPLT.

Fig. 10.
Fig. 10.

SHG efficiency and corresponding phase-matching temperature as a function of focusing parameter, ξ=L/b, at a fundamental power of 29.5 W. The filled circles and squares are the experimental data and the solid lines are the best fit to the data. The vertical dashed line corresponds to the optimal focusing condition predicted by theory [18].

Fig. 11.
Fig. 11.

Dependence of (a) measured SH power and corresponding conversion efficiency on the fundamental power and (b) measured SH power on the square of fundamental power.

Fig. 12.
Fig. 12.

(a) Dependence of SHG efficiency on focusing parameter, ξ=L/b, at various fundamental power levels and (b) variation of phase-matching temperature with fundamental power under different focusing conditions.

Fig. 13.
Fig. 13.

SHG efficiency as a function of fundamental power in close-top and open-top crystal holder configurations.

Fig. 14.
Fig. 14.

Instantaneous linewidth of SHG in (a) PPKTP at 25 W of fundamental power, and (b) MgO:sPPLT at 30 W of fundamental power, measured with a scanning confocal Fabry-Perot interferometer.

Fig. 15.
Fig. 15.

Frequency stability of MgO:sPPLT recorded over 90 minutes at 9.6 W of SH power.

Fig. 16.
Fig. 16.

Second harmonic beam profile at a fundamental power of 25 W generated in (a) PPKTP, and (b) MgO:sPPLT.

Fig. 17.
Fig. 17.

Beam quality M 2 values of generated green radiation measured as a function of SH power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔT=0.4429λωL [n2ωTnωTα(n2ωnω)]1 ,

Metrics