Abstract

In this paper, we propose a novel Mach-Zehnder Gires- Tournois interferometer (MZGTI) and a scheme to realize super high extinction ratio flat-top comb filter based on cascaded MZGTIs. Two sets of novel multi-cavity transmissive Gires-Tournois etalon (MCT-GTE) composed of cascaded Mach-Zehnder interferometer loops are added to the two arms of Mach-Zehnder interferometer (MZI) respectively, which forms a new MZI, i.e., MZGTI. MZGTI has the same characteristics as Michelson-Gires-Tournois interferometer (MGTI), which is suitable for dense wavelength division multiplexing systems. The super-high extinction ratio comb filter (SHERCF) we proposed has good passband flatness and wide bandwidth (passband or stopband bandwidth) when the extinction ratio is fairly high, which is quite superior to MGTI or MZGTI. For the severe chromatic dispersion problems, we propose a set of multi-cavity ring resonator (MC-RR) as a tunable dispersion compensator (TDC) for MZGTI, which is a set of cascaded ring resonators. Moreover, we demonstrate that a set of cascaded MC-RRs is an efficient dispersion compensator for SHERCF with the optimized results.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. R. Chen, “Tunable multiwavelength fiber ring lasers using a programmable high- birefringence fiber loop mirror,” IEEE Photon. Technol. Lett. 16(2), 410–412 (2004).
    [CrossRef]
  2. W. J. Carlsen and C. F. Buhrer, “Flat passband birefringent wavelength-division multiplexers,” Electron. Lett. 23(3), 106–107 (1987).
    [CrossRef]
  3. R. R. Willey, “Achieving narrow bandpass filters which meet the requirements for DWDM,” Thin Solid Films 398-399, 1–9 (2001).
    [CrossRef]
  4. D. W. Huang, T. H. Chiu and Y. Lai, “Arrayed waveguide grating DWDM interleaver,” OFC, Anaheim, California, WDD80(2001).
  5. M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200-GHz FSR periodic multi/ demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12(9), 1174–1176 (2000).
    [CrossRef]
  6. K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided- wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
    [CrossRef]
  7. K. Jinguji and M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18(2), 252–259 (2000).
    [CrossRef]
  8. J. J. Pan and Y. Shi, “Dense WDM multiplexer and demultiplexer with 0.4nm channel spacing,” Electron. Lett. 34(1), 74–75 (1998).
    [CrossRef]
  9. R. Kashyap, “A simplified approach to the Bragg grating based Michelson and the in-coupler Bragg grating add-drop multiplexer,” OFC, San Diego, CA, TuN3 (1999).
  10. M. Kuznetsov, “Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division- multiplexed optical systems,” J. Lightwave Technol. 12(2), 226–230 (1994).
    [CrossRef]
  11. Y. L. Huang, J. Li, G. Y. Kai, and X. Y. Dong, “High extinction ratio multiplexer/demultiplexer with a Mach-Zehnder interferometer and a fiber loop mirror,” Chin. Opt. Lett. 1, 63–64 (2003).
  12. Q. J. Wang, Y. Zhang and Y. C. Soh, “An efficient all-fiber interleaving filter using fiber Gires- Tournois etalons on a Michelson interferometer,” OFC, Anaheim, California, OW170(2006).
  13. C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
    [CrossRef]
  14. L. Wei and J. W. Y. Lit, “Design optimization of flattop interleaver and its dispersion compensation,” Opt. Express 15(10), 6439–6457 (2007).
    [CrossRef] [PubMed]
  15. L. Wei, Z. Huang, and J. W. Y. Lit, “Dispersion compensation using mismatched multicavity etalon all-pass filter,” Opt. Commun. 274(1), 124–129 (2007).
    [CrossRef]
  16. D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber dispersion and dispersion slope compensation in a 40-channel 10-Gb/s 3200-km transmission experiment using cascaded single-cavity Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 16(1), 299–301 (2004).
    [CrossRef]
  17. X. W. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. J. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15(8), 1111–1113 (2003).
  18. M. Shirasaki, “chromatic-dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett. 9(12), 1598–1600 (1997).
    [CrossRef]
  19. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
    [CrossRef]
  20. O. Schwelb, “Transmission,group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview,” J. Lightwave Technol. 22(5), 1380–1394 (2004).
    [CrossRef]
  21. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22(5), 391–416 (1990).
    [CrossRef]
  22. Z. P. Wang and Y. J. Chen, “Thermal properties and passband improvement of high index contrast micro-ring resonator by phase error correction,” ECOC, Glasgow, Scotland, We4. P.44(2005).

2007 (2)

L. Wei and J. W. Y. Lit, “Design optimization of flattop interleaver and its dispersion compensation,” Opt. Express 15(10), 6439–6457 (2007).
[CrossRef] [PubMed]

L. Wei, Z. Huang, and J. W. Y. Lit, “Dispersion compensation using mismatched multicavity etalon all-pass filter,” Opt. Commun. 274(1), 124–129 (2007).
[CrossRef]

2004 (4)

D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber dispersion and dispersion slope compensation in a 40-channel 10-Gb/s 3200-km transmission experiment using cascaded single-cavity Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 16(1), 299–301 (2004).
[CrossRef]

O. Schwelb, “Transmission,group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview,” J. Lightwave Technol. 22(5), 1380–1394 (2004).
[CrossRef]

L. R. Chen, “Tunable multiwavelength fiber ring lasers using a programmable high- birefringence fiber loop mirror,” IEEE Photon. Technol. Lett. 16(2), 410–412 (2004).
[CrossRef]

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
[CrossRef]

2003 (2)

Y. L. Huang, J. Li, G. Y. Kai, and X. Y. Dong, “High extinction ratio multiplexer/demultiplexer with a Mach-Zehnder interferometer and a fiber loop mirror,” Chin. Opt. Lett. 1, 63–64 (2003).

X. W. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. J. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15(8), 1111–1113 (2003).

2001 (1)

R. R. Willey, “Achieving narrow bandpass filters which meet the requirements for DWDM,” Thin Solid Films 398-399, 1–9 (2001).
[CrossRef]

2000 (2)

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200-GHz FSR periodic multi/ demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12(9), 1174–1176 (2000).
[CrossRef]

K. Jinguji and M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18(2), 252–259 (2000).
[CrossRef]

1999 (1)

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
[CrossRef]

1998 (1)

J. J. Pan and Y. Shi, “Dense WDM multiplexer and demultiplexer with 0.4nm channel spacing,” Electron. Lett. 34(1), 74–75 (1998).
[CrossRef]

1997 (1)

M. Shirasaki, “chromatic-dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett. 9(12), 1598–1600 (1997).
[CrossRef]

1994 (1)

M. Kuznetsov, “Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division- multiplexed optical systems,” J. Lightwave Technol. 12(2), 226–230 (1994).
[CrossRef]

1990 (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22(5), 391–416 (1990).
[CrossRef]

1988 (1)

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided- wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
[CrossRef]

1987 (1)

W. J. Carlsen and C. F. Buhrer, “Flat passband birefringent wavelength-division multiplexers,” Electron. Lett. 23(3), 106–107 (1987).
[CrossRef]

Barbarossa, G.

D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber dispersion and dispersion slope compensation in a 40-channel 10-Gb/s 3200-km transmission experiment using cascaded single-cavity Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 16(1), 299–301 (2004).
[CrossRef]

Bennion, I.

X. W. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. J. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15(8), 1111–1113 (2003).

Bruce, A. J.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
[CrossRef]

Buhrer, C. F.

W. J. Carlsen and C. F. Buhrer, “Flat passband birefringent wavelength-division multiplexers,” Electron. Lett. 23(3), 106–107 (1987).
[CrossRef]

Byron, K.

X. W. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. J. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15(8), 1111–1113 (2003).

Cappuzzo, M. A.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
[CrossRef]

Carlsen, W. J.

W. J. Carlsen and C. F. Buhrer, “Flat passband birefringent wavelength-division multiplexers,” Electron. Lett. 23(3), 106–107 (1987).
[CrossRef]

Chen, L. R.

L. R. Chen, “Tunable multiwavelength fiber ring lasers using a programmable high- birefringence fiber loop mirror,” IEEE Photon. Technol. Lett. 16(2), 410–412 (2004).
[CrossRef]

Chen, W.

D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber dispersion and dispersion slope compensation in a 40-channel 10-Gb/s 3200-km transmission experiment using cascaded single-cavity Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 16(1), 299–301 (2004).
[CrossRef]

Cheng, W. H.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
[CrossRef]

Dong, X. Y.

Felmeri, I.

X. W. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. J. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15(8), 1111–1113 (2003).

Gomez, L. T.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
[CrossRef]

Hsieh, C. H.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
[CrossRef]

Huang, S. Y.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
[CrossRef]

Huang, Y. L.

Huang, Z.

L. Wei, Z. Huang, and J. W. Y. Lit, “Dispersion compensation using mismatched multicavity etalon all-pass filter,” Opt. Commun. 274(1), 124–129 (2007).
[CrossRef]

Huang, Z. J.

X. W. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. J. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15(8), 1111–1113 (2003).

Jinguji, K.

Kadota, Y.

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200-GHz FSR periodic multi/ demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12(9), 1174–1176 (2000).
[CrossRef]

Kai, G. Y.

Kawachi, M.

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22(5), 391–416 (1990).
[CrossRef]

Khrushchev, I.

X. W. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. J. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15(8), 1111–1113 (2003).

Kohtoku, M.

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200-GHz FSR periodic multi/ demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12(9), 1174–1176 (2000).
[CrossRef]

Kuznetsov, M.

M. Kuznetsov, “Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division- multiplexed optical systems,” J. Lightwave Technol. 12(2), 226–230 (1994).
[CrossRef]

Lee, C. W.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
[CrossRef]

Lenz, G.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
[CrossRef]

Li, J.

Lin, C.

D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber dispersion and dispersion slope compensation in a 40-channel 10-Gb/s 3200-km transmission experiment using cascaded single-cavity Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 16(1), 299–301 (2004).
[CrossRef]

Lit, J. W. Y.

L. Wei, Z. Huang, and J. W. Y. Lit, “Dispersion compensation using mismatched multicavity etalon all-pass filter,” Opt. Commun. 274(1), 124–129 (2007).
[CrossRef]

L. Wei and J. W. Y. Lit, “Design optimization of flattop interleaver and its dispersion compensation,” Opt. Express 15(10), 6439–6457 (2007).
[CrossRef] [PubMed]

Lloyd, G.

X. W. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. J. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15(8), 1111–1113 (2003).

Madsen, C. K.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
[CrossRef]

Mitchell, J.

X. W. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. J. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15(8), 1111–1113 (2003).

Nosu, K.

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided- wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
[CrossRef]

Oda, K.

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided- wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
[CrossRef]

Oguma, M.

Oku, S.

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200-GHz FSR periodic multi/ demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12(9), 1174–1176 (2000).
[CrossRef]

Pan, J. J.

J. J. Pan and Y. Shi, “Dense WDM multiplexer and demultiplexer with 0.4nm channel spacing,” Electron. Lett. 34(1), 74–75 (1998).
[CrossRef]

Rhead, P.

X. W. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. J. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15(8), 1111–1113 (2003).

Schwelb, O.

Scotti, R. E.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
[CrossRef]

Shi, Y.

J. J. Pan and Y. Shi, “Dense WDM multiplexer and demultiplexer with 0.4nm channel spacing,” Electron. Lett. 34(1), 74–75 (1998).
[CrossRef]

Shibata, Y.

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200-GHz FSR periodic multi/ demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12(9), 1174–1176 (2000).
[CrossRef]

Shirasaki, M.

M. Shirasaki, “chromatic-dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett. 9(12), 1598–1600 (1997).
[CrossRef]

Shu, X. W.

X. W. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. J. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15(8), 1111–1113 (2003).

Sugden, K.

X. W. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. J. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15(8), 1111–1113 (2003).

Takato, N.

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided- wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
[CrossRef]

Toba, H.

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided- wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
[CrossRef]

Wang, R.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
[CrossRef]

Wei, L.

L. Wei and J. W. Y. Lit, “Design optimization of flattop interleaver and its dispersion compensation,” Opt. Express 15(10), 6439–6457 (2007).
[CrossRef] [PubMed]

L. Wei, Z. Huang, and J. W. Y. Lit, “Dispersion compensation using mismatched multicavity etalon all-pass filter,” Opt. Commun. 274(1), 124–129 (2007).
[CrossRef]

Willey, R. R.

R. R. Willey, “Achieving narrow bandpass filters which meet the requirements for DWDM,” Thin Solid Films 398-399, 1–9 (2001).
[CrossRef]

Yang, D.

D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber dispersion and dispersion slope compensation in a 40-channel 10-Gb/s 3200-km transmission experiment using cascaded single-cavity Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 16(1), 299–301 (2004).
[CrossRef]

Yeh, P.

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
[CrossRef]

Yoshikuni, Y.

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200-GHz FSR periodic multi/ demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12(9), 1174–1176 (2000).
[CrossRef]

Chin. Opt. Lett. (1)

Electron. Lett. (2)

W. J. Carlsen and C. F. Buhrer, “Flat passband birefringent wavelength-division multiplexers,” Electron. Lett. 23(3), 106–107 (1987).
[CrossRef]

J. J. Pan and Y. Shi, “Dense WDM multiplexer and demultiplexer with 0.4nm channel spacing,” Electron. Lett. 34(1), 74–75 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

L. R. Chen, “Tunable multiwavelength fiber ring lasers using a programmable high- birefringence fiber loop mirror,” IEEE Photon. Technol. Lett. 16(2), 410–412 (2004).
[CrossRef]

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200-GHz FSR periodic multi/ demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12(9), 1174–1176 (2000).
[CrossRef]

D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber dispersion and dispersion slope compensation in a 40-channel 10-Gb/s 3200-km transmission experiment using cascaded single-cavity Gires-Tournois Etalons,” IEEE Photon. Technol. Lett. 16(1), 299–301 (2004).
[CrossRef]

X. W. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. J. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15(8), 1111–1113 (2003).

M. Shirasaki, “chromatic-dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett. 9(12), 1598–1600 (1997).
[CrossRef]

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999).
[CrossRef]

J. Lightwave Technol. (4)

O. Schwelb, “Transmission,group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview,” J. Lightwave Technol. 22(5), 1380–1394 (2004).
[CrossRef]

K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided- wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 6(6), 1016–1023 (1988).
[CrossRef]

K. Jinguji and M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18(2), 252–259 (2000).
[CrossRef]

M. Kuznetsov, “Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division- multiplexed optical systems,” J. Lightwave Technol. 12(2), 226–230 (1994).
[CrossRef]

Opt. Commun. (2)

C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237(4-6), 285–293 (2004).
[CrossRef]

L. Wei, Z. Huang, and J. W. Y. Lit, “Dispersion compensation using mismatched multicavity etalon all-pass filter,” Opt. Commun. 274(1), 124–129 (2007).
[CrossRef]

Opt. Express (1)

Opt. Quantum Electron. (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22(5), 391–416 (1990).
[CrossRef]

Thin Solid Films (1)

R. R. Willey, “Achieving narrow bandpass filters which meet the requirements for DWDM,” Thin Solid Films 398-399, 1–9 (2001).
[CrossRef]

Other (4)

D. W. Huang, T. H. Chiu and Y. Lai, “Arrayed waveguide grating DWDM interleaver,” OFC, Anaheim, California, WDD80(2001).

R. Kashyap, “A simplified approach to the Bragg grating based Michelson and the in-coupler Bragg grating add-drop multiplexer,” OFC, San Diego, CA, TuN3 (1999).

Z. P. Wang and Y. J. Chen, “Thermal properties and passband improvement of high index contrast micro-ring resonator by phase error correction,” ECOC, Glasgow, Scotland, We4. P.44(2005).

Q. J. Wang, Y. Zhang and Y. C. Soh, “An efficient all-fiber interleaving filter using fiber Gires- Tournois etalons on a Michelson interferometer,” OFC, Anaheim, California, OW170(2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Three schematic diagrams of the proposed SHERCF, i.e., p-mn-MZGTI: (a)p is an arbitrary integer; (b)p is an even integer; (c)p is an odd integer

Fig. 2.
Fig. 2.

Schematic diagram of mn-MZGTI

Fig. 3.
Fig. 3.

Schematic diagram of MCT-GTEn

Fig. 4.
Fig. 4.

the normalized intensity of 22-MZGTI and the two SHERCFs, i.e., 1-22-MZGTI and 2-22-MZGTI: (a) detailed passband, and (b) two periods

Fig. 5.
Fig. 5.

CD curves for 22-MZGTI and the two SHERCFs, i.e.,1-22-MZGTI and 2-22-MZGTI

Fig. 6.
Fig. 6.

Schematic diagram of the proposed TDC,i.e., MC-RRu 3.1 MC-RRu

Fig. 7.
Fig. 7.

Schematic diagram of the CD compensator for SHERCF,i.e., 2p-MC-RRu

Fig. 8.
Fig. 8.

Saving type of CD compensator for SHERCF,i.e.,2p-MC-RRu

Fig. 9.
Fig. 9.

(a). CD curves of 22-MZGTI,the two SHERCFs and their corresponding CD compensators when the dispersion ripple is fixed at ± 1ps/nm ; (b) compensated CD curves of 22-MZGTI and the two SHERCFs; (c)Details of the quasi-flat dispersion region in (b).

Fig. 10.
Fig. 10.

Bandwidth ratio versus dispersion ripple for 22-MZGTI(w=1) and the two SHERCFs(w=2 and 4) using w-MC-RR4

Fig. 11.
Fig. 11.

Optimized parameters ci r versus dispersion ripple for w-MC-RR4(w=1,2 or 4)

Tables (3)

Tables Icon

Table 1. parameters ri for 22-MZGTI

Tables Icon

Table 2. Indices for 22-MZGTI and the two SHERCFs,i.e.,1-22-MZGTI and 2-22-MZGTI

Tables Icon

Table 3. Bandwidth ratios for 22-MZGTI and the two SHERCFs compensated by different compensators (dispersion ripple=± 1ps/nm)

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

A=eiβlMZi(zijxijxizi)
{zi=Ki1Ki2(1Ki1)(1Ki2)xi=(1Ki1)Ki2+Ki1(1Ki2)
tn=(1)nejβlMZnrn+ej2δej2ϕn11+rnej2δej2ϕn1=(1)nejβlMZnej2ϕn
ϕn=arctan [antan(δϕn1)]
{Ibar=[1cos(2ϕm2θn+δ)]2Icross=[1+cos(2ϕm2θn+δ)]2
Θmn=ϕm+θn
{Ioa=(Ibar)2p(pisaninteger)Iob=(Icross)2p(piseven)Ioc=(Icross)2p(pisodd)
Ψ=2pΘmn
GDn=cn(τ+GDn1) (n1)
cn=an1+(an21)sin2(δϕn1)
CDn=τh[gn(GDnτcn)2+cn(CDn1τh)] (n1)
gn=an(an21)sin2(δϕn1)[1+(an21)sin2(δϕn1)]2
tcu=ejβlcurcuej2δcej2δϕc(ui)1rcuej2δcej2ϕc(u1)=ejβlcuej2ϕcu
ϕcu=arctan [fucot(δcϕc(u1))]
GDcu=ccu (τc+GDc(u1)) (u1)
Ccu=fu1+(fu21)cos2(δcϕc(u1))
CDcu=τchc[gcu(GDcuτccu)2+ccu(CDc(u1)τchc)] (u1)
gcu=fu(fu21)sin2(δcϕc(u1))[1+(fu21)cos2(δcϕc(u1))]2

Metrics