Abstract

Near field light focusing by two-dimensional isosceles triangle shaped stack of silver plasmon-polaritons waveguides is being investigated numerically with full-vectorial Finite Difference Time Domain method for H-polarized light and wavelength λ=500 nm. For wide angle of tip, results are in good agreement with theoretically predicted propagation constant of light in stack and while discrepancy becomes significant for smaller angle. Physical phenomena of refraction and interference, similar to ones in dielectric axicons lead to conversion of a Gaussian beam incident on the flat side of the stack into a narrow light jet behind the structure sharp edge. The beam is concentrated into long focal region of 0.37 λ width and enhancement of field amplitude is achieved in spite of significant absorption in the structure. The results are compared with bulk dielectric structure.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics. Fundamentals and Applications (Springer, Berlin 2007).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
    [CrossRef]
  4. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  5. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [CrossRef] [PubMed]
  6. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [CrossRef]
  7. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79(3), 035120 (2009).
    [CrossRef]
  8. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
    [CrossRef]
  9. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6815 .
    [CrossRef] [PubMed]
  10. R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102(20), 207402 (2009).
    [CrossRef] [PubMed]
  11. X. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as plasmon lenses,” Opt. Lett. 31(9), 1322–1324 (2006).
    [CrossRef] [PubMed]
  12. X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
    [CrossRef] [PubMed]
  13. W. M. Saj, “Light focusing with tip formed array of plasmon-polariton waveguides,” Proc. SPIE 6641, 664120 (2007).
    [CrossRef]
  14. H. Kurt, “Limited-diffraction light propagation with axicon-shape photonic crystals,” J. Opt. Soc. Am. B 26(5), 981–986 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=josab-26-5-981 .
    [CrossRef]
  15. C. Rockstuhl, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Metamaterial nanotips,” Appl. Phys. Lett. 94(11), 113110 (2009).
    [CrossRef]
  16. J. H. McLeod, “The Axicon: A New Type of Optical Element,” J. Opt. Soc. Am. 44(8), 592 (1954), http://www.opticsinfobase.org/abstract.cfm?URI=josa-44-8-592 .
    [CrossRef]
  17. Z. Jaroszewicz, A. Burvall, and A. T. Friberg, “Axicon - the Most Important Optical Element,” Opt. Photonics News 16, 34–39 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=OPN-16-4-34
    [CrossRef]
  18. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8(6), 932–942 (1991), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-8-6-932 .
    [CrossRef]
  19. Y.-J. Yu, H. Noh, M.-H. Hong, H.-R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle,” Opt. Commun. 267(1), 264–270 (2006).
    [CrossRef]
  20. T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. 229(2), 354–364 (2008).
    [CrossRef] [PubMed]
  21. A. E. Martirosyan, C. Altucci, C. de Lisio, A. Porzio, S. Solimeno, and V. Tosa, “Fringe pattern of the field diffracted by axicons,” J. Opt. Soc. Am. A 21(5), 770–776 (2004), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-5-770 .
    [CrossRef]
  22. C Zheng, Y Zhang, and D Zhao,” Calculation of the vectorial field distribution of an axicon illuminated by a linearly polarized Guassian beam,” Optik 117,3, 118–122 (2006).
    [CrossRef]
  23. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
    [CrossRef] [PubMed]
  24. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-7-1214 .
    [CrossRef] [PubMed]
  25. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16(18), 14200–14212 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-18-14200 .
    [CrossRef] [PubMed]
  26. A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
    [CrossRef] [PubMed]
  27. T. T. Minh, K. Tanaka, and M. Tanaka, “Complex propagation constants of surface plasmon polariton rectangular waveguide by method of lines,” Opt. Express 16(13), 9378–9390 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9378 .
    [CrossRef] [PubMed]
  28. M. S. Kushwaha and B. Djafari-Rouhani, “Plasma excitations in multicoaxial cables,” Phys. Rev. B 71(15), 153316 (2005).
    [CrossRef]
  29. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
    [CrossRef]
  30. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, MA 2000).
  31. P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  32. A. Hohenau, A. Drezet, M. Weissenbacher, F. R. Aussenegg, and J. R. Krenn, “Effects of damping on surface-plasmon pulse propagation and refraction,” Phys. Rev. B 78(15), 155405 (2008).
    [CrossRef]
  33. D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, “Enhanced diffraction from a grating on the surface of a negative-index metamaterial,” Phys. Rev. Lett. 93(13), 137405 (2004).
    [CrossRef] [PubMed]
  34. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  35. A. Rubinowicz, “Thomas Young and the Theory of Diffraction,” Nature 180(4578), 160–162 (1957).
    [CrossRef]

2009

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79(3), 035120 (2009).
[CrossRef]

R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102(20), 207402 (2009).
[CrossRef] [PubMed]

H. Kurt, “Limited-diffraction light propagation with axicon-shape photonic crystals,” J. Opt. Soc. Am. B 26(5), 981–986 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=josab-26-5-981 .
[CrossRef]

C. Rockstuhl, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Metamaterial nanotips,” Appl. Phys. Lett. 94(11), 113110 (2009).
[CrossRef]

2008

T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. 229(2), 354–364 (2008).
[CrossRef] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16(18), 14200–14212 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-18-14200 .
[CrossRef] [PubMed]

T. T. Minh, K. Tanaka, and M. Tanaka, “Complex propagation constants of surface plasmon polariton rectangular waveguide by method of lines,” Opt. Express 16(13), 9378–9390 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9378 .
[CrossRef] [PubMed]

A. Hohenau, A. Drezet, M. Weissenbacher, F. R. Aussenegg, and J. R. Krenn, “Effects of damping on surface-plasmon pulse propagation and refraction,” Phys. Rev. B 78(15), 155405 (2008).
[CrossRef]

2007

W. M. Saj, “Light focusing with tip formed array of plasmon-polariton waveguides,” Proc. SPIE 6641, 664120 (2007).
[CrossRef]

2006

Y.-J. Yu, H. Noh, M.-H. Hong, H.-R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle,” Opt. Commun. 267(1), 264–270 (2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

X. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as plasmon lenses,” Opt. Lett. 31(9), 1322–1324 (2006).
[CrossRef] [PubMed]

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[CrossRef] [PubMed]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[CrossRef] [PubMed]

C Zheng, Y Zhang, and D Zhao,” Calculation of the vectorial field distribution of an axicon illuminated by a linearly polarized Guassian beam,” Optik 117,3, 118–122 (2006).
[CrossRef]

2005

2004

A. E. Martirosyan, C. Altucci, C. de Lisio, A. Porzio, S. Solimeno, and V. Tosa, “Fringe pattern of the field diffracted by axicons,” J. Opt. Soc. Am. A 21(5), 770–776 (2004), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-5-770 .
[CrossRef]

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[CrossRef]

D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, “Enhanced diffraction from a grating on the surface of a negative-index metamaterial,” Phys. Rev. Lett. 93(13), 137405 (2004).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-7-1214 .
[CrossRef] [PubMed]

2003

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

1991

1972

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1957

A. Rubinowicz, “Thomas Young and the Theory of Diffraction,” Nature 180(4578), 160–162 (1957).
[CrossRef]

1954

Altucci, C.

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Arakawa, Y.

Y.-J. Yu, H. Noh, M.-H. Hong, H.-R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle,” Opt. Commun. 267(1), 264–270 (2006).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Aussenegg, F. R.

A. Hohenau, A. Drezet, M. Weissenbacher, F. R. Aussenegg, and J. R. Krenn, “Effects of damping on surface-plasmon pulse propagation and refraction,” Phys. Rev. B 78(15), 155405 (2008).
[CrossRef]

Backman, V.

Baida, F. I.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Belkhir, A.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

Bonod, N.

Brongersma, M. L.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Chan, C. T.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[CrossRef] [PubMed]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Charraut, D.

T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. 229(2), 354–364 (2008).
[CrossRef] [PubMed]

Chen, Z.

Christy, R.

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Courjon, D.

T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. 229(2), 354–364 (2008).
[CrossRef] [PubMed]

de Lisio, C.

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devilez, A.

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Djafari-Rouhani, B.

M. S. Kushwaha and B. Djafari-Rouhani, “Plasma excitations in multicoaxial cables,” Phys. Rev. B 71(15), 153316 (2005).
[CrossRef]

Dong, X.

Drezet, A.

A. Hohenau, A. Drezet, M. Weissenbacher, F. R. Aussenegg, and J. R. Krenn, “Effects of damping on surface-plasmon pulse propagation and refraction,” Phys. Rev. B 78(15), 155405 (2008).
[CrossRef]

Du, C.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Fahys, A.

T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. 229(2), 354–364 (2008).
[CrossRef] [PubMed]

Fan, S.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79(3), 035120 (2009).
[CrossRef]

Fan, X.

X. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as plasmon lenses,” Opt. Lett. 31(9), 1322–1324 (2006).
[CrossRef] [PubMed]

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[CrossRef] [PubMed]

Gao, H.

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Gordon, R.

R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102(20), 207402 (2009).
[CrossRef] [PubMed]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Grosjean, T.

T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. 229(2), 354–364 (2008).
[CrossRef] [PubMed]

Herman, R. M.

Hibbins, A. P.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[CrossRef] [PubMed]

Hohenau, A.

A. Hohenau, A. Drezet, M. Weissenbacher, F. R. Aussenegg, and J. R. Krenn, “Effects of damping on surface-plasmon pulse propagation and refraction,” Phys. Rev. B 78(15), 155405 (2008).
[CrossRef]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Hong, M.-H.

Y.-J. Yu, H. Noh, M.-H. Hong, H.-R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle,” Opt. Commun. 267(1), 264–270 (2006).
[CrossRef]

Hooper, I. R.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[CrossRef] [PubMed]

Jhe, W.

Y.-J. Yu, H. Noh, M.-H. Hong, H.-R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle,” Opt. Commun. 267(1), 264–270 (2006).
[CrossRef]

Johnson, P.

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kim, H. K.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[CrossRef]

Kocabas, S. E.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79(3), 035120 (2009).
[CrossRef]

Krenn, J. R.

A. Hohenau, A. Drezet, M. Weissenbacher, F. R. Aussenegg, and J. R. Krenn, “Effects of damping on surface-plasmon pulse propagation and refraction,” Phys. Rev. B 78(15), 155405 (2008).
[CrossRef]

Kurt, H.

Kushwaha, M. S.

M. S. Kushwaha and B. Djafari-Rouhani, “Plasma excitations in multicoaxial cables,” Phys. Rev. B 71(15), 153316 (2005).
[CrossRef]

Lamrous, O.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

Lederer, F.

C. Rockstuhl, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Metamaterial nanotips,” Appl. Phys. Lett. 94(11), 113110 (2009).
[CrossRef]

Lee, J. C. W.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[CrossRef] [PubMed]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Lockyear, M. J.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[CrossRef] [PubMed]

Luo, X.

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Martirosyan, A. E.

McLeod, J. H.

Miller, D. A. B.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79(3), 035120 (2009).
[CrossRef]

Minh, T. T.

Mock, J. J.

D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, “Enhanced diffraction from a grating on the surface of a negative-index metamaterial,” Phys. Rev. Lett. 93(13), 137405 (2004).
[CrossRef] [PubMed]

Noh, H.

Y.-J. Yu, H. Noh, M.-H. Hong, H.-R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle,” Opt. Commun. 267(1), 264–270 (2006).
[CrossRef]

Noh, H.-R.

Y.-J. Yu, H. Noh, M.-H. Hong, H.-R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle,” Opt. Commun. 267(1), 264–270 (2006).
[CrossRef]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Popov, E.

Porzio, A.

Rockstuhl, C.

C. Rockstuhl, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Metamaterial nanotips,” Appl. Phys. Lett. 94(11), 113110 (2009).
[CrossRef]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Rubinowicz, A.

A. Rubinowicz, “Thomas Young and the Theory of Diffraction,” Nature 180(4578), 160–162 (1957).
[CrossRef]

Rye, P. M.

D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, “Enhanced diffraction from a grating on the surface of a negative-index metamaterial,” Phys. Rev. Lett. 93(13), 137405 (2004).
[CrossRef] [PubMed]

Saj, W. M.

W. M. Saj, “Light focusing with tip formed array of plasmon-polariton waveguides,” Proc. SPIE 6641, 664120 (2007).
[CrossRef]

Salut, R.

T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. 229(2), 354–364 (2008).
[CrossRef] [PubMed]

Sambles, J. R.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[CrossRef] [PubMed]

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Shi, H.

Simovski, C. R.

C. Rockstuhl, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Metamaterial nanotips,” Appl. Phys. Lett. 94(11), 113110 (2009).
[CrossRef]

Smith, D. R.

D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, “Enhanced diffraction from a grating on the surface of a negative-index metamaterial,” Phys. Rev. Lett. 93(13), 137405 (2004).
[CrossRef] [PubMed]

Solimeno, S.

Starr, A. F.

D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, “Enhanced diffraction from a grating on the surface of a negative-index metamaterial,” Phys. Rev. Lett. 93(13), 137405 (2004).
[CrossRef] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Stout, B.

Suarez, M.

T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. 229(2), 354–364 (2008).
[CrossRef] [PubMed]

Sun, Z.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Taflove, A.

Tanaka, K.

Tanaka, M.

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Tosa, V.

Tretyakov, S. A.

C. Rockstuhl, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Metamaterial nanotips,” Appl. Phys. Lett. 94(11), 113110 (2009).
[CrossRef]

Van Labeke, D.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

Veronis, G.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79(3), 035120 (2009).
[CrossRef]

Vier, D. C.

D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, “Enhanced diffraction from a grating on the surface of a negative-index metamaterial,” Phys. Rev. Lett. 93(13), 137405 (2004).
[CrossRef] [PubMed]

Wang, C.

Wang, G. P.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[CrossRef] [PubMed]

X. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as plasmon lenses,” Opt. Lett. 31(9), 1322–1324 (2006).
[CrossRef] [PubMed]

Weissenbacher, M.

A. Hohenau, A. Drezet, M. Weissenbacher, F. R. Aussenegg, and J. R. Krenn, “Effects of damping on surface-plasmon pulse propagation and refraction,” Phys. Rev. B 78(15), 155405 (2008).
[CrossRef]

Wiggins, T. A.

Yu, Y.-J.

Y.-J. Yu, H. Noh, M.-H. Hong, H.-R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle,” Opt. Commun. 267(1), 264–270 (2006).
[CrossRef]

Zhang, Y

C Zheng, Y Zhang, and D Zhao,” Calculation of the vectorial field distribution of an axicon illuminated by a linearly polarized Guassian beam,” Optik 117,3, 118–122 (2006).
[CrossRef]

Zhao,, D

C Zheng, Y Zhang, and D Zhao,” Calculation of the vectorial field distribution of an axicon illuminated by a linearly polarized Guassian beam,” Optik 117,3, 118–122 (2006).
[CrossRef]

Zheng, C

C Zheng, Y Zhang, and D Zhao,” Calculation of the vectorial field distribution of an axicon illuminated by a linearly polarized Guassian beam,” Optik 117,3, 118–122 (2006).
[CrossRef]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Appl. Phys. Lett.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[CrossRef]

C. Rockstuhl, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Metamaterial nanotips,” Appl. Phys. Lett. 94(11), 113110 (2009).
[CrossRef]

Chem. Rev.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

J. Microsc.

T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. 229(2), 354–364 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Mater. Today

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

A. Rubinowicz, “Thomas Young and the Theory of Diffraction,” Nature 180(4578), 160–162 (1957).
[CrossRef]

Opt. Commun.

Y.-J. Yu, H. Noh, M.-H. Hong, H.-R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle,” Opt. Commun. 267(1), 264–270 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Optik

C Zheng, Y Zhang, and D Zhao,” Calculation of the vectorial field distribution of an axicon illuminated by a linearly polarized Guassian beam,” Optik 117,3, 118–122 (2006).
[CrossRef]

Phys. Rev. B

M. S. Kushwaha and B. Djafari-Rouhani, “Plasma excitations in multicoaxial cables,” Phys. Rev. B 71(15), 153316 (2005).
[CrossRef]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

A. Hohenau, A. Drezet, M. Weissenbacher, F. R. Aussenegg, and J. R. Krenn, “Effects of damping on surface-plasmon pulse propagation and refraction,” Phys. Rev. B 78(15), 155405 (2008).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79(3), 035120 (2009).
[CrossRef]

Phys. Rev. Lett.

R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102(20), 207402 (2009).
[CrossRef] [PubMed]

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[CrossRef] [PubMed]

D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, “Enhanced diffraction from a grating on the surface of a negative-index metamaterial,” Phys. Rev. Lett. 93(13), 137405 (2004).
[CrossRef] [PubMed]

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Proc. SPIE

W. M. Saj, “Light focusing with tip formed array of plasmon-polariton waveguides,” Proc. SPIE 6641, 664120 (2007).
[CrossRef]

Science

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Other

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, MA 2000).

Z. Jaroszewicz, A. Burvall, and A. T. Friberg, “Axicon - the Most Important Optical Element,” Opt. Photonics News 16, 34–39 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=OPN-16-4-34
[CrossRef]

S. A. Maier, Plasmonics. Fundamentals and Applications (Springer, Berlin 2007).

Supplementary Material (1)

» Media 1: AVI (947 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The general outlook of examined configuration and symbols used in this work. We consider interaction of H-polarized light with two dimensional, uniform in z direction stack with dielectric channel width d=50 nm, silver layer thickness p=50 nm and various angles α.

Fig. 2.
Fig. 2.

Dependence of primary mode propagation constant on the geometrical parameters of waveguides stack: d - dielectric channel width, p - metal layer thickne

Fig. 3.
Fig. 3.

Comparison of Snell law predictions and FDTD obtained direction of energy at points distant λ/2 from stack slope. Size of each dot for FDTD results is proportional to the total energy in observation point. Structure angle line separates points where energy is directed to and from the stack.

Fig. 4.
Fig. 4.

Magnetic field Hz for steady state solution: amplitude, phase and imaginary part. The phase and imaginary pictures reveal the refracted wave pattern close to the surface of structure slopes, the interference pattern with sharp phase shifts beyond the edge and the edge sourced pattern of cylindrical wave.

Fig. 5.
Fig. 5.

Steady state energy flow in x direction for various angles of stack slope α (top left) 80°, (top right) 120° and for comparison purposes (bottom left) incident Gaussian beam propagation without structure in area of simulation. White lines mark energy streamlines. On the bottom right, the snapshot of animation showing focusing with varying structure angle α (the constant mapping of intensity values to color is applied in all frames of animation) (MEDIA 1)

Fig. 6.
Fig. 6.

Focus parameters as measured in FDTD a) intensity peak amplitude normalized to incident Gaussian beam amplitude. b) focus width and length (FWHM of focus in y and x direction, respectively).

Fig. 7.
Fig. 7.

Focus parameters as measured in FDTD: intensity integrated over whole focal plane and over focus width (normalized to total energy of incident Gaussian beam).

Fig. 8.
Fig. 8.

Steady state energy flow in x direction for dielectric bulk structures (n=1.38) with (left) α=80° and (right) α=120°. White lines mark energy streamlines.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=ε(1ωp2(ω2+iωΓ))
0=ε1(ω)k2tanh(ik2p2)+ε2(ω)k1tanh(ik1d2)
k1=ε1(ω)ω2c2kx2
k2=ε2(ω)ω2c2kx2

Metrics