Abstract

We have realized a 4-beam pyramidal magneto-optical trap ideally suited for future microfabrication. Three mirrors split and steer a single incoming beam into a tripod of reflected beams, allowing trapping in the four-beam overlap volume. We discuss the influence of mirror angle on cooling and trapping, finding optimum efficiency in a tetrahedral configuration. We demonstrate the technique using an ex-vacuo mirror system to illustrate the previously inaccessible supra-plane pyramid MOT configuration. Unlike standard pyramidal MOTs both the pyramid apex and its mirror angle are non-critical and our MOT offers improved molasses free from atomic shadows in the laser beams. The MOT scheme naturally extends to a 2-beam refractive version with high optical access. For quantum gas experiments, the mirror system could also be used for a stable 3D tetrahedral optical lattice.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. P. Purdy and D. M. Stamper-Kurn, "Integrating cavity quantum electrodynamics and ultracold-atom chips with on-chip dielectric mirrors and temperature stabilization," Appl. Phys. B 90, 401-405 (2008).
    [CrossRef]
  2. P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, "Possibility of single-atom detection on a chip," Phys. Rev. A 67, 043806 (2003).
    [CrossRef]
  3. W. P. Schleich and H. Walther, Elements of Quantum Information (Wiley-VCH, 2007).
    [CrossRef]
  4. J. Denschlag, D. Cassettari, and J. Schmiedmayer, "Guiding Neutral Atoms with a Wire," Phys. Rev. Lett. 82, 2014-2017 (1999).
    [CrossRef]
  5. J. Reichel, W. H¨ansel, and T. W. Hansch, "Atomic Micromanipulation with Magnetic Surface Traps," Phys. Rev. Lett. 83, 3398-3401 (1999).
    [CrossRef]
  6. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, "Bose-Einstein Condensation in a Surface Microtrap," Phys. Rev. Lett. 87, 230401 (2001).
    [CrossRef] [PubMed]
  7. W. Hansel, P. Hommelhoff, T. W. H¨ansch, and J. Reichel, "Bose-Einstein condensation on a microelectronic chip," Nature 413, 498-501 (2001).
    [CrossRef] [PubMed]
  8. J. Est`eve, T. Schumm, J.-B. Trebbia, I. Bouchoule, A. Aspect, and C. Westbrook, "Realizing a stable magnetic double-well potential on an atom chip," Eur. Phys. J. 35, 141-146 (2005).
  9. C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, "Bose-Einstein condensation on a permanent-magnet atom chip," Phys. Rev. A 72, 031603 (2005).
    [CrossRef]
  10. A. Shevchenko, M. Heilio, T. Lindvall, A. Jaakkola, I. Tittonen, M. Kaivola, and T. Pfau, "Trapping atoms on a transparent permanent-magnet atom chip," Phys. Rev. A 73, 051401 (2006).
    [CrossRef]
  11. M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
    [CrossRef]
  12. K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, "Single-beam atom trap in a pyramidal and conical hollow mirror," Opt. Lett. 21, 1177-1179 (1996).
    [CrossRef] [PubMed]
  13. G. N. Lewis, Z. Moktadir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. P. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, "Fabrication of magnetooptical atom traps on a chip," J. MEMS 18, 347-353 (2009).
  14. S. Pollock, J. P. Cotter, A. Laliotis, and E. A. Hinds, arXiv:0905.0777.
  15. C. Chesman, E. G. Lima, F. A. M. de Oliveira, S. S. Vianna, and J. W. R. Tabosa, "Two- and four-beam magnetooptical trapping of neutral atoms," Opt. Lett. 19, 1237-1239 (1994).
    [CrossRef] [PubMed]
  16. F. Shimizu, K. Shimizu, and H. Takuma, "Four-beam laser trap of neutral atoms," Opt. Lett. 16, 339-341 (1991).
    [CrossRef] [PubMed]
  17. Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, and H. Takuma, "Laser Cooling and Trapping of Li," Jpn. J. Appl. Phys. 30, 1324-1326 (1991).
    [CrossRef]
  18. K. Lindquist, M. Stephens, and C. E. Wieman, "Experimental and theoretical study of the vapor-cell Zeeman optical trap," Phys. Rev. A 46, 4082-4090 (1992).
    [CrossRef] [PubMed]
  19. C. J. Foot, Atomic Physics, (Oxford University Press, 2005).
  20. C. J. Myatt, N. R. Newbury, and C. E. Wieman, "Simplified atom trap by using direct microwave modulation of a diode laser," Opt. Lett. 18, 649-651 (1993).
    [CrossRef] [PubMed]
  21. P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, "Simple and Effective Modulation of Diode Lasers," Laser Phys. 11, 891-897 (2001).
  22. M. Vangeleyn, P. F. Griffin, I. McGregor, E. Riis, and A. S. Arnold, in preparation.
  23. M. Greiner, I. Bloch, T. W. Hansch, and T. Esslinger, "Magnetic transport of trapped cold atoms over a large distance," Phys. Rev. A 63, 031401 (2001).
    [CrossRef]
  24. H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, "Simplified system for creating a BoseEinstein condensate," J. Low Temp. Phys. 132, 309-367 (2003).
    [CrossRef]
  25. D. A. Smith, A. S. Arnold, M. J. Pritchard, and I. G. Hughes, "Experimental single-impulse magnetic focusing of launched cold atoms," J. Phys. B 41, 125302 (2008) - and references therein.
    [CrossRef]
  26. M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms," Nature 415, 39-44 (2002).
    [CrossRef] [PubMed]
  27. T. Gericke, P. Wurtz, D. Reitz, T. Langen, and H. Ott, "High-resolution scanning electron microscopy of an ultracold quantum gas," Nat. Phys. 4, 949-953 (2008).
    [CrossRef]
  28. http://www.thindiamond.com/NaDiaProbes.asp
  29. P. Treutlein, D. Hunger, S. Camerer, T. W. Hansch, and J. Reichel, "Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip," Phys. Rev. Lett. 99, 140403 (2007).
    [CrossRef] [PubMed]
  30. F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo, and G. M. Tino, "Quantum sensor for atom-surface interactions below 10m," Phys. Rev. A 79, 013409 (2009).
    [CrossRef]

2009 (2)

G. N. Lewis, Z. Moktadir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. P. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, "Fabrication of magnetooptical atom traps on a chip," J. MEMS 18, 347-353 (2009).

F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo, and G. M. Tino, "Quantum sensor for atom-surface interactions below 10m," Phys. Rev. A 79, 013409 (2009).
[CrossRef]

2008 (3)

T. Gericke, P. Wurtz, D. Reitz, T. Langen, and H. Ott, "High-resolution scanning electron microscopy of an ultracold quantum gas," Nat. Phys. 4, 949-953 (2008).
[CrossRef]

D. A. Smith, A. S. Arnold, M. J. Pritchard, and I. G. Hughes, "Experimental single-impulse magnetic focusing of launched cold atoms," J. Phys. B 41, 125302 (2008) - and references therein.
[CrossRef]

T. P. Purdy and D. M. Stamper-Kurn, "Integrating cavity quantum electrodynamics and ultracold-atom chips with on-chip dielectric mirrors and temperature stabilization," Appl. Phys. B 90, 401-405 (2008).
[CrossRef]

2007 (1)

P. Treutlein, D. Hunger, S. Camerer, T. W. Hansch, and J. Reichel, "Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip," Phys. Rev. Lett. 99, 140403 (2007).
[CrossRef] [PubMed]

2006 (2)

A. Shevchenko, M. Heilio, T. Lindvall, A. Jaakkola, I. Tittonen, M. Kaivola, and T. Pfau, "Trapping atoms on a transparent permanent-magnet atom chip," Phys. Rev. A 73, 051401 (2006).
[CrossRef]

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[CrossRef]

2005 (2)

J. Est`eve, T. Schumm, J.-B. Trebbia, I. Bouchoule, A. Aspect, and C. Westbrook, "Realizing a stable magnetic double-well potential on an atom chip," Eur. Phys. J. 35, 141-146 (2005).

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, "Bose-Einstein condensation on a permanent-magnet atom chip," Phys. Rev. A 72, 031603 (2005).
[CrossRef]

2003 (2)

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, "Possibility of single-atom detection on a chip," Phys. Rev. A 67, 043806 (2003).
[CrossRef]

H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, "Simplified system for creating a BoseEinstein condensate," J. Low Temp. Phys. 132, 309-367 (2003).
[CrossRef]

2002 (1)

M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms," Nature 415, 39-44 (2002).
[CrossRef] [PubMed]

2001 (4)

P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, "Simple and Effective Modulation of Diode Lasers," Laser Phys. 11, 891-897 (2001).

M. Greiner, I. Bloch, T. W. Hansch, and T. Esslinger, "Magnetic transport of trapped cold atoms over a large distance," Phys. Rev. A 63, 031401 (2001).
[CrossRef]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, "Bose-Einstein Condensation in a Surface Microtrap," Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef] [PubMed]

W. Hansel, P. Hommelhoff, T. W. H¨ansch, and J. Reichel, "Bose-Einstein condensation on a microelectronic chip," Nature 413, 498-501 (2001).
[CrossRef] [PubMed]

1999 (2)

J. Denschlag, D. Cassettari, and J. Schmiedmayer, "Guiding Neutral Atoms with a Wire," Phys. Rev. Lett. 82, 2014-2017 (1999).
[CrossRef]

J. Reichel, W. H¨ansel, and T. W. Hansch, "Atomic Micromanipulation with Magnetic Surface Traps," Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

1996 (1)

1994 (1)

1993 (1)

1992 (1)

K. Lindquist, M. Stephens, and C. E. Wieman, "Experimental and theoretical study of the vapor-cell Zeeman optical trap," Phys. Rev. A 46, 4082-4090 (1992).
[CrossRef] [PubMed]

1991 (2)

F. Shimizu, K. Shimizu, and H. Takuma, "Four-beam laser trap of neutral atoms," Opt. Lett. 16, 339-341 (1991).
[CrossRef] [PubMed]

Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, and H. Takuma, "Laser Cooling and Trapping of Li," Jpn. J. Appl. Phys. 30, 1324-1326 (1991).
[CrossRef]

Alberti, A.

F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo, and G. M. Tino, "Quantum sensor for atom-surface interactions below 10m," Phys. Rev. A 79, 013409 (2009).
[CrossRef]

Arnold, A. S.

D. A. Smith, A. S. Arnold, M. J. Pritchard, and I. G. Hughes, "Experimental single-impulse magnetic focusing of launched cold atoms," J. Phys. B 41, 125302 (2008) - and references therein.
[CrossRef]

Ashmore, J. P.

G. N. Lewis, Z. Moktadir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. P. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, "Fabrication of magnetooptical atom traps on a chip," J. MEMS 18, 347-353 (2009).

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[CrossRef]

Aspect, A.

J. Est`eve, T. Schumm, J.-B. Trebbia, I. Bouchoule, A. Aspect, and C. Westbrook, "Realizing a stable magnetic double-well potential on an atom chip," Eur. Phys. J. 35, 141-146 (2005).

Balykin, V. I.

P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, "Simple and Effective Modulation of Diode Lasers," Laser Phys. 11, 891-897 (2001).

Baumberg, J. J.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[CrossRef]

Bloch, I.

M. Greiner, I. Bloch, T. W. Hansch, and T. Esslinger, "Magnetic transport of trapped cold atoms over a large distance," Phys. Rev. A 63, 031401 (2001).
[CrossRef]

Bouchoule, I.

J. Est`eve, T. Schumm, J.-B. Trebbia, I. Bouchoule, A. Aspect, and C. Westbrook, "Realizing a stable magnetic double-well potential on an atom chip," Eur. Phys. J. 35, 141-146 (2005).

Camerer, S.

P. Treutlein, D. Hunger, S. Camerer, T. W. Hansch, and J. Reichel, "Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip," Phys. Rev. Lett. 99, 140403 (2007).
[CrossRef] [PubMed]

Cassettari, D.

J. Denschlag, D. Cassettari, and J. Schmiedmayer, "Guiding Neutral Atoms with a Wire," Phys. Rev. Lett. 82, 2014-2017 (1999).
[CrossRef]

Chesman, C.

Cornell, E. A.

H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, "Simplified system for creating a BoseEinstein condensate," J. Low Temp. Phys. 132, 309-367 (2003).
[CrossRef]

Curtis, E. A.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[CrossRef]

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, "Bose-Einstein condensation on a permanent-magnet atom chip," Phys. Rev. A 72, 031603 (2005).
[CrossRef]

de Oliveira, F. A. M.

Denschlag, J.

J. Denschlag, D. Cassettari, and J. Schmiedmayer, "Guiding Neutral Atoms with a Wire," Phys. Rev. Lett. 82, 2014-2017 (1999).
[CrossRef]

Domokos, P.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, "Possibility of single-atom detection on a chip," Phys. Rev. A 67, 043806 (2003).
[CrossRef]

Eriksson, S.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[CrossRef]

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, "Bose-Einstein condensation on a permanent-magnet atom chip," Phys. Rev. A 72, 031603 (2005).
[CrossRef]

Esslinger, T.

M. Greiner, I. Bloch, T. W. Hansch, and T. Esslinger, "Magnetic transport of trapped cold atoms over a large distance," Phys. Rev. A 63, 031401 (2001).
[CrossRef]

Esteve, J.

J. Est`eve, T. Schumm, J.-B. Trebbia, I. Bouchoule, A. Aspect, and C. Westbrook, "Realizing a stable magnetic double-well potential on an atom chip," Eur. Phys. J. 35, 141-146 (2005).

Ferrari, G.

F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo, and G. M. Tino, "Quantum sensor for atom-surface interactions below 10m," Phys. Rev. A 79, 013409 (2009).
[CrossRef]

Folman, R.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, "Possibility of single-atom detection on a chip," Phys. Rev. A 67, 043806 (2003).
[CrossRef]

Fortagh, J.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, "Bose-Einstein Condensation in a Surface Microtrap," Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef] [PubMed]

Garcia, I. L.

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, "Bose-Einstein condensation on a permanent-magnet atom chip," Phys. Rev. A 72, 031603 (2005).
[CrossRef]

Gericke, T.

T. Gericke, P. Wurtz, D. Reitz, T. Langen, and H. Ott, "High-resolution scanning electron microscopy of an ultracold quantum gas," Nat. Phys. 4, 949-953 (2008).
[CrossRef]

Gollasch, C.

G. N. Lewis, Z. Moktadir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. P. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, "Fabrication of magnetooptical atom traps on a chip," J. MEMS 18, 347-353 (2009).

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[CrossRef]

Greiner, M.

M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms," Nature 415, 39-44 (2002).
[CrossRef] [PubMed]

M. Greiner, I. Bloch, T. W. Hansch, and T. Esslinger, "Magnetic transport of trapped cold atoms over a large distance," Phys. Rev. A 63, 031401 (2001).
[CrossRef]

Grossmann, A.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, "Bose-Einstein Condensation in a Surface Microtrap," Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef] [PubMed]

H¨ansch, T. W.

W. Hansel, P. Hommelhoff, T. W. H¨ansch, and J. Reichel, "Bose-Einstein condensation on a microelectronic chip," Nature 413, 498-501 (2001).
[CrossRef] [PubMed]

H¨ansel, W.

J. Reichel, W. H¨ansel, and T. W. Hansch, "Atomic Micromanipulation with Magnetic Surface Traps," Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

Haase, A.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, "Possibility of single-atom detection on a chip," Phys. Rev. A 67, 043806 (2003).
[CrossRef]

Hall, B. V.

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, "Bose-Einstein condensation on a permanent-magnet atom chip," Phys. Rev. A 72, 031603 (2005).
[CrossRef]

Hansch, T. W.

P. Treutlein, D. Hunger, S. Camerer, T. W. Hansch, and J. Reichel, "Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip," Phys. Rev. Lett. 99, 140403 (2007).
[CrossRef] [PubMed]

M. Greiner, I. Bloch, T. W. Hansch, and T. Esslinger, "Magnetic transport of trapped cold atoms over a large distance," Phys. Rev. A 63, 031401 (2001).
[CrossRef]

J. Reichel, W. H¨ansel, and T. W. Hansch, "Atomic Micromanipulation with Magnetic Surface Traps," Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

Hansel, W.

W. Hansel, P. Hommelhoff, T. W. H¨ansch, and J. Reichel, "Bose-Einstein condensation on a microelectronic chip," Nature 413, 498-501 (2001).
[CrossRef] [PubMed]

Harber, D. M.

H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, "Simplified system for creating a BoseEinstein condensate," J. Low Temp. Phys. 132, 309-367 (2003).
[CrossRef]

Heilio, M.

A. Shevchenko, M. Heilio, T. Lindvall, A. Jaakkola, I. Tittonen, M. Kaivola, and T. Pfau, "Trapping atoms on a transparent permanent-magnet atom chip," Phys. Rev. A 73, 051401 (2006).
[CrossRef]

Hinds, E. A.

G. N. Lewis, Z. Moktadir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. P. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, "Fabrication of magnetooptical atom traps on a chip," J. MEMS 18, 347-353 (2009).

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[CrossRef]

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, "Bose-Einstein condensation on a permanent-magnet atom chip," Phys. Rev. A 72, 031603 (2005).
[CrossRef]

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, "Possibility of single-atom detection on a chip," Phys. Rev. A 67, 043806 (2003).
[CrossRef]

Hommelhoff, P.

W. Hansel, P. Hommelhoff, T. W. H¨ansch, and J. Reichel, "Bose-Einstein condensation on a microelectronic chip," Nature 413, 498-501 (2001).
[CrossRef] [PubMed]

Horak, P.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, "Possibility of single-atom detection on a chip," Phys. Rev. A 67, 043806 (2003).
[CrossRef]

Hughes, I. G.

D. A. Smith, A. S. Arnold, M. J. Pritchard, and I. G. Hughes, "Experimental single-impulse magnetic focusing of launched cold atoms," J. Phys. B 41, 125302 (2008) - and references therein.
[CrossRef]

Hunger, D.

P. Treutlein, D. Hunger, S. Camerer, T. W. Hansch, and J. Reichel, "Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip," Phys. Rev. Lett. 99, 140403 (2007).
[CrossRef] [PubMed]

Ivanov, V. V.

F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo, and G. M. Tino, "Quantum sensor for atom-surface interactions below 10m," Phys. Rev. A 79, 013409 (2009).
[CrossRef]

Jaakkola, A.

A. Shevchenko, M. Heilio, T. Lindvall, A. Jaakkola, I. Tittonen, M. Kaivola, and T. Pfau, "Trapping atoms on a transparent permanent-magnet atom chip," Phys. Rev. A 73, 051401 (2006).
[CrossRef]

Jhe, W.

Kaivola, M.

A. Shevchenko, M. Heilio, T. Lindvall, A. Jaakkola, I. Tittonen, M. Kaivola, and T. Pfau, "Trapping atoms on a transparent permanent-magnet atom chip," Phys. Rev. A 73, 051401 (2006).
[CrossRef]

Kim, J. A.

Klappauf, B. G.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, "Possibility of single-atom detection on a chip," Phys. Rev. A 67, 043806 (2003).
[CrossRef]

Kraft, M.

G. N. Lewis, Z. Moktadir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. P. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, "Fabrication of magnetooptical atom traps on a chip," J. MEMS 18, 347-353 (2009).

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[CrossRef]

Laliotis, A.

G. N. Lewis, Z. Moktadir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. P. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, "Fabrication of magnetooptical atom traps on a chip," J. MEMS 18, 347-353 (2009).

Langen, T.

T. Gericke, P. Wurtz, D. Reitz, T. Langen, and H. Ott, "High-resolution scanning electron microscopy of an ultracold quantum gas," Nat. Phys. 4, 949-953 (2008).
[CrossRef]

Lee, K. I.

Lewandowski, H. J.

H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, "Simplified system for creating a BoseEinstein condensate," J. Low Temp. Phys. 132, 309-367 (2003).
[CrossRef]

Lewis, G. N.

G. N. Lewis, Z. Moktadir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. P. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, "Fabrication of magnetooptical atom traps on a chip," J. MEMS 18, 347-353 (2009).

Lima, E. G.

Lin, Z.

Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, and H. Takuma, "Laser Cooling and Trapping of Li," Jpn. J. Appl. Phys. 30, 1324-1326 (1991).
[CrossRef]

Lindquist, K.

K. Lindquist, M. Stephens, and C. E. Wieman, "Experimental and theoretical study of the vapor-cell Zeeman optical trap," Phys. Rev. A 46, 4082-4090 (1992).
[CrossRef] [PubMed]

Lindvall, T.

A. Shevchenko, M. Heilio, T. Lindvall, A. Jaakkola, I. Tittonen, M. Kaivola, and T. Pfau, "Trapping atoms on a transparent permanent-magnet atom chip," Phys. Rev. A 73, 051401 (2006).
[CrossRef]

Mandel, O.

M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms," Nature 415, 39-44 (2002).
[CrossRef] [PubMed]

Melentiev, P. N.

P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, "Simple and Effective Modulation of Diode Lasers," Laser Phys. 11, 891-897 (2001).

Moktadir, Z.

G. N. Lewis, Z. Moktadir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. P. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, "Fabrication of magnetooptical atom traps on a chip," J. MEMS 18, 347-353 (2009).

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[CrossRef]

Myatt, C. J.

Newbury, N. R.

Noh, H. R.

Ott, H.

T. Gericke, P. Wurtz, D. Reitz, T. Langen, and H. Ott, "High-resolution scanning electron microscopy of an ultracold quantum gas," Nat. Phys. 4, 949-953 (2008).
[CrossRef]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, "Bose-Einstein Condensation in a Surface Microtrap," Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef] [PubMed]

Pfau, T.

A. Shevchenko, M. Heilio, T. Lindvall, A. Jaakkola, I. Tittonen, M. Kaivola, and T. Pfau, "Trapping atoms on a transparent permanent-magnet atom chip," Phys. Rev. A 73, 051401 (2006).
[CrossRef]

Poli, N.

F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo, and G. M. Tino, "Quantum sensor for atom-surface interactions below 10m," Phys. Rev. A 79, 013409 (2009).
[CrossRef]

Pollock, S.

G. N. Lewis, Z. Moktadir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. P. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, "Fabrication of magnetooptical atom traps on a chip," J. MEMS 18, 347-353 (2009).

Prakash, G. V.

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[CrossRef]

Pritchard, M. J.

D. A. Smith, A. S. Arnold, M. J. Pritchard, and I. G. Hughes, "Experimental single-impulse magnetic focusing of launched cold atoms," J. Phys. B 41, 125302 (2008) - and references therein.
[CrossRef]

Purdy, T. P.

T. P. Purdy and D. M. Stamper-Kurn, "Integrating cavity quantum electrodynamics and ultracold-atom chips with on-chip dielectric mirrors and temperature stabilization," Appl. Phys. B 90, 401-405 (2008).
[CrossRef]

Ramirez-Martinez, F.

G. N. Lewis, Z. Moktadir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. P. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, "Fabrication of magnetooptical atom traps on a chip," J. MEMS 18, 347-353 (2009).

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[CrossRef]

Reichel, J.

P. Treutlein, D. Hunger, S. Camerer, T. W. Hansch, and J. Reichel, "Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip," Phys. Rev. Lett. 99, 140403 (2007).
[CrossRef] [PubMed]

W. Hansel, P. Hommelhoff, T. W. H¨ansch, and J. Reichel, "Bose-Einstein condensation on a microelectronic chip," Nature 413, 498-501 (2001).
[CrossRef] [PubMed]

J. Reichel, W. H¨ansel, and T. W. Hansch, "Atomic Micromanipulation with Magnetic Surface Traps," Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

Reitz, D.

T. Gericke, P. Wurtz, D. Reitz, T. Langen, and H. Ott, "High-resolution scanning electron microscopy of an ultracold quantum gas," Nat. Phys. 4, 949-953 (2008).
[CrossRef]

Retter, J. A.

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, "Bose-Einstein condensation on a permanent-magnet atom chip," Phys. Rev. A 72, 031603 (2005).
[CrossRef]

Sauer, B. E.

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, "Bose-Einstein condensation on a permanent-magnet atom chip," Phys. Rev. A 72, 031603 (2005).
[CrossRef]

Schioppo, M.

F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo, and G. M. Tino, "Quantum sensor for atom-surface interactions below 10m," Phys. Rev. A 79, 013409 (2009).
[CrossRef]

Schlotterbeck, G.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, "Bose-Einstein Condensation in a Surface Microtrap," Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef] [PubMed]

Schmiedmayer, J.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, "Possibility of single-atom detection on a chip," Phys. Rev. A 67, 043806 (2003).
[CrossRef]

J. Denschlag, D. Cassettari, and J. Schmiedmayer, "Guiding Neutral Atoms with a Wire," Phys. Rev. Lett. 82, 2014-2017 (1999).
[CrossRef]

Schumm, T.

J. Est`eve, T. Schumm, J.-B. Trebbia, I. Bouchoule, A. Aspect, and C. Westbrook, "Realizing a stable magnetic double-well potential on an atom chip," Eur. Phys. J. 35, 141-146 (2005).

Shevchenko, A.

A. Shevchenko, M. Heilio, T. Lindvall, A. Jaakkola, I. Tittonen, M. Kaivola, and T. Pfau, "Trapping atoms on a transparent permanent-magnet atom chip," Phys. Rev. A 73, 051401 (2006).
[CrossRef]

Shimizu, F.

Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, and H. Takuma, "Laser Cooling and Trapping of Li," Jpn. J. Appl. Phys. 30, 1324-1326 (1991).
[CrossRef]

F. Shimizu, K. Shimizu, and H. Takuma, "Four-beam laser trap of neutral atoms," Opt. Lett. 16, 339-341 (1991).
[CrossRef] [PubMed]

Shimizu, K.

F. Shimizu, K. Shimizu, and H. Takuma, "Four-beam laser trap of neutral atoms," Opt. Lett. 16, 339-341 (1991).
[CrossRef] [PubMed]

Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, and H. Takuma, "Laser Cooling and Trapping of Li," Jpn. J. Appl. Phys. 30, 1324-1326 (1991).
[CrossRef]

Sinclair, C. D. J.

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, "Bose-Einstein condensation on a permanent-magnet atom chip," Phys. Rev. A 72, 031603 (2005).
[CrossRef]

Smith, D. A.

D. A. Smith, A. S. Arnold, M. J. Pritchard, and I. G. Hughes, "Experimental single-impulse magnetic focusing of launched cold atoms," J. Phys. B 41, 125302 (2008) - and references therein.
[CrossRef]

Sorrentino, F.

F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo, and G. M. Tino, "Quantum sensor for atom-surface interactions below 10m," Phys. Rev. A 79, 013409 (2009).
[CrossRef]

Stamper-Kurn, D. M.

T. P. Purdy and D. M. Stamper-Kurn, "Integrating cavity quantum electrodynamics and ultracold-atom chips with on-chip dielectric mirrors and temperature stabilization," Appl. Phys. B 90, 401-405 (2008).
[CrossRef]

Stephens, M.

K. Lindquist, M. Stephens, and C. E. Wieman, "Experimental and theoretical study of the vapor-cell Zeeman optical trap," Phys. Rev. A 46, 4082-4090 (1992).
[CrossRef] [PubMed]

Subbotin, M. V.

P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, "Simple and Effective Modulation of Diode Lasers," Laser Phys. 11, 891-897 (2001).

Tabosa, J. W. R.

Takuma, H.

F. Shimizu, K. Shimizu, and H. Takuma, "Four-beam laser trap of neutral atoms," Opt. Lett. 16, 339-341 (1991).
[CrossRef] [PubMed]

Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, and H. Takuma, "Laser Cooling and Trapping of Li," Jpn. J. Appl. Phys. 30, 1324-1326 (1991).
[CrossRef]

Tino, G. M.

F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo, and G. M. Tino, "Quantum sensor for atom-surface interactions below 10m," Phys. Rev. A 79, 013409 (2009).
[CrossRef]

Tittonen, I.

A. Shevchenko, M. Heilio, T. Lindvall, A. Jaakkola, I. Tittonen, M. Kaivola, and T. Pfau, "Trapping atoms on a transparent permanent-magnet atom chip," Phys. Rev. A 73, 051401 (2006).
[CrossRef]

Trebbia, J.-B.

J. Est`eve, T. Schumm, J.-B. Trebbia, I. Bouchoule, A. Aspect, and C. Westbrook, "Realizing a stable magnetic double-well potential on an atom chip," Eur. Phys. J. 35, 141-146 (2005).

Treutlein, P.

P. Treutlein, D. Hunger, S. Camerer, T. W. Hansch, and J. Reichel, "Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip," Phys. Rev. Lett. 99, 140403 (2007).
[CrossRef] [PubMed]

Trupke, M.

G. N. Lewis, Z. Moktadir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. P. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, "Fabrication of magnetooptical atom traps on a chip," J. MEMS 18, 347-353 (2009).

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[CrossRef]

Vianna, S. S.

Westbrook, C.

J. Est`eve, T. Schumm, J.-B. Trebbia, I. Bouchoule, A. Aspect, and C. Westbrook, "Realizing a stable magnetic double-well potential on an atom chip," Eur. Phys. J. 35, 141-146 (2005).

Whitaker, D. L.

H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, "Simplified system for creating a BoseEinstein condensate," J. Low Temp. Phys. 132, 309-367 (2003).
[CrossRef]

Wieman, C. E.

C. J. Myatt, N. R. Newbury, and C. E. Wieman, "Simplified atom trap by using direct microwave modulation of a diode laser," Opt. Lett. 18, 649-651 (1993).
[CrossRef] [PubMed]

K. Lindquist, M. Stephens, and C. E. Wieman, "Experimental and theoretical study of the vapor-cell Zeeman optical trap," Phys. Rev. A 46, 4082-4090 (1992).
[CrossRef] [PubMed]

Wurtz, P.

T. Gericke, P. Wurtz, D. Reitz, T. Langen, and H. Ott, "High-resolution scanning electron microscopy of an ultracold quantum gas," Nat. Phys. 4, 949-953 (2008).
[CrossRef]

Zhan, M.

Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, and H. Takuma, "Laser Cooling and Trapping of Li," Jpn. J. Appl. Phys. 30, 1324-1326 (1991).
[CrossRef]

Zimmermann, C.

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, "Bose-Einstein Condensation in a Surface Microtrap," Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef] [PubMed]

Appl. Phys. B (1)

T. P. Purdy and D. M. Stamper-Kurn, "Integrating cavity quantum electrodynamics and ultracold-atom chips with on-chip dielectric mirrors and temperature stabilization," Appl. Phys. B 90, 401-405 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

M. Trupke, F. Ramirez-Martinez, E. A. Curtis, J. P. Ashmore, S. Eriksson, E. A. Hinds, Z. Moktadir, C. Gollasch, M. Kraft, G. V. Prakash, and J. J. Baumberg, "Pyramidal micromirrors for microsystems and atom chips," Appl. Phys. Lett. 88, 071116 (2006).
[CrossRef]

Eur. Phys. J. (1)

J. Est`eve, T. Schumm, J.-B. Trebbia, I. Bouchoule, A. Aspect, and C. Westbrook, "Realizing a stable magnetic double-well potential on an atom chip," Eur. Phys. J. 35, 141-146 (2005).

J. Low Temp. Phys. (1)

H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, "Simplified system for creating a BoseEinstein condensate," J. Low Temp. Phys. 132, 309-367 (2003).
[CrossRef]

J. MEMS (1)

G. N. Lewis, Z. Moktadir, C. Gollasch, M. Kraft, S. Pollock, F. Ramirez-Martinez, J. P. Ashmore, A. Laliotis, M. Trupke, and E. A. Hinds, "Fabrication of magnetooptical atom traps on a chip," J. MEMS 18, 347-353 (2009).

J. Phys. B (1)

D. A. Smith, A. S. Arnold, M. J. Pritchard, and I. G. Hughes, "Experimental single-impulse magnetic focusing of launched cold atoms," J. Phys. B 41, 125302 (2008) - and references therein.
[CrossRef]

Jpn. J. Appl. Phys. (1)

Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, and H. Takuma, "Laser Cooling and Trapping of Li," Jpn. J. Appl. Phys. 30, 1324-1326 (1991).
[CrossRef]

Laser Phys. (1)

P. N. Melentiev, M. V. Subbotin, and V. I. Balykin, "Simple and Effective Modulation of Diode Lasers," Laser Phys. 11, 891-897 (2001).

Nat. Phys. (1)

T. Gericke, P. Wurtz, D. Reitz, T. Langen, and H. Ott, "High-resolution scanning electron microscopy of an ultracold quantum gas," Nat. Phys. 4, 949-953 (2008).
[CrossRef]

Nature (2)

M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, "Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms," Nature 415, 39-44 (2002).
[CrossRef] [PubMed]

W. Hansel, P. Hommelhoff, T. W. H¨ansch, and J. Reichel, "Bose-Einstein condensation on a microelectronic chip," Nature 413, 498-501 (2001).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (6)

C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson, B. E. Sauer, and E. A. Hinds, "Bose-Einstein condensation on a permanent-magnet atom chip," Phys. Rev. A 72, 031603 (2005).
[CrossRef]

A. Shevchenko, M. Heilio, T. Lindvall, A. Jaakkola, I. Tittonen, M. Kaivola, and T. Pfau, "Trapping atoms on a transparent permanent-magnet atom chip," Phys. Rev. A 73, 051401 (2006).
[CrossRef]

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, "Possibility of single-atom detection on a chip," Phys. Rev. A 67, 043806 (2003).
[CrossRef]

K. Lindquist, M. Stephens, and C. E. Wieman, "Experimental and theoretical study of the vapor-cell Zeeman optical trap," Phys. Rev. A 46, 4082-4090 (1992).
[CrossRef] [PubMed]

M. Greiner, I. Bloch, T. W. Hansch, and T. Esslinger, "Magnetic transport of trapped cold atoms over a large distance," Phys. Rev. A 63, 031401 (2001).
[CrossRef]

F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M. Schioppo, and G. M. Tino, "Quantum sensor for atom-surface interactions below 10m," Phys. Rev. A 79, 013409 (2009).
[CrossRef]

Phys. Rev. Lett. (4)

P. Treutlein, D. Hunger, S. Camerer, T. W. Hansch, and J. Reichel, "Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip," Phys. Rev. Lett. 99, 140403 (2007).
[CrossRef] [PubMed]

J. Denschlag, D. Cassettari, and J. Schmiedmayer, "Guiding Neutral Atoms with a Wire," Phys. Rev. Lett. 82, 2014-2017 (1999).
[CrossRef]

J. Reichel, W. H¨ansel, and T. W. Hansch, "Atomic Micromanipulation with Magnetic Surface Traps," Phys. Rev. Lett. 83, 3398-3401 (1999).
[CrossRef]

H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, "Bose-Einstein Condensation in a Surface Microtrap," Phys. Rev. Lett. 87, 230401 (2001).
[CrossRef] [PubMed]

Other (5)

W. P. Schleich and H. Walther, Elements of Quantum Information (Wiley-VCH, 2007).
[CrossRef]

C. J. Foot, Atomic Physics, (Oxford University Press, 2005).

S. Pollock, J. P. Cotter, A. Laliotis, and E. A. Hinds, arXiv:0905.0777.

http://www.thindiamond.com/NaDiaProbes.asp

M. Vangeleyn, P. F. Griffin, I. McGregor, E. Riis, and A. S. Arnold, in preparation.

Supplementary Material (5)

» Media 1: MOV (653 KB)     
» Media 2: MOV (622 KB)     
» Media 3: MOV (624 KB)     
» Media 4: MOV (415 KB)     
» Media 5: MOV (570 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the ideal reflective version of the tetrahedral pyramid MOT (a). A single downwards laser beam is split and reflected by a pyramid of mirrors. Mirror declination of θ relative to the horizontal plane yields reflected beams at angle π/2-2θ above the plane. A refractive version (b) would have independent upward and downward laser beams, here with upward beams at angle π/4 above the plane, using a diamond (n=2.4) pyramid with inclination θ=22.7°. In both cases balanced optical molasses is formed when the intensity-weighted k vectors of the four beams add to zero, i.e. I up=I down/(3cos2θ).

Fig. 2.
Fig. 2.

Axial cooling (blue), axial trapping (red) and radial trapping/cooling (green) forces, as a function of the mirror declination, θ (Eq. 4). Forces are shown relative to radial forces in the 6-beam MOT. Ideal relative reflected beam power I up/I down=1/(3cos2θ) is shown in black, and the maximum reflected beam power (dash-dotted curve) is discussed in the text. Balanced molasses in the grey zone at angles above the pure tetrad (θ=35.3°) can only be obtained in the refractive geometry with independent control of I up and I down.

Fig. 3.
Fig. 3.

Image (a) show the total (black) and sub-plane (green)MOT capture volume, respectively, relative to the pure tetrad capture volume. Also shown are the relative axial (blue) and radial (red) MOT sizes. The beam intersection for θ=35.3° is illustrated in (b), and the θ -dependent capture volume (and relative MOT size (blue ellipsoid)) can be observed as an animation (Media 1). See also ‘tomographic’ movies of z slices of the capture volume for θ=10,30,35.3° (Media 2, Media 3, Media 4).

Fig. 4.
Fig. 4.

Images (a) and (b) are the acceleration magnitudes due to single laser beams in the direction of the red arrows - (b) corresponds to radial trapping and weak axial anti-trapping. The circular polarization changes from s=1 in (a) to s=−1 in (b) due to the reflection from the pyramid mirror. The local magnetic field and the k·B=0 line are shown as black vectors and a black line, respectively. The θ variation of the acceleration due to a single upward beam (b) is also available (Media 5). Image (c) shows the acceleration magnitude (colorscale) and vectors (white) due to all four tetrahedral MOT beams. Acceleration is isotropic, whereas standard MOTs have ar : az =1 : 2.

Fig. 5.
Fig. 5.

A 3D schematic (a) of the demonstration setup using beams reflected from a single downward beam by three mirrors. The mirror declination is θ=22.5° resulting in upwards beam at an angle 45° above the plane. The atoms (red cloud) form inside the vacuum bordered by the quartz cell window. The experimental version is shown in (b), with the MOT indicated by a white arrow.

Fig. 6.
Fig. 6.

Number of atoms with respect to the microwave frequency. The peaks correspond to the F=1→F′=1 (left) and F=1→F′=2 (right) repumping transitions

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

aj=a βj k̂j n=1,0,1ηn (1+βtot+4(ΔΓkΓk̂j·vμΓnB)2),
ajaβjk̂jn=1,0,1ηn(K+C(kΓk̂j·v+μΓnB)) ,
aja βj k̂j (K+C(kΓk̂j·vsζμΓB)).
atot=(ar,az)=2aβC[kΓ(γrvr,γzvz)+μΓb(κrr,κzz)] ,

Metrics